1. Trang chủ
  2. » Tất cả

TOÁN KĨ THUẬT NÂNG CAO

29 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 436,39 KB

Nội dung

toán kỹ thuật,lê minh cường,dhbkhcm Chapter 7 1 Chapter 7 Analytic Function CuuDuongThanCong com https fb comtailieudientucntt http cuuduongthancong com https fb comtailieudientucntt Chapter 7.toán kỹ thuật,lê minh cường,dhbkhcm Chapter 7 1 Chapter 7 Analytic Function CuuDuongThanCong com https fb comtailieudientucntt http cuuduongthancong com https fb comtailieudientucntt Chapter 7.

Chapter 7: Analytic Function Chapter CuuDuongThanCong.com https://fb.com/tailieudientucntt 7.1: Complex number a) The real number: ƒ Natural number = positive integers ƒ negative integers and zero ƒ Rational number: ⅓, ⅔, ⅜ … ƒ Irrational number: π = 3.14159… ƒ Rational and irrational number = real number ƒ Real number = represented by real axis Chapter [2] CuuDuongThanCong.com https://fb.com/tailieudientucntt b) The Complex Number: ƒ Imaginary number = root of negative real number −3 = −1 = 3j ƒ Complex number = real number + Imaginary number z = a + jb ƒ The components: Re(z) = a abs(z) = a + b Im(z) = b arg(z) = tan −1 (b / a) (−π < arg(z) ≤ π) Chapter [3] CuuDuongThanCong.com https://fb.com/tailieudientucntt c) The forms of Complex Number: ƒ Algebra form: z = a + jb ƒ Exponential form: z = r.e jθ ƒ Trigonometric form: z = r[cos θ + jsin θ ] ƒ Steinmetz form: z = r ∠θ Chapter [4] CuuDuongThanCong.com https://fb.com/tailieudientucntt d) The Complex Conjugate and rules: ƒ Definition: ƒ Rules: * z or z = a − jb = re − jθ * z.(z) =| z | * * * * * * z w (z.w ) = z w ( ) = * (z + w ) = z + w Chapter * z * w [5] CuuDuongThanCong.com https://fb.com/tailieudientucntt e) The Fundamental Operations: Addition: Subtraction: Multiplication : Division : Powers: The nth Roots: Chapter [6] CuuDuongThanCong.com https://fb.com/tailieudientucntt 7.2: Function of a complex variable ™ Function = one of the most important concepts in math ™ Function = rule hat assigns one element in set A to one/only one element in set B ™ Complex Function (or Function of a complex variable ) w = f(z) : input z and output w are complex ƒ Example: w = f(z) = z2 – (2+j)z defines a complex function ™ Domain S of a complex function = set of all complex numbers z for which f(z) defined ● Types : Single-valued: f(z) = z2 (default) Chapter Multi-valued: f(z) = sqrt(z) CuuDuongThanCong.com https://fb.com/tailieudientucntt [7] ™Example1: Function complex variable Determine region represented by: (a) |z| < (b) < |z + j2| ≤ (c) π/3 ≤ arg(z) ≤ π/2 ? a) |z| < : Interior of a circle radius b) < |z+j2| ≤ : exterior radius but interior of a circle radius c) π/2 ≤ arg(z) ≤ π/2 : infinite region, including the lines Chapter [8] CuuDuongThanCong.com https://fb.com/tailieudientucntt ™ Real and Imaginary Parts : Every z on S , we have w = f(z) = u +jv = u(x,y) + jv(x,y) Real part Imaginary part ™ Complex Function = mapping or transformation Each point (region) in z-plane is mapped onto another in w-plane y y1 z-plane z1 x1 v x1+jy1 w-plane x u f(z1) Chapter [9] CuuDuongThanCong.com https://fb.com/tailieudientucntt ™Example2: Function complex variable What are the real and imaginary parts of f(z) = z + ? z ƒ Let z = x + jy, we have: x − jy = x + jy + f(z) = x + jy + x + jy x + y2 x u(x,y) = x + x + y2 y v(x,y) = y − x + y2 Chapter [10] CuuDuongThanCong.com https://fb.com/tailieudientucntt 2) Continuity: i f(z0) must exist ƒ f(z) is continuous at z0 if : ii lim f (z) = L z →z must exist iii L = f(z0) And written by : lim f (z) = f (z ) z →z Chapter [15] CuuDuongThanCong.com https://fb.com/tailieudientucntt ™Example1: Continuity Show that f(z) = z3 is continuous at z = j ? i) f(z = j) = j3 = − j : exists ii) lim z = − j z→ j f(z) = z3 is continuous at z = j Chapter [16] CuuDuongThanCong.com https://fb.com/tailieudientucntt 7.4: Derivative: ƒ The derivative of a complex function f(z), written f’(z) , defined :  f (z + ∆z) − f (z)  f ' (z) = lim   ∆z →0 ∆ z   ™ Example: Given f(z) = z2, find f’(z) ? f (z + ∆z) − f (z) = z + 2z∆z + ∆z − z 2 z + 2z∆z + ∆z − z lim = lim (2z + ∆z) = 2z ∆z →0 ∆z →0 ∆z 2 Chapter [17] CuuDuongThanCong.com https://fb.com/tailieudientucntt Properties: ™ ( c.f ) ' = c.f ' (f + g) ' ' f g = f g + f g ( ) ' ' ' = f + g  f  f 'g − f g ' g = g   ' ' f (z) f '(z) = lim If f(z ) = g(z ) = and g'(z ) ≠ then: lim z → z g (z) z → z g '(z) (L’Hopital’s rule) Chapter [18] CuuDuongThanCong.com https://fb.com/tailieudientucntt 7.5: Cauchy – Riemann equations : ƒ Let f(z) = u(x,y) + jv(x,y) differentiable at z = x + jy , u and v exist and satify the Cauchy – Riemann equations :  ∂u ∂v =  ∂x ∂y  u v ∂ ∂  =− ∂x  ∂y Chapter [19] CuuDuongThanCong.com https://fb.com/tailieudientucntt 7.6: Analytic function and properties: a) Analytic Function: ƒ if f(z) = defined and differentiable in domain S : f(z) is analytic in S ™Example: Is the function f(z) = z2 analytic ? We have: f(z) = x − y + j2xy 2 ∂u ∂x ∂u ∂y = 2x ∂v ∂y = 2x = −2y ∂v ∂x = 2y f(z) = analytic Chapter [20] CuuDuongThanCong.com https://fb.com/tailieudientucntt

Ngày đăng: 15/11/2022, 22:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w