ĐỀ THI HSG TỐN §Ị sè i Thêi gian làm 120 phút Câu1: a Tìm số tự nhiên x, y cho (2x+1)(y-5)=12 b.Tìm số tự nhiên cho 4n-5 chia hÕt cho 2n-1 c T×m tÊt số B = 62xy427, biết số B chia hết cho 99 12n phân số tèi gi¶n 30n 1 1 b Chøng minh r»ng : + + + + 2x+1 =1 2x+1=3 (0,25đ) 2x+1=1 => x=0; y-5=12 => y=17 hc 2x+1=3=> x=1; y-5=4=>y=9 (0,25®) vËy (x,y) = (0,17); (1,9) (0,25®) b.(1®) Ta cã 4n-5 = 2( 2n-1)-3 (0,25®) ®Ĩ 4n-5 chia hÕt cho2n-1 => chia hÕt cho2n-1 (0,25®) =>* 2n-1=1 => n=1 *2n-1=3=>n=2 (0,25®) vËy n=1;2 (0,25®) c (1®) Ta cã 99=11.9 B chia hÕt cho 99 => B chia hÕt cho 11và B chia hết cho 99 (0,25đ) *B chia hÕt cho => ( 6+2+4+2+7+x+y) chia hÕt cho (x+y+3) chia hÕt cho 9=> x+y=6 hc x+y =15 B chia hÕt cho 11=> (7+4+x+6-2-2-y) chia hÕt cho11=> (13+xy)chia hết cho 11 x-y=9 (loại) y-x=2 (0,25đ) y-x=2 x+y=6 => y=4; x=2 (0,25đ) y-x=2 x+y=15 (loại) B=6224427 (0,25đ) Câu2: a Gọi dlà ớc ching 12n+1và 30n+2 ta có 5(12n+1)-2(30n+2)=1 chia hết cho d (0,5đ) Bs: LA SƠN ĐỀ THI HSG TOÁN vËy d=1 nên 12n+1 30n+2 nguyên tố 12n phân số tối giản 30n 1 1 b Ta cã < = 2.1 2 1 1 = < 2.3 3 ®ã (0,5®) 1 1 = < 99.100 99 100 100 VËy (0,5®) 1 1 1 1 + - + + + + + < 2 99 100 100 1 99 = p2 +1 (0,25đ) - p > nên p có dạng: + p = 3k +1 > p – = 3k + – = 3k > p4 – + p = 3k + > p + = 3k + + = 3k +3 > p4 -1 (0,25đ) - Mặt khác, p dạng: + P = 5k +1 > p – = 5k + - = 5k > p4 - + p = k+ > p + = (5k +2)2 +1 = 25k2 + 20k +5 > p4 (0,25 ®) + p = 5k +3 > p2 +1 = 25k2 + 30k +10 > p4 –1 + p = 5k +4 > p + = 5k +5 > p4 – (0,25®) VËy p4 – hay p4 – 240 T¬ng tù ta cịng cã q4 - 240 (0,25®) VËy: (p4 - 1) – (q4 –1) = p4 q4 240 Câu 2: (2đ) 8n 193 2(4n 3) 187 187 2 4n 4n 4n §Ĩ A N th× 187 4n + => 4n +3 a A 17;11;187 (0,5®) + 4n + = 11 -> n = + 4n +3 = 187 > n = 46 + 4n + = 17 -> 4n = 14 -> n N (0,5đ) Vậy n = 2; 46 b.A tối giản 187 4n + cã UCLN b»ng -> n 11k + (k N) -> n 17m + 12 (m N) (0,5®) 77 ; 19 89 n = 165 -> A 39 139 n = 167 -> A (0,5®) 61 c) n = 156 -> A Câu 3: (2đ) Do = 12 (- 4) = 22.(-1) nê có trờng hợp sau: ( x 2) 1 x 1 x 3 a y y y x y (0,5đ) x 1 y ( x 2) 2 x 2 x 4 (0,5®) y 2 y 2 y x x 0 hc y 2 y 2 (0,5®) b Bs: LA SƠN (0,5®) 43 ĐỀ THI HSG TON A Câu 4: (3đ) a M, B thuộc tia đối CB CM -> C nằm B M ->BM = BC + CM = (cm) (0,5®) M B x K C y b C n»m gi÷a B,M -> Tia AC n»m gi÷a tia AB, AM -> CAM = BAM BAC = 200 (0,75®) 1 BAC + CAM 2 1 BAM = 80 = 400 (0,75®) = ( BAC + CAM) = 2 c Cã xAy = x AC + CAy = d + NÕu K tia CM -> C nằm B K1 -> BK1 = BC + CK1 = (cm) (0,5®) + NÕu K tia CB -> K2 n»m gi÷a B vµ C -> BK2 = BC = CK2 =4 (cm) (0,5 đ) Câu 5: (1đ) Ta có 1 1 2 1 2 1 2 1 ( ) ( ) ( ); ( ); 1.4 1.4 4.7 7.10 10 2 1 ( ) (0,5®) 97.100 99 100 1 1 1 1 B= ( ) 4 7 10 99 100 1 99 33 B= ( ) (0,5®) 100 100 50 ; -Đáp án đề số xx Câu a) §Ĩ 510* ; 61*16 chia hÕt cho th×: + + + * chia hÕt cho 3; từ tìm đợc * = 0; 3; 6; (1đ) b) Để 261* chia hết cho chia d thì: * chẵn + + + * chia d 1; tõ ®ã tìm đợc * = (1đ) Câu S = 1.2 + 2.3 + 3.4 + + 99.100 3.S = (1.2 + 2.3 + 3.4 + + 99.100).3 (0,5®) = 1.2.3 + 2.3.3 + 3.4.3 + + 99.100.3 = 1.2.3 +2.3.(4 - 1) + 3.4.(5 - 2) + + 99.100.(101 - 98) (0,5®) Bs: LA SƠN 44 ĐỀ THI HSG TOÁN = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - - 98.99.100 + 99.100.101 S = 99.100.101: = 33 100 101 = 333300 (0,5đ) Câu Thời gian từ A đến C Hùng là: 11 - = (giê) Thêi gian ®i tõ B ®Õn C cđa Dũng là: 11 - = (giờ)0,5đ QuÃng đờng AB 30 km khoảng cách Hùng Dũng bớt 10 km Vì lúc Hùng cách Dũng 20 km, lúc Ninh gặp Dũng nên Ninh cách Hùng 20 km đ Ninh Đến 24 phút, Ninh gặp Hùng tổng vận tốc1của Hùng là: 1đ 24 20.60 50(km / h) 20 : 60 24 Do vËn tèc cña Ninh b»ng 1/4 vËn tốc Hùng nên vận tốc Hùng là: [50 : (1 + 4)] = 40 (km/h) 0,5® Từ suy quÃng đờng BC là: 40 - 30 = 90 (km) 0,5đ Đáp số: BC = 90 km Câu 4: (2đ) Trên đoạn thẳng AB có điểm A; A 1; A2; A3; ; A2004 ; B đó, tổng số điểm AB 2006 điểm suy có 2006 đoạn thẳng nối từ M đến điểm Mỗi đoạn thẳng (ví dụ MA) kết hợp với 2005 đoạn thẳng lại đoạn thẳng tơng ứng AB để tạo thành 2005 tam giác Do 2006 đoạn thẳng tạo thành 2005 2006 = 4022030 tam giác (nhng lu ý MA kết hợp với MA1 để đợc tam giác MA1 kết hợp với MA đợc tam giác hai tam giác 1) Do số tam giác thực có là: 4022030 : = 2011015 Câu 5: (1đ) Thêm đơn vị vào phân số thứ 15 56 56 48 tích suy tích tích cũ = 15 15 15 15 48 lần phân số thứ hai Suy phân số thứ hai :4 15 12 = = 15 Từ suy phân số thứ là: : = 15 TÝch cđa hai ph©n sè lµ Bs: LA SƠN 45 ĐỀ THI HSG TỐN đáp án đề số xxi Câu 1: 2525 25.101 25 5353 53.101 53 252525 25.10101 25 535353 53.10101 53 25 2525 252525 VËy 53 5353 535353 (0.5đ) (0.5đ) (0.5đ) Câu 2: 300 300 300 30 30 300 mµ 670 677 670 67 67 677 37 30 377 300 Ta cã : vµ 67 67 677 677 377 37 Tõ (1) vµ (2) 677 67 (1) (0.5đ) (2) (0.5đ) (0.5đ) Câu 4: Giả sử đội văn nghệ có n ngời Tổng số tuổi đội văn nghệ trừ ngời huy m m 17 m 11 (1) vµ 10 (2) n n Tõ (1) m = 11n – 17 (3) (2) m = 10n – 10 (4) Tõ (3) vµ (4) 11n – 17 = 10n –10 n =7 Ta có: (1đ) (1đ) (1đ) Đáp số: Số ngời đội văn nghệ là: Câu 5: a.Tính đợc yOn = 150 ; mOy = 750 ChØ c¸ch vẽ vẽ b.Tính đợc mOn = 900 (1đ) (0.5®) (0.5®) m y n x z O đáp án đề số xxii Câu I : 1) 1,5® 636363 37 373737 63 63.(10101.37) 37.(10101.63) 37.63.(10101 10101) 0 = = 2006 2006 2006 12 12 12 4 12 4 19 37 53 : 17 19 2006 124242423 2) B = 3 5 237373735 41 5 3 37 53 17 19 2006 A= Bs: LA SƠN 46 ĐỀ THI HSG TOÁN 1 1 1 12.1 41 47 19 37 53 17 19 2006 41.3.1010101 : = 1 1 1 47.5.1010101 41 51 31 17 19 2006 19 37 53 47 41.3 (4 ) = = (1,5®) 41 47.5 Câu 2: 2đ - b=0 => 9+a => a = - B =5 => 14+a => a = Câu iii: đ a) A = 31 +32+33 + .+ 32006 3A =32+33 +34+ .+ 32007 3A – A = 2007 32007 -3 A = (1®) 2007 b) Ta cã : +3 = 3x => 32007 -3 +3 = 3x => 32007 = 3x => x = 2007 (1đ) Câu IV: 1® 2005(2005 2004 1) 2005 2005 2005 2005 2004 2005 2004 A= < = = =B 2005(2005 2005 1) 2005 2006 2005 2006 2004 2005 2005 Vậy A < B Câu V : 2đ Gọi x số trang sách, x N x trang Số trang lại x- x = x trang 5 3 x trang Ngày đọc đợc x = 5 25 x = x trang Sè trang lại x 25 25 24x x 80% +30 = Ngày thứ đọc đợc : + 30 25 125 24x x+ Hay : x + + 30 =x => x =625 trang 25 125 Ngày đọc đợc ĐS 625 trang Đáp án đề số xxiii Bài (1,5đ): a 308; b 380 c 803 Bài (2đ): a) (1®) Bs: LA SƠN 380; 830 (0,5®) 830 (0,5®) 47 ĐỀ THI HSG TOÁN x 00 - 1= = 333 { 50 chu so A = 33 33 00 00 33 33 33 { 32 66 36 49 chu so 50 chu so 33 300 - 33 { { { 50 chu so 50 chu so 50 chu so (0,25®) VËy A = 33 { 66 36 (0,25®) 49 chu so 49 chu so 49 chu so B = + 32 + 33 + + 399 + 3100 3B = 32 + 33 + + 3100 + LÊy (2) trõ (1) ta đợc: 2B = 3101 - Do đó: 2B + = 3101 Theo đề 3B + = 3n VËy n = 101 Bµi (1,5®): a) (0,75®) b) (1 ®) C= (0,5®) (1) 3101 (2) (0,25®) (0,25®) (0,25®) (0,25®) 101 100 99 98 3 101 100 99 98 3 Ta cã: *, 101 + (100 + 99 + + + + 1) =101 + 101.100 : = 101 + 5050 = 5151 *, 101 - 100 + 99 - 98 + + - + (0,25®) (101 - 100) + (99 - 98) + + (3 - 2) + = 4 4 4502cap4 4 4 = 50 + = 51 VËy C = 5151 101 51 (0,25®) (0,25®) b) (0,75®) B= 3737.43 4343.37 100 Ta cã: 3737.43 - 4343.37 = 34.43.101 - 43.101.37 = (0,5®) VËy B = ( v× = + + + 100 0) (0,25đ) Bài ( 1,5đ): Ta có: 210 = 1024 (0,25®) 10 2100 = 210 = 102410 = 10242 (0,75®) =( 76)5 = 76 (0,5đ) 100 Vậy hai chữ số tận 76 Bài (1,5đ): Nếu từ A đến D b»ng ®êng a1: a b c1 ; a b c2 ; a b c3 ; a b c1 ; a b c2 ; a b c3 ; (0,5đ) Đi từ A đến D đờng a2: a b c1 ; a b c2 ; a b c3 ; a b c1 ; a b c2 ; a b c3 ; (0,5đ) Đi từ A ®Õn D b»ng ®êng a3: Bs: LA SƠN 48 ĐỀ THI HSG TOÁN a b c1 ; a b c2 ; a b c3 ; a b c1 ; a b c2 ; a b c3 ; (0,5đ) Vậy tập hợp M: M = { a1 b1 c1; a1 b1 c2; a1 b1 c3; a1 b2 c1; a1 b2 c2; a1 b2 c3; a2 b c1 ; a2 b1 c2; a2 b1 c3; a2 b2 c1; a2 b2 c2; a2 b2 c3; a3 b1 c1; a3 b c2 ; a3 b1 c3; a3 b2 c1; a3 b2 c2; a3 b2 c3;} Bµi ( 2đ): Chọn điểm Qua điểm điểm 99 điểm lại, ta vẽ đợc 99 ®êng th»ng (0,5®) Lµm nh vËy víi 100 ®iĨm ta đợc 99.100 đờng thẳng (0,5đ) Nhng đờng thẳng đợc tính lần, tất có 99.100 : = 4950 đờng thẳng (1đ) đáp án đề số xxiv Bài 270.450 270.550 270(450 550) 270000 3000 (2 18).9 a S = 90 90 a a an 2006 2006 2006 2006 2005 * ( n N ) A b Ta cã nÕu th× b b bn 2006 2007 2006 2007 2005 2006 2006 2006 2006(2006 2005 1) 2006 2005 B 20062007 2006 2006(2006 2006 1) 2006 2006 VËy A < B Bµi a C = + 22 + 23 + …… + 299 + 2100 = 2(1 +2 + 22+ 23+ 24) + 26(1 + + 22+ 23+ 24)+…+ (1 + + 22+ 23+ 24).296 = 31 + 26 31 + … + 296 31 = 31(2 + 26 +…+296) VËy C chia hÕt cho 31 b C = + 22 + 23 + …… + 299 + 2100 2C = 22 + 23 + 24 + …+ 2100 + 2101 Ta cã 2C – C = 2101 – 2101 = 22x-1 2x – = 101 2x = 102 x = 51 Bài 3: Gọi số cần tìm A: A = 4q1 + = 17q2 + = 19q3 + 13 (q1, q2, q3 thuéc N) A + 25 = 4(q1 +7) = 17(q2 +2) = 19(q3 + 2) A + 25 chia hÕt cho 4; 17; 19 A + 25 =1292k A = 1292k – 25 = 1292(k + 1) + 1267 chia A cho 1292 d 1267 Bs: LA SƠN 49 ĐỀ THI HSG TON Bài Tổng số điểm 10 líp 6A lµ (42 - 39) + (39 - 14) + (14 - 5) + = 100(điểm 10) Bài 5: Có 24 25 n(n 1) 300 đờng thẳng Với n điểm có đờng thẳng 2 -đáp án đề số xxv Câu : Tính giá trị biểu thức : a) Tổng : S =1 +2 +3 + +100 cã 100 sè h¹ng S = ( 1+ 100) + (2 +99) + (3 + 98) + + 950 + 51) cã 50 cỈp = 50 10 = 5050 3 4 4(3 ) 4 37 53 : 17 19 2003 b) A = 3 5 5 (3 ) 5 37 53 17 19 2003 1 4(1 ) 6 4 4.5 17 19 2003 : : 6 Ta cã : A = = 1 5 5 5(1 ) 17 19 2003 1 1 c) B = + + + + + 2.3 3.4 4.5 5.6 99.100 1 1 1 1 99 Ta cã : B = + - + - + + =1= 2 3 99 100 100 100 2) C©u2 So s¸nh a) Ta cã : 3200 =(32)100 = 9100 2300 =(23)100 =8100 Vì 9100 > 8100 Nên 3200 > 2300 121212 404 121212 : 10101 404 : 101 12 12 A 171717 17 1717 171717 : 10101 17 1717 : 101 17 17 17 17 10 10 VËy A = hay A =B = 17 17 b) A = 3) Bµi Để số có chử số *26* , 4chữ số khác mà chữ số *26* chia hết cho số 2; 5;3;9 Ta cần thoả mản : Số đảm bảo chia hết số số chẳn Số chia hết số phải có chữ số tận số 5.Số vừa chia hết cho và9 Nên số phải có tổng chữ sè chia hÕt cho VËy : Ch÷ sè tËn số *260 Chữ số đầu số Do số đà cho 1260 ) Bài Tìm số tự nhiên n Mà 1! +2!+3! + +n! bình phơng cđa mét sè tù nhiªn Bs: LA SƠN 50 ĐỀ THI HSG TOÁN XÐt : n = 1! = 12 n = 1! +2! = n=3 1! + 2! + 3! = =32 n = 1!+ 2! +3! + 4! =33 Với n >4 n! = 1.2.3 .n mội số chẳn Nên 1!+2!+ +n! =33 cộng với số chẳn sốcó chữ số tận tổng chữ số Nên số phơng Vậy có hai giá trị n=1 n=3 1! +2! + 3! +4! + .+n! số phơng 5) Giải xe thứ đơc quảng đờng AB quảng đờng AB 1 giê c¶ xe đợc + = quảng đơng AB 1 1 Sau 10 = giê : Xe thứ đợc = quảng đờng 6 12 giê xe thø ®i đợc AB Quảng đờng lại là: 1- 12 11 12 (cña AB) Thêi gian hai xe cïng quảng đờng lại là: 11 11 : = giê = giê 12 10 Hai xe gỈp lóc giê 10 + giê = giê 16 Đáp án : 16 phút (0,25đ) 6) Hình học (tự vẽ hình) (2đ) à à Vì : xOy = 1200 , AOy = 750, ®iĨm A n»m góc xOy nên tia OA nằm hai tia Ox vµ Oy · · · Ta cã : xOA = xOy - AOy =1200 - 750 = 450 §iĨm B hai vị trí : B B (0,75đ) +, Tại B tia OB nằm hai tia Ox, OA nªn · · · · BOx + xOA = 1350 + 450 = 1800 Do ®ã ·BOA = BOx + xOA =180 Nªn điểm A,O,B thẳng hàng (0,75đ) à à à à +, Còn B : xOB' = 1350 < 1800, AOB' = xOB' - xOA = 1350 - 450 = 900 Nên điểm A,O, B không thẳng hàng.(0,5đ) híng dẫn Giải đề số xxvi Câu 1: Ta có 3A = + 1/3 + 1/32 + + 1/399 vËy: 3A-A = (1 + 1/3 + 1/32 + + 1/399)-(1/3 + 1/32 + + 1/3100) 2A= 1-1/3100 = (3100-1)/ 3100 Bs: LA SƠN 51 ĐỀ THI HSG TỐN suy A= (3100-1) )/ 2.3100 C©u 2: Ta có 12/21= 4/7, phân số 3/5, 4/5, 6/11 tối giÃn nên tồn số tự nhiên k, l, m cho a=3k, b=5k, b=4n, c=7n, c= 6m, d=11m Từ đẳng thức 5k=4n, 7k = 6m ta có 4n5 7n mà (4,5)=1; (7,6)=1 nên n5, n mặt khác (5,6) =1 n 30 để số tự nhiên a, b, c, d nhỏ phải khác , ta chọn n nhá nhÊt b»ng 30 suy ra: k =24, m=35 vËy a=72, b=120, c=210, d=385 câu 3: Gọi a b hai số thuộc dÃy 1, 2, 3, , 50 Giả sử a>b a.Gọi d thuộc ƯC(a,b) a-b∶ d ta sÏ chøng minh d ≤ 25 thËt giả sử d>25 b>25 ta có a 50 mà b>25 nên 0< a-b < 25, x¶y a-b∶ d ; d=25 x¶y a=50; b=25 hai số có ƯCLN đạt giá trị lớn nhÊt lµ 50 vµ 25 b BCNN(a,b) ≤ a.b ≤ 50.49=2450 hai số có BCNN đạt giá trị lớn 50 49 câu 4: (Học sinh tự vÏ h×nh) · · · Ta thÊy : AOB + BOC + AOD >1800 trái lại góc AOD có điểm chung với ba góc Đặt · =α AOB 0 · · · · ta cã: AOB + BOC + AOD + COD = 3600 α +3α+5α+6α=360 α = 24 · · · · VËy: AOB = 240 ; BOC =720 ; COD = 120 ; DOA = 1440 -Đáp án đề số xxvii Câu 1: (3đ) a Vẽ đợc sơ đồ cho (1,5đ) - Số học sinh thích môn bóng đá bơi: 14 10 = (hs) - Số học sinh thích hai môn bơi bóng chuyÒn: 13 – 10 = (hs) - Sè häc sinh thích hai môn bóng đá bóng chuyền: 15 – 10 = (hs) - Sè häc sinh thích bóng đá: 20 (4 + 10 + 5) = (hs) - Sè häc sinh chØ thÝch b¬i: 17 – (4 + 10 + 3) = (hs) - Sè häc sinh chØ thÝch bãng chuyÒn: 36 – (5 + 10 + 3) = 18 (hs) VËy: Sè häc sinh cđa líp lµ: + + 18 + + 10 + + + 12 + = 53 (hs) b (1,5 ®) A = 10 11 12 …… 58 59 60 * Tõ ®Õn có : chữ số Từ 10 đến 60 cã: 51 = 102 ch÷ sè Bs: LA SƠN 52 ĐỀ THI HSG TOÁN VËy: Sè A có + 102 = 111 chữ số (0,5đ) * Nếu xóa 100 chữ số số A số A 11 chữ số Trong số A có chữ số nhng có chữ số đứng trớc chữ số 51 52 53 58 59 60 Trong sè nhá nhÊt cã ch÷ sè đứng trớc số nhỏ số có chữ số Số nhỏ 00000123450 = 123450 (0,5đ) * Trong số A có chữ số NÕu sè lín nhÊt cã ch÷ sè đứng liền số là: 99999960 Số có chữ só không thỏa mÃn Sè lín nhÊt chØ cã ch÷ sè liỊn số có dạng 99999 Các chữ số lại 78 59 60 Vậy số lớn nhất: 99999785860 Câu 2: (2,5đ) a.(1,5đ) A = + 52 + …… + 596 5A =52 + 53 + …… + 596 + 597 5A – A = 597 - A = 597 - Tacó: 597 có chữ số tận 597 có chữ số tận Vậy: Chữ số tận A b (1®) Cã: 6n + = 2(3n + 6) – 6n + chia hÕt 3n + 2(3n + 6) – chia hÕt 3n + chia hÕt 3n + 3n + = 1 ; ; 9 3n + - -3 -1 n -5 -3 - 7/3 - 5/3 -1 VËy; Víi n = th× 6n + chia hÕt cho 3n + Câu 3: (2,5đ) a (1đ) Gọi số tự nhiên cần tìm a (a > 0, a N) Theo bµi ta cã: - a chia cho d a – chia hÕt cho - a chia cho d a – chia hÕt cho - a chia cho d a – chia hÕt cho - a chia cho 10 d a – chia hÕt cho 10 a = BCNN(3, 4, 5, 10) = 60 b.(1,5®) 11n + + 122n + = 121 11n + 12 144n =(133 – 12) 11n + 12 144n = 133 11n + (144n – 11n) 12 Bs: LA SƠN 53 ĐỀ THI HSG TOÁN Tacã: 133 11n chia hÕt 133; 144n – 11n chia hÕt (144 – 11) 144n – 11n chia hÕt 133 11n + + 122n + C©u 4: (2đ) Số đờng thẳng vẽ đợc qua n điểm: n n 1 105 n (n – 1) = 210 = = 10 14 n (n – 1) = 35 = 15 14 Vì n n số tự nhiªn liªn tiÕp nªn: n = 14 VËy n = 14 Đáp án đề số xxviii Bài 1:(2,25 điểm) a) x= ; 25 25 b) x= 45 44 89 ; 11 99 99 c) x = 32 Bài 2:(2,25 điểm) Tính tổng sau cách hợp lý nhất: a) A = (11 + 20) + (12 + 19) + (13 + 18) + (14 + 17) + (15+ 16) = 31 + 31 + 31 +31+ 31 = 31.5= 155 b) B = (11+25)+(13+23)+(15 + 21)+(17 +19) = 36.4 = 144 c) C = (12 +26)+(14+24)+(16 +22)+(18 +20) = 38.4 = 152 Bài 3:(2,25 điểm) a) b) c) Tính: 1 1 1 1 1 11 16 16 21 21 26 61 66 11 66 66 1 1 1 1 1 1 B= 2 3 4 5 6 7 1 1 1 1 2006 1 C = 2 1989 1990 2006 2007 2007 2007 A= Bài 4:(1 điểm) 102002 10 = + 2002 (1) 2002 10 10 102003 10 = + 2003 T¬ng tù: 10B = (2) 2003 10 10 9 Tõ (1) vµ (2) ta thÊy : 2002 2003 10A > 10B A > B 10 10 Ta cã: 10A = Bài 5:(2,25 điểm) A a) Trên tia BA ta có BK = cm BA = 7cm nªn BK< BA điểm K nằm A B Suy AK + KB = AB hay AK + = AK = cm Trªn tia AB có điểm I K mà AI < AK (và n+2 ( 18) = 1;2;3;6;9;18 (0,25 ®iĨm) +, n + 2= n= - (lo¹i) +, n + 2= n= +, n + 2= n= +, n + 2= n= +, n + 2= n= +, n + 2= 18 n= 16 VËy n 0;1;4;7;16 B N (0,25điểm ) B= c (1 điểm) Ta cã 55 =5.11 mµ (5 ;1) = Do ®ã C = x1995 y (0,25 ®iÓm) C 5 55 C 11 1 (0.25 điểm) (1) => y = y = +, y= : (2) => x+ 9+5 – ( 1+9 +0) 11 => x = ®iÓm) +, y =5 : (2) = > x+9 +5 – (1+9+5 ) 11 => x = ®iĨm) (0,25 (0,25 Baì (2 điểm) a( 1điểm) 10 10 10 10 5 5 = (0,25 ®iĨm) 56 140 260 1400 4.7 7.10 10.13 25.28 1 1 1 1 = ( 0, 25 ®iĨm) 7 10 10 13 25 28 1 = ( 0,5 ®iÓm) 28 28 14 M= b (1 ®iĨm) Bs: LA SƠN 55 ĐỀ THI HSG TOÁN 3 3 3 3 3 15 => S > 1 (1) ( 0,5®iĨm) S= 10 11 12 13 14 15 15 15 15 15 15 3 3 3 3 3 15 20 2 => S < (2) ( 0,5 ®iÓm) 10 11 12 13 14 10 10 10 10 10 10 10 S= Tõ (1) vµ (2) => < S < Bài 3: Gọi giá gạo nếp a (đồng/kg) ; khối lợng gạo nếp đà mua b (kg) (0,25 điểm) Suy giá gạo tẻ 80 120 a ; khối lợng gạo tẻ đà mua b 10 100 điểm) Số tiền ngời thứ phải trả a.b (đồng) điểm) Số tiềng ngời thứ hai phải trả 80 120 96 a .b a.b 100 100 100 ( 0,25 (0,25 (0.75®iĨm) VËy ngời thứ hai trả tiền ngời thứ Tỉ lệ % là: 96 a.b : a.b 4% a.b 100 (0,5 điểm) Bài Vẽ hình xác (0,5 điểm) a Bốn điểm A,B, M, N thẳng hàng chúng nằm đờng thẳng MN (0,5 điểm) b (1 ®iĨm) BM = AB – AM = (cm) (0,25điểm) M,N tia AB mà BM > BN ( > 1) => N năm B M ( 0,25 ®iĨm) MN = BM – BN = cm = BN.=> N đờng trung điểm BM (0,5 điểm) c Đờng tròn tâm N qua B nªn CN = NB = cm (0,25 điểm) Đờng tròn tâm A qua N nên AC = AN = AM + MN = cm (0.25 ®iÓm) Chu vi CAN = AC + CN = NA = + 4+1= (cm) (0,5 ®iĨm) - Bs: LA SƠN 56 ... 2005 20 06 20 06 20 06 20 06( 20 06 2005 1) 20 06 2005 B 20 062 007 20 06 20 06( 20 06 20 06 1) 20 06 20 06 VËy A < B Bµi a C = + 22 + 23 + …… + 299 + 2100 = 2(1 +2 + 22+ 23+ 24) + 26( 1 + +... (0.5®) (0.5®) C©u 2: 300 300 300 30 30 300 mµ 67 0 67 7 67 0 67 67 67 7 37 30 377 300 Ta cã : vµ 67 67 67 7 67 7 377 37 Từ (1) (2) 67 7 67 (1) (0.5đ) (2) (0.5đ) (0.5đ) Câu 4: Giả sử đội... x z O đáp án đề số xxii Câu I : 1) 1,5đ 63 6 363 37 373737 63 63 .(10101.37) 37.(10101 .63 ) 37 .63 .(10101 10101) 0 = = 20 06 20 06 20 06 12 12 12 4 12