1. Trang chủ
  2. » Giáo Dục - Đào Tạo

phuong phap giai chi tiet va bai tap hinh binh hanh toan lop 8 chon loc

3 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 187,49 KB

Nội dung

HÌNH BÌNH HÀNH A Lý thuyết  Hình bình hành tứ giác có cạnh đối song song  Hình bình hành hình thang đặc biệt (hình bình hành hình thang có hai cạnh bên song song)  Tính chất: Trong hình bình hành: • Các cạnh đối • Các góc đối • Hai đường chéo cắt trung điểm đường  Dấu hiệu nhận biết: • Tứ giác có cạnh đối song song hình bình hành • Tứ giác có cạnh đối hình bình hành • Tứ giác có hai cạnh đối song song hình bình hành • Tứ giác có góc đối hình bình hành • Tứ giác có hai đường chéo cắt trung điểm đường hình bình hành ABCD hình bình hành nên: AB  DC; AD  BC  AB / /DC; AD / /BC  A  C; B  D OA  OC;OB  OD  B Các dạng tập Dạng Vận dụng tính chất hình bình hành để chứng minh tính chất hình học Tính chất: Trong hình bình hành: • Các cạnh đối • Các góc đối • Hai đường chéo cắt trung điểm đường Bài Cho hình bình hành ABCD Gọi E trung điểm AD, F trung điểm BC a) Chứng minh BE = DF ABE = CDF b) Chứng minh tứ giác EBFD hình bình hành c) Chứng minh đường thẳng EF, DB AC đồng qui Bài Cho hình bình hành ABCD (AB > BC) Tia phân giác góc D cắt AB E, tia phân giác góc B cắt CD F a) Chứng minh DE  BF b) Tứ giác DEBF hình gì? Bài Cho hình bình hành ABCD Gọi K, I trung điểm cạnh AB vad CD, M N giao điểm AI CK với BD a) Chứng minh: AI  CK b) Chứng minh: DM = MN = NB Dạng Vận dụng dấu hiệu nhận biết để chứng minh tứ giác hình bình hành Dấu hiệu nhận biết: • Tứ giác có cạnh đối song song hình bình hành • Tứ giác có cạnh đối hình bình hành • Tứ giác có hai cạnh đối song song hình bình hành • Tứ giác có góc đối hình bình hành • Tứ giác có hai đường chéo cắt trung điểm đường hình bình hành Bài Cho hình bình hành ABCD, đường chéo BD Kẻ AH vng góc với BD H, CK vng góc với BD K Chứng minh tứ giác AHCK hình bình hành Bài Cho hình bình hành ABCD Gọi O giao điểm hai đường chéo AC BD Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC E, F, vẽ đường thẳng b cắt hai cạnh AB, CD K, H Chứng minh tứ giác EKFH hình bình hành Bài Cho tam giác ABC Từ điểm E cạnh AC vẽ đường thẳng song song với BC cắt AB F đường thẳng song song với AB cắt BC D Giả sử AE = BF a) Chứng minh tam giác AED cân b) Chứng minh AD phân giác góc A Bài Cho tứ giác ABCD Gọi M, N, P, Q trung điểm cạnh AB, BC, CD, DA I, K trung điểm đường chéo AC, BD Chứng minh: a) Các tứ giác MNPQ, INKQ hình bình hành b) Các đường thẳng MP, NQ, IK đồng qui Bài Cho tam giác ABC H trực tâm Các đường thẳng vng góc với AB B, vng góc với AC C cắt D a) Chứng minh tứ giác BDCH hình bình hành b) Tính số đo góc BDC, biết BAC = 60° Bài Cho hình bình hành ABCD, AD = 2AB Từ C vẽ CE vng góc với AB Nối E với trung điểm M AD Từ M vẽ MF vng góc với CE, MF cắt BC N a) Tứ giác MNCD hình gì? b) Tam giác EMC tam giác gì? c) Chứng minh: BAD = 2AEM Bài Cho tứ giác ABCD Gọi E, F giao điểm AB CD, AD BC; M, N, P, Q trung điểm AE, EC, CF, FA Chứng minh tứ giác MNPQ hình bình hành Bài Cho hình bình hành ABCD Các điểm E, F thuộc đường chéo AC cho AE = EF = FC Gọi M giao điểm BF CD; N giao điểm DE AB Chứng minh rằng: a) M, N theo thứ tự trung điểm CD, AB b) EMFN hình bình hành Bài Cho hình thang vng ABCD, có A = B = 90° AD = 2BC Kẻ AH vng góc với BD (H thuộc BD) Gọi I trung điểm HD Chứng minh rằng: CI  AI Bài 10 Cho tam giác ABC O điểm thuộc miền tam giác Gọi D, E, F trung điểm cạnh AB, BC, CA L, M, N trung điểm đoạn OA, OB, OC Chứng minh rằng: đoạn thẳng EL, FM DN đồng qui

Ngày đăng: 18/10/2022, 20:00

w