1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bat phuong trinh dang tich thuong 1mqra

15 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 594,91 KB

Nội dung

BẤT PHƯƠNG TRÌNH DẠNG TÍCH, THƯƠNG I Phương pháp giải Bất phương trình dạng tích: A  x  B  x   ; (hoặc A  x  B  x   0; A  x  B  x   0; A  x  B  x   ); Bất phương trình dạng thương: (hoặc A x 0 B  x A x A x A x  0;  0;  ) B  x B  x B  x Định lý dấu nhị thức bậc ax  b  a   : Nhị thức bậc dấu với a x   Nhị thức bậc trái dấu với a x   Do  b a b a b nghiệm nhị thức ax  b nên định lý phát biểu: a Nhị thức ax  b  a   dấu với a với giá trị x lớn nghiệm nhị thức, trái dấu với a với giá trị x nhỏ nghiệm nhị thức Phương pháp giải bất phương trình dạng tích, thương: Phân tích thành nhân tử chứa nhị thức bậc Lập bảng xét dấu nhị thức bậc ax  b  x ax  b trái dấu với a b a dấu với a II Một số ví dụ Ví dụ 1: Giải bất phương trình  x  1945  x   * Tìm cách giải: Với tích A.B  xảy A B dấu Do A  B  A  B  Ta có cách giải: Giải Cách 1: Bất phương trình cho tương đương với:  2 x    2 x    x  4,5     x  4,5 1945  x   x  1945   x  1945        2 x    2 x    x  4,5  x  1945     1945  x    x  1945   x  1945 Vậy nghiệm bất phương trình x  4,5; x  1945 * Chú ý: Bằng việc lập bảng xét dấu thừa số tích nhị thức bậc ta có cách 2: Lập bảng xét dấu: 1945 x 4,5 2x     + 1945  x   + +  x  1945  x  +  + Vậy nghiệm bất phương trình: x  4,5 x  1945 Ví dụ 2: Giải bất phương trình  x   x  10    x  x  30 * Tìm cách giải: Ta phân tích vế phải thành nhân tử, xuất nhân tử chung chuyển vế để đưa phương trình tích Giải a) Ta có:  x  x  30   x  x  x  30    x   x  5 Do bất phương trình thành  x   x  10    x   x      x   x  15   Lập bảng xét dấu: 7,5 x x6    + x  15  +  +  x   x  15 +  + Nghiệm bất phương trình là: 7,5  x  Ví dụ 3: Giải bất phương trình x4  36  13x2 sau biểu diễn nghiệm trục số * Tìm cách giải: Chuyển tất vế phân tích vế thành nhân tử giải bất phương trình tích Giải Ta có x4  36  13x2  x4  13x2  36   x  x  x  36    x   x      x   x   x  3 x  3  Lập bảng xét dấu: 3 x x2   2    +  + x2    +  +  + x 3        + x3  +  +  +  + Vế trái +  +  +  x  3 Nghiệm bất phương trình là:  2  x  Biểu diễn nghiệm:  x  2016  x 0 x  x  8 Ví dụ 4: Giải bất phương trình: * Tìm cách giải: Đây bất phương trình dạng thương  2016  x  chia cho x  x   Ta có 2016  x   x  336; x    x  8 Giải ĐKXĐ: x  x  8 Đặt A  2016  x Lập bảng xét dấu: x  x  8 8 x 336 2016  x +  +  +  x    +  + x 8  +  +  + A +    +   8  x  A    x  336 Ví dụ 5: Giải bất phương trình  x  5x  28  2 x  x  15 1 Và biểu diễn nghiệm trục số * Tìm cách giải: Nếu chuyển vế, rút gọn vế trái ta bất phương trình dạng thương Phân tích tử, mẫu thành nhân tử lập bảng xét dấu Giải ĐKXĐ: x  3; x  5 1   x  1 x     x  x  28 x2  x     0 2 x  x  15 x  x  15  x  3 x  5 Lập bảng xét dấu ta có: 5 x 1 x 1    +  +  + x2      +  + x 3        + x5  +  +  +  + Vế trái +   +   +  x  5 Nghiệm bất phương trình  1  x  Biểu diễn nghiệm:  x   5 x  15 2x   1 x      x   : Ví dụ 6: Cho biểu thức A     x  x  2x   x  Tìm x để A  * Tìm cách giải: Khi rút gọn biểu thức tìm x để A  cần lưu ý ĐKXĐ Do sau chia 1 x thành mẫu số nên x  1 Giải Rút gọn A: ĐKXĐ: x  3; x  1; x  4,5 Ta có:  5  x  3  x   1  x     x  A   x  3 x  3   x  x   x    5 1  x     x  x  3 x  3  x  x  31  x       x3 x3 1 x 1 x  x    x Lập bảng xét dấu: 1 x x 3      + 1 x  + | +  + 1 x + | +    A +    +    1  x  Vậy để A    x  3; x  4,5 Ví dụ 7: Giải bất phương trình: 1 1     0 x  x x  3x  x  x  x  39 x  380 * Tìm cách giải: Bất phương trình có ẩn mẫu nên lưu ý ĐKXĐ Ta có x  x  x  x  1 ; x  3x    x  1 x   ; có dạng tổng quát A  A  1 Mà A   A  1 1    Ta phân tích phân thức vế trái rút gọn, A  A  1 A  A  1 A 1 A phân thức dạng thương Giải ĐKXĐ: x  0;1; 2;3; ;19; 20 Biến đổi bất đẳng thức thành: 1 1     0 x  x  1  x  1 x    x   x  3  x  19  x  20   1 1 1       0 x 1 x x  x 1 x  20 x  19  1 20  0  x  20 x x  x  20  Đặt A  20 Lập bảng xét dấu x  x  20  x 20 x  +  + x  20    + A +    + A  x  1; 2;3; ;19  x  20 Ví dụ 8: Giải bất phương trình m5  với m tham số x2 * Tìm cách giải: Bất phương trình có ẩn mẫu có tham số nên phải lưu ý ĐKXĐ biện luận tham số m giải bất phương trình Giải ĐKXĐ: x   m  1  3x  m5 m5 3 3   x2 x2 x2 Ta thấy m   3x   x  Ta có m 1  m  1  3x m 1 m 1   m  Đặt B    m  x2 3 Lập bảng xét dấu: m  m 1 x m   3x +  +  x2  +  + B   +  Với m  ta có nghiệm bất phương trình là:  x  m 1 Lập bảng xét dấu: m  m 1 x m   3x +    x2    + B  +   Với m  ta có nghiệm bất phương trình là: m 1 x2 Ví dụ 9: Tìm giá trị m để nghiệm phương trình sau lớn 3: m3  3 m x 3 * Tìm cách giải: Bài tốn giải phương trình với tham số, tìm nghiệm sau coi tham số m ẩn để nghiệm lớn thực chất giải bất phương trình ẩn m Giải a) Với x  ta có m    x  3  m   x  m  3  4m  * Với m  3 phương trình trở thành x  6 vô nghiệm * Với m  3  x  4m  m3 Để x  ta phải có: Đặt C  4m  4m  m3 3 3   0 m3 m3 m3 m3 Lập bảng xét dấu m3 3 m m3  +  + m3    + C +   + Để x  m  m  3 III Bài tập vận dụng 23.1 Giải bất phương trình x2  3x   x  biểu diễn nghiệm trục số Hướng dẫn giải – đáp số Biến đổi thành x  x     x   x  3  Cách 1: Lý luận x   x   (do x   x  2, x ) Cách 2: Lập bảng xét dấu Ta có kết 3  x  Biểu diễn nghiệm trục số: 23.2 Giải bất phương trình sau: a) 19 x  8  x  3x   30  x   ; b) 10  x  x  2001  3x  25x  50  100  x Hướng dẫn giải – đáp số a) Lập bảng xét dấu Nghiệm x   30 ;  x  x  19 b) Nhận xét: 3x  25 x  50   3x  5 x  10    10  x  3x  5 Mặt khác 100  x  10  x 10  x  Do ta biến đổi BPT  10  x  x  2001  10  x  3x    10  x 10  x    10  x  x  2016    x  10 Giải bất phương trình   x  2016 23.3 Giải bất phương trình biểu diễn nghiệm trục số a) x3  x2  26 x  24  ; b) x  x  22 x  36   x3  3 Hướng dẫn giải – đáp số Đây bất phương trình bậc ba bốn Ta chuyển vế sử dụng hệ định lý Bézout (nhẩm nghiệm) để phân tích vế trái thành nhân tử a) BPT   x   x  3 x    3  x  Lập bảng xét dấu tìm nghiệm:  x  b) Chuyển vế biến đổi BPT   x  1 x   x  3 x     x  2 Lập bảng xét dấu tìm nghiệm:  1  x  Biểu diễn nghiệm:  x  23.4 Giải bất phương trình sau biểu diễn nghiệm trục số a)  x  1 x  38 x    ; b)  x  1 x   x   x    18 ; c)  x  3x    x  3 x    30 Hướng dẫn giải – đáp số a) Nhân vào nhân tử thứ nhất, nhân vào nhân tử thứ hai nhân vào vế phải ta được: BPT   x   x   x    72 Đặt 8x   y ta có:  y  1 y  1 y  72   y  1 y  72   y  y  72    y   y    Do y    x     0, x nên y   Hay  y  3 y  3  Thay y  8x  vào ta có: 8 x  8 x  8  Giải 1  x   (Bạn đọc tự biểu diễn nghiệm trục số) b) Nhân vào nhân tử thứ nhất, nhân vào nhân tử thứ hai nhân vào vế phải ta được: BPT   x   x   x   x    72   x   x     x   x     72  16 x  36 x  14 16 x  36 x  20   72 Đặt 16 x  36 x  17  y ta có:  y  3 y  3  72   y  81    y   y    81 23  4 Do y   16 x2  36 x  26   x   2.4 x  2  23    4x     0, x từ ta có y   2  Hay 16 x  36 x    x  x     x  1 x     x  Giải bất phương trình  (Bạn đọc tự biểu diễn nghiệm)  x  c) BPT   x  1 x   x  3 x    30   x   x   x  3 x    120   x  14 x  10  x  14 x  12   120  Đặt x  14 x  11  y ta có  y  1 y  1  120   y  112    y  11 y  11  Do y  11  x2  14 x  22   x   2.2 x  49 39  4  39    2x     0, x 2  Do y  11  hay x  14 x   x  x     x  3,5 Giải bất phương trình  (Bạn đọc tự biểu diễn nghiệm) x  23.5 Giải bất phương trình: a)  x   x   x    96 ; b) x   26  x  x    3x3  x  x ; c) x  x3  27   x  1   x3  27  Hướng dẫn giải – đáp số a) BPT   x   x    96  x8  12 x  32  96   x8  x  16 x  64    x  16  x    Do x   0, x nên x  16    x   x    x    Do x   0, x nên  x   x     2  x  * Chú ý: Câu a) dùng phương pháp đặt biến phụ: Đặt x   y ta có  y   y    96  y   96   y  100    y  10  y  10   Do y  10  x   10  x   0, x nên y  10  hay x4  16  giải ta 2  x  b) Để ý x4   x4  x2   x2   x2  2   x  2   x  x   x  x   Do có  x     x  x    3x  26     x  x   x  x     x  x    3x  26     x  x   x  x  24     x  x    x   x  3  Do x  x    x  1   0, x nên ta xét  x  3 x   x  8 x  3    c) BPT   x3  27  x  x      x  3  x  3x    x   x  3  27 Ta có x  3x    x     0, x Vậy  x  3 x  3 x    2   3  x  Giải bất phương trình ta có nghiệm:  x  23.6 Giải bất phương trình 2 x  0 1945  70 x Hướng dẫn giải – đáp số ĐKXĐ x   389 Lập bảng xét dấu: 14 Nghiệm bất phương trình là:  389 x 14 23.7 Giải bất phương trình: a)  5x  2; x4 b) 3x 2x 1 ;  1 x2 x2 c) ;  x 8 x 6 d) 2x   x  x 1 Hướng dẫn giải – đáp số a) ĐKXĐ x  BPT  x   5x  3x 20 0 x4 x4  x  3 b) ĐKXĐ x  2 ; BPT  11x    x   x    x  2 Lập bảng xét dấu ta tìm    x   11 c) ĐKXĐ x  x  BPT  6  x   x  10 0  x  8 x    x  10 d) ĐKXĐ x  x  BPT   x  3 x     x  1 x  3  x  3 Lập bảng xét dấu, nghiệm 1  x   x  23.8 Tìm x để  x3  x 5 Hướng dẫn giải – đáp số x3 5  x   x    x3 3 5   x    x  x 5 x3    x   x  23.9 Cho A  x  x 1     x 1 x    x  x 1      x 1 x    x  2016   Rút gọn A sau tìm giá trị x để A  Hướng dẫn giải – đáp số ĐKXĐ x  ; x  1 Rút gọn:  x  2016  x2  x  10   x  2016   x  x  5 A   8x 1  x  Do x  x    x  1   0, x nên A    x  2016 Giải  x   x x  2016 0 1  x  x  1 x3  27 x  3x    23.10 Cho B   : x2   x2  x   x  x  27 Tìm x để B  2015 Hướng dẫn giải – đáp số ĐKXĐ: x  3; x  2 Rút gọn B  B  2015  2 x x3 2 x 2 x 2016 x  6043  2015   2015   0 x3 x3 x3 Giải bất phương trình được: 3  x   6043 2016 23.11 Tìm giá trị m để phương trình có nghiệm khơng âm  5m x2 Hướng dẫn giải – đáp số Với x  ta có:    m  x    x  m  5  2m  13 * Với m  phương trình trở thành x  3 vơ nghiệm * Với m   x  Để x  ta phải có 2m  13 m5  m  6,5 2m  13 0 m5 m  23.12 Giải bất phương trình sau: x2              x  4           10  15  21  28  Hướng dẫn giải – đáp số 1      Ta có   1   1  1  1  1  1    10  15  21  28           1  1  1  1  1  1  2.3  3.4  4.5  5.6  6.7  7.8   4 10 18 28 40 54 1.4 2.5 3.6 4.7 5.8 6.9   2.3 3.4 4.5 5.6 6.7 7.8 2.3 3.4 4.5 5.6 6.7 7.8 Do bất phương trình trở thành x2 x    x  3x  28  7   x   x    Giải bất phương trình ta được: 4  x  23.13 Giải bất phương trình sau: 2  x  x  1945 1   1     1975         99.100  99 100   1.2 3.4  51 52 Hướng dẫn giải – đáp số Xét 1 1 1 1           1.2 3.4 99.100 99 100 1 1 1  1              99 100 100  2 1 1 1  1  1 1         1           99 100  50  51 52 99 100 Vậy x  x  1945  1975  x  x  30    x   x     x  6 Giải bất phương trình  x  23.14 Giải bất phương trình sau: 2a 1  x   a x x 1    a  a 1 a 1 a  a 1  a3 Hướng dẫn giải – đáp số Với a  1 BPT  x x 2a  2ax  a     a2  a  a  a2  a  a2  a  1  a3  1 a  2ax  2a   0 a  a  a   a  1  a  a  1  a   a  a   a  2ax  2a 2ax 0 0  a  1  a  a  1  a  1  a  a  1 2ax Do a  a    a     0, a nên ta xét 0 2 a 1  a a có: Nếu a  1 a   nghiệm x  a 1 a 1 Xét dấu Nếu 1  a  a  có nghiệm x  a 1 Nếu a  bất phương trình trở thành x  vô nghiệm      1 23.15 Cho A    1   1  1    18  30   260  6 6   1    B  1  1  1   1        10  Tìm x để B  x2  A 30 Hướng dẫn giải – đáp số      1  1   1 Ta có A    1   1.8  2.9  3.10   13.20  6 6  14 24 36 266 2.7 3.8 4.9 14.19  1.8 2.9 3.10 13.20 1.8 2.9 3.10 13.20  2.3.4 13.14 7.8.9 18.19 49  1.2.3 12.13 8.9.10 19.20 10 B 15 99 1.3 2.4 3.5 9.11  2.2 3.3 4.4 10.10 2.2 3.3 4.4 10.10  1.2.3 8.9 3.4.5 10.11 11  2.3.4 9.10 2.3.4 9.10 20 11 x  49 33 x  294      33  x   294  20 60 60 30 10 60  37  x  298  18,5  x  149 23.16 Giải bất phương trình x 3 3 x 1 (Thi tuyển sinh lớp 10 THPT Thừa Thiên –Huế, năm học 2001 – 2002) Hướng dẫn giải – đáp số x 3 x 3 x   3x  2 x 2x 3 3   0 0 0 x 1 x 1 x 1 x 1 x 1 Lập bảng xét dấu: x 2x  +  + x 1    + VT +    + Vậy x  1; x  nghiệm bất phương trình 23.17 Giải bất phương trình  x2     2 x  x 1 x  x  (Khảo sát chất lượng học sinh giỏi lớp huyện Thường Tín – Hà Nội, năm học 2010 -2011) Hướng dẫn giải – đáp số 3 x2     2 x  x 1 x  x  x2          1    1    1  0 x   x 1   x    x    x2  x2  x2  x2     0 x2  x2  x2  x2  1     x2  4     0  x  x 1 x  x     x   x     2  x  1 1     x  x 1 x  x 

Ngày đăng: 17/10/2022, 17:57

HÌNH ẢNH LIÊN QUAN

* Chú ý: Bằng việc lập bảng xét dấu của từng thừa số của tích là nhị thức bậc nhất ta có cách - bat phuong trinh dang tich thuong 1mqra
h ú ý: Bằng việc lập bảng xét dấu của từng thừa số của tích là nhị thức bậc nhất ta có cách (Trang 2)
2: Lập bảng xét dấu: - bat phuong trinh dang tich thuong 1mqra
2 Lập bảng xét dấu: (Trang 2)
x x. Lập bảng xét dấu: - bat phuong trinh dang tich thuong 1mqra
x x. Lập bảng xét dấu: (Trang 3)
tích các tử, mẫu thành nhân tử rồi lập bảng xét dấu. - bat phuong trinh dang tich thuong 1mqra
t ích các tử, mẫu thành nhân tử rồi lập bảng xét dấu (Trang 3)
Lập bảng xét dấu ta có: - bat phuong trinh dang tich thuong 1mqra
p bảng xét dấu ta có: (Trang 4)
Lập bảng xét dấu: - bat phuong trinh dang tich thuong 1mqra
p bảng xét dấu: (Trang 4)
x x. Lập bảng xét dấu - bat phuong trinh dang tich thuong 1mqra
x x. Lập bảng xét dấu (Trang 5)
Lập bảng xét dấu: khi 5 - bat phuong trinh dang tich thuong 1mqra
p bảng xét dấu: khi 5 (Trang 6)
m. Lập bảng xét dấu - bat phuong trinh dang tich thuong 1mqra
m. Lập bảng xét dấu (Trang 7)
x. Lập bảng xét dấu: - bat phuong trinh dang tich thuong 1mqra
x. Lập bảng xét dấu: (Trang 11)
23.16. Giải bất phương trình 33 1 - bat phuong trinh dang tich thuong 1mqra
23.16. Giải bất phương trình 33 1 (Trang 15)
Lập bảng xét dấu: - bat phuong trinh dang tich thuong 1mqra
p bảng xét dấu: (Trang 15)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w