1. Trang chủ
  2. » Luận Văn - Báo Cáo

Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs

71 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

TR I H C QU C GIA TP HCM NGă I H C BÁCH KHOA TR N TR NG PHÚ BI N TÍNH B M T CRYPTOMELANE VÀ HO T TÍNH XÚC TÁC TRONG X LÝ VOCs SURFACE MODIFICATION OF CRYPTOMELANE AND CATALYTIC ACTIVITY IN VOCs ABATEMENT Chuyên ngành: K thu t Hóa h c Mã s : 8520301 LU NăV NăTH CăS TP H CHÍ MINH, tháng 08 n măβ0β2 Cơngătrìnhăđ Cán b h c hồn thành t i: Tr ngă i h c Bách Khoa ậ HQG-HCM ng d n khoa h c : TS Tr n Th y Tuy t Mai Cán b ch m nh n xét : TS Nguy n Qu c Thi t Cán b ch m nh n xét : TS Nguy năV năD ng Lu năv năth căs ăđ c b o v t iăTr ngày 04 tháng 08 n mă2022 ngă i h căBáchăKhoa,ă HQGăTp.ăHCM Thành ph n H iăđ ngăđánhăgiáălu năv năth căs ăg m: PGS TS Nguy n Quang Long ậ Ch t ch TS Ngơ Tr n Hồng D ng ậ Th ăkỦ TS Nguy n Qu c Thi t ậ y viên ph n bi n TS Nguy năV năD ngăậ y viên ph n bi n TS Nguy n M nh Hu n ậ y viên Xác nh n c a Ch t ch H iăđ ngăđánhăgiáăLVăvƠăTr ngành sau lu năv năđưăđ c s a ch a (n u có) CH T CH H Iă NG TR ng Khoa qu n lý chuyên NG KHOA K THU T HÓA H C TR I H C QU C GIA TP.HCM NGă I H C BÁCH KHOA - C NG HÒA Xà H I CH NGH AăVI T NAM c l p - T - H nh phúc NHI M V LU NăV NăTH CăS H tên h c viên: Tr n Tr ng Phú MSHV: 2070656 NgƠy,ătháng,ăn măsinh:ă04/11/1998 N iăsinh:ăTP HCM Chuyên ngành: K thu t Hóa H c Mã s : 8520301 I TÊNă TÀI: Tên Ti ng Vi t: Bi n tính b m t cryptomelane ho t tính xúc tác x lý VOCs Tên Ti ng Anh: Surface modification of cryptomelane and catalytic activity in VOCs abatement II NHI M V VÀ N I DUNG: - T ng h p v t li u K-OMS-2, Ag-OMS-2, Ni-OMS-2 Ag-Ni-OMS-2 - Kh oăsátăđ cătr ngăv t li u b ngăph ngăphápănhi u x tia X (XRD), quang ph Raman, kính hi năviăđi n t quét (SEM), phân tích thành ph n nguyên t kim lo i b ng ICP-MS, ch s oxy hóa trung bình c a Mn (Mn-AOS), đ ng nhi t h p ph - gi i h p ph N2, gi i h p ph O2 theoăch ngătrìnhănhi tăđ (O2-TPD) quang ph quangăđi n t tia X (XPS) - Kh o sát ho t tính xúc tác ph n ng oxy hoƠnătoƠnăh iăethanol III NGÀY GIAO NHI M V : 09/2021 IV NGÀY HOÀN THÀNH NHI M V : 06/2022 V CÁN B H NG D N: TS Tr n Th y Tuy t Mai Tp HCM, ngày CÁN B H NG D N TR CH NHI M B NG KHOA K THU T HÓA H C tháng n m 2022 MỌNă ÀOăT O L I C Mă N Em xin g i l i c m năchơnăthƠnhăđ n Ban Giám Hi uătr Khoa ậ ngă i h c Bách HQG TP HCM Khoa K thu t Hóa h căđưăh tr em su t th i gian h c t p làm vi c t iătr ng,ăc ngănh ăđưăt oăđi u ki n cho em th c hi năđ tài lu năv nănƠy Em xin bày t lòng bi tă năsơuăs căđ n th y cô b môn K thu t Hóa lý ậ Phân tích C mă năth y Nguy n Quang Long th y Lâm Hoa Hùng đưănhi t tìnhăt ăv n, h tr ki n th c cho em trình làm lu năv n.ăC mă năcôăNguy n PhúcăThanhăDuyăđưăh tr d ng c đ em có th hồn thành lu năv năthu n l i nh t C mă nă cácă b n sinh viên, h c viên cao h c, anh ch phịng thí nghi m Xúc tác phịng thí nghi m Hóa lý vìăđưăln ch d a tinh th n v ng ch c C mă năNguy n Th TrúcăPh nh ngăng c n.ă ng,ăNguy n Minh Hùng Nguy n Ng c Thi n, i b n đưăđ ng hành t đ i h c đ n cao h c, s năsƠngăgiúpăđ m i c bi t c mă năhaiăb n sinh viên ngăH ngăQu c Long Nguy n Gia Hân vìăđưăln bên c nh t nh ngăngƠyăđ u tiên th c hi n lu năv n, v t qua nh ng th iăđi m khóăkh nănh t Cu i cùng, em xin g i l i c mă năchơnăthƠnhăvƠăsơuăs căđ n cô Tr n Th y Tuy tăMai,ăng iăđưăluônăgiúpăđ ,ăđ ng viên,ăh ng d n t n tình cho em su t kho ng th i gian em h c t p làm vi c t i phòng thí nghi m Dùăđưăr t n l căđ hồn thi n lu năv năm t cách tr n v n nh tănh ngăsaiăsótă lƠăđi u khơng th tránh kh i R t mong nh năđ c nh ng ý ki năđóngăgópăt th y b n đ b năthơnăemăc ngănh ălu năv nănƠyăđ c hoàn thi n h n Trân tr ng TP H Chí Minh, ngày 04 thángă07ăn măβ0ββ H c viên th c hi n Tr n Tr ng Phú i TÓM T T LU NăV N Ơ nhi m khơng khí ln m t nh ng ch đ nh n đ c nhi u s quan tâm nh t toàn th gi i S phát th i h p ch t h uăc ăd bayăh i,ăđi n hình nh ăbenzen,ătoluene,ăformaldehydeăvƠăethanol,ăđ n t ho tăđ ng s ng h ng ngày c aăconăng l i nh s n xu t, xây d ng, giao thơng, th măchíăđ n t nh ng ngu năn ngă ng thay th cho nhiên li u truy n th ng, ch ng h nă nh ă x ngă sinhă h c Nhi u nghiên c uăđưăđ c th c hi n nh m x lý h iăethanolătrongăkhơngăkhí cácăđi u ki n t nhiên c a mơi tr ng, v y v n h n ch v hi u qu x lý tính kinh t Trong nghiên c u này, v t li u cryptomelane OMS-2 bi n tính v i Ag Ni s đ c ng d ngăđ x lỦăh iăethanolă nhi tăđ th p Các phân tích đ cătr ngăchoăth y v t li u M-OMS-2 (M = K, Ag, Ni, Ag-Ni) t ng h pătheoăph ng pháp h iăl uănhi t có c uătrúcăvƠăhìnhătháiăđ cătr ngăc a cryptomelane (XRD, ph Raman SEM), v i thành ph n nguyên t kim lo i phù h p v i lý thuy t (ICP-MS) Phân tích ch s oxy hóa trung bình c a Mn (Mn-AOS) cho th y q trình bi n tính crytomelane v i AgăvƠăNiăđưălƠmăt ngăMn-AOS t 3.6 (K-OMS-2) lên ~3.9 (Ag-Ni-OMS-β),ăc ngă nh ăc i thi năđángăk di n tích b m t riêng BET K t qu O2-TPD ghi nh n nh h ng c aădopantăđ n liên k t Mn-O vƠăđ linhăđ ng c a oxy b m t v t li u Phân tích XPS cho th yăhƠmăl ng l tr ng oxy b m t m uăđ ng pha t p Ag- Niăcaoăh năsoăv i đ năphaăt p V i n ngăđ banăđ u h iăethanolă~15000ăppm d̀ng khơng khí,ăđ chuy n hóa t ng c ng ethanol ( ) m u cryptomelane khơng bi n tính K-OMS-2 m u cryptomelane đ năphaă t p Ag-OMS-2, NiOMS-2 ch đ t l năl t 0.2 %, 8.1 % 5.4 % nhi tăđ ph n ng 28 C Trong đó, v t li u Ag-Ni-OMS-2 (cryptomelane đ ng pha t p Ag vƠ Ni) t raăv ho t tính xúc tác oxy hóa hoƠn toƠn ethanol đ t ~18.6 % t tr i v cùngăcácăđi u ki n kh o sát H nă th n a, gi m n ngă đ n p li u h iăethanol xu ng 2.5 l n (~6000 ppm), hi u qu x lỦăh iăethanolă 28 C Ag-Ni-OMS-2 t ng lên g p 3.3 l n (61.0 %).ă i u nƠy ph n ánh ti măn ngătoăl n c a lo i v t li u x lý h iăethanolănóiăriêngăvƠăVOCsănóiăchungă nhi tăđ th p ii ABSTRACT Air pollution is always one of the most attention topics worldwide Emissions of volatile organic compounds, such as benzene, toluene, formaldehyde, and ethanol, come from human daily living activities such as using fuel sources for production, construction, and traffic, and even come from alternative energy sources to traditional fuels, such as biogasoline Many studies have been carried out to treat ethanol vapor in the air under natural environmental conditions, but treatment efficiency and economics are still limitations In this study, cryptomelane OMS-2 modified with Ag and Ni is applied to treat ethanol vapor at a low temperature Characterization analysis showed that the M-OMS-2 (M = K, Ag, Ni, Ag-Ni) materials synthesized by the reflux method have the characteristic structure and morphology of cryptomelane (XRD, Raman spectra and SEM), with metal compositions in agreement with the theory (ICP-MS) Analysis of the average oxidation state of Mn (Mn-AOS) showed that denaturation with Ag and Ni increased Mn-AOS from 3.6 (K-OMS-2) to ~3.9 (Ag-Ni-OMS-2), also improving the BET specific surface area O2-TPD results indicated the interaction of dopants with Mn-O bonding and the mobility of oxygen species on the surface of the materials XPS analysis showed that the oxygen vacancies content on the surface of the Ag-Ni co-doped cryptomelane was more significant than the single-doped one With the initial ethanol vapor concentration of about 15000 ppm, the total ethanol conversion ( ) on K-OMS-2, Ag-OMS-2 and Ni-OMS-2 single-doped samples was only 0.2 %, 8.1 % and 5.4 %, respectively, at the reaction temperature of 28 oC Meanwhile, the Ag-Ni-OMS-2 co-doped cryptomelane is superior in the catalytic activity of the complete ethanol oxidation when reaches ~18.6 % under the same investigation conditions Furthermore, when the ethanol vapor concentration was reduced by 2.5 times (~6000 ppm), the ethanol vapor treatment efficiency at 28 oC on Ag-Ni-OMS-2 increased by 3.3 times (61.0 %), indicating a great application potential of this material in the treatment of ethanol vapor and VOCs in general at low temperature iii L IăCAMă OAN Tôi tên Tr n Tr ng Phú, h c viên cao h c chuyên ngành K thu t Hóa h c, MSHV 2070656 t iătr ngă i h căBáchăKhoa,ă i h c Qu c gia Tp H Chí Minh Tơiăxinăcamăđoanănghiênăc u ắBi n tính b m t cryptomelane ho t tính xúc tác x lý VOCs”ălà k t qu c a trình h c t p, nghiên c u khoa h c đ c l p nghiêm túc Các s li u lu năv năđ g cărõărƠng,ăđángătinăc y,ăđ ToƠn b lu năv năđ c thu th p t th c t , có ngu n c x lý trung th c khách quan c th c hi n t i ph̀ng thí nghi m Xúc tác vƠ ph̀ng thí nghi m Hóa LỦ, khoa K Thu t Hóa h c,ătr ngă i h c Bách Khoa Tp HCM Tôi xin ch u trách nhi m v k t qu nghiên c u c a TÁC GI Tr n Tr ng Phú iv M CL C L I C Mă N i TÓM T T LU NăV N ii ABSTRACT iii M C L C v DANH M C HÌNH viii DANH M C B NG ix CH NGă1.ăM U 1.1 Lý ch năđ tài 1.2 M c tiêu c aăđ tài 1.γ.ă CH iăt ng ph m vi nghiêm c u c aăđ tài NGăβ:ăT NGăQUANă TÀI 2.1 T ng quan v VOCs 2.1.1 Khái ni m v VOCs 2.1.2 Ngu n phát th i VOCs .3 2.1.3 Tác h i c a VOCs .4 2.1.4 Ethanol 2.1.5 X lý VOCs b ngăph ngăphápăoxyăhóaăxúcătác .9 2.2 T ng quan v v t li u OMS-2 10 β.β.1.ă căđi m c u trúc tính ch t c a OMS-2 .10 β.β.γ.ăCácăph CH ngăphápăđ nh danh v t li u 14 NGăγ:ăTH C NGHI M 18 3.1 T ng h p v t li u 18 3.2 Kh oăsátăđ cătr ngăv t li u .20 3.3 Kh o sát ph n ngăoxyăhóaăh iăethanol 21 v 3.3.1 Xây d ngăđ ng chu n th hi n m i quan h gi aăđ h p thu n ngăđ ethanolăđưăph n ng 21 3.3.2 Kh o sát ho t tính xúc tác c a v t li u cryptomelane q trình oxy hóaăh iăethanol 23 3.3.2.1 Kh o sát nhăh v t li u OMS-2 ng c a trình pha t păđ n ho t tính xúc tác c a nhi tăđ phịng 26 3.3.2.2 Kh o sát nhăh ng c a n ngăđ h iăethanolăđ n ho t tính xúc tác c a v t li u co-doping OMS-2 26 3.3.2.3 Kh o sát nhăh ng c a th i gian x lỦăđ n ho t tính xúc tác c a v t li u co-doping OMS-2 27 CH NGă4:ăK T QU VÀ BÀN LU N 28 4.1 K t qu đ nh danh v t li u 28 4.1.1 Nhi u x tia X ậ XRD 28 4.1.2 Quang ph Raman 29 4.1.3 nh SEM 30 4.1.4 Thành ph n nguyên t kim lo i Mn-AOS 31 4.1.5.ă ngăđ ng nhi t h p ph ậ gi i h p ph N2 di n tích b m t riêng BET 32 4.1.6 Gi i h p ph O2 theoăch ngătrìnhănhi tăđ ậ O2-TPD 34 4.1.7 Quang ph quangăđi n t tia X ậ XPS .35 4.2 K t qu kh o sát ho t tính xúc tác thơng qua ph n ngăoxyăhóaăh iăethanol 40 4.β.1.ă ng chu n bi u di n m i quan h gi aăđ h p thu n ngăđ ethanol 40 4.2.2 K t qu kh o sát ho t tính xúc tác c a v t li u cryptomelane q trìnhăoxyăhóaăh iăethanol 41 vi 4.2.2.1 Kh o sát nhăh ng c a trình pha t păđ n ho t tính xúc tác t i nhi tăđ phòng 41 4.2.2.2 Kh o sát nhăh ng c a n ngăđ ethanolăđ n ho t tính xúc tác t i nhi tăđ phòng 42 4.2.2.3 Kh o sát nhăh ng c a th i gian ph n ngăđ n ho t tính xúc tác t i nhi tăđ phòng 44 CH NGă5:ăK T LU N VÀ KI N NGH 46 5.1 K t lu n 46 5.2 Ki n ngh 46 TÀI LI U THAM KH O 48 vii 25 0.06 0.05 20 18.6 0.039 0.04 15 13.6 0.029 0.03 10.1 10 0.02 0.01 tăli u) T căđ ăchuy năhóaă(mol C2H5OH / g v ăchuy năhóaăh iăethanolă(%) 0.054 0.00 γ0ăphútăđ u Sauă18ăgi Sauăβ4ăgi Th iăgianăkh oăsát Hình 4.11 nhăh ng c a th i gian x lỦăđ n ho t tính xúc tác i u ki n thí nghi m: v t li u kh o sát g m 0.03 g Ag0.05Ni0.1 0.02 g v n th ch anh;ă l uă l ngă d̀ngă khơngă khí:ă 480ă mL/phút;ă l uă l ngă d̀ngă h iă ethanol:ă β0ă mL/phút; nhi tăđ b u nhi t: 20 oC, thi t b ph n ngăđ ( 30  oC) 45 c gi nhi tăđ phòng CH NG 5: K T LU N VÀ KI N NGH 5.1 K t lu n - K t qu phân tích XRD ph Raman cho th y c u trúc đ cătr ngăc a cryptomelane m u v t li uăđưăt ng h p, ngoƠiăraăc ngăkhôngăxu t hi n pha t p ch t Ag2O, NiO, birnessite pyrolusite nh SEM cho th y m u cryptomelane bi n tính v n gi đ c hình thái d ngănanorodăđ cătr ngăc a OMS-2 - S có m t c aă Agă vƠă Niă lƠmă thayă đ i thành ph n lo i Mnn+ c u trúc cryptomelane, d năđ n s thayăđ i Mn-AOS phân b hƠmăl ng kim lo i v t li u Bên c nhăđó,ădi n tích b m t riêng BET m u pha t p Agăđ thi n so v i cryptomelane khơng bi nătính,ăđ c bi t m uăđ ng pha t p Ag-Ni cc i - K t qu O2-TPD cho th y nhăh ng c aădopantăđ năđ linhăđ ng oxy b m t v t li u, ngồi cịn th hi n rõ t ngătácăc a dopant v i liên k t Mn-O - Phân tích ph XPS ch hƠmăl ng kim lo i b m t v t li u không chênh l ch nhi u so v i toàn b v t li u, bên c nhăđó c ngăxácănh n k t qu Mn-AOS cho th y s c i thi n v hƠmăl ng l tr ng oxy b m t m u co-doped - Khi kh o sát s chuy n hóa h iăethanolătrênăcác m u v t li u th th y m uăđ ng pha t p Ag-Ni v nhi tăđ phịng, có t tr i rõ r t so v i m uăđ năphaăt p không bi n tính, cho th y s hi u qu c a q trình bi n tính b m t cryptomelane 5.2 Ki n ngh V t li uăđ ng pha t p Ag-Ni-OMS-2 đư cho th y ti măn ngă ng d ng x lý h iăethanolănóiăriêngăvƠăVOCsănóiăchungă nhi tăđ th p toàn di n vƠăđánhăgiáăchiăti tăh năv v t li uăvƠăh có nhìn khách quan, ng nghiên c u này, c n phân tích thêm y u t nh : - S n ph m c a q trình x lý c năđ c phân tích đ xácăđ nhăhƠmăl ng CO2 s n ph m ph (n u có) - nhăh ng c a kh iăl ng v t li u, đ m khơng khí, ầ c ngăc năđ sátăđ có đánhăgiáăchiăti tăh năv ho t tính xúc tác c a v t li u 46 c kh o CƠNG TRÌNH KHOA H C T P Tran, X P Ta-Thi, K C Nguyen, D N Tran, T D Nguyen-Phan, K N Pham, G H Nguyen, and T M Tran-Thuy,ăắEnhancedăformaldehyderemovalăoverămodifiedăcryptomelaneăcatalysts,”ăIOP Conference Series: Earth and Environmental Science, Dec 2021, vol 947, no 1, p 012024, doi: 10.1088/1755-1315/947/1/012024 T M Tran-Thuy, N T Nguyen-Thi, T P Tran, N H Tran-Le, M A Dang, Q V Nguyen, and M T Nguyen-Kim,ăắCerium-modified cryptomelane: an antibacterial activity against Pseudomonas aeruginosa,”ă IOP Conference Series: Earth and Environmental Science, Dec 2021, vol 947, no 1, p 012027, doi: 10.1088/1755-1315/947/1/012027 T M Tran-Thuy, T P Le, T P Tran, H H Lam, L Q Nguyen, D V Nguyen, and T Dang-Bao, ắChromium-doped cryptomelane: Mn-O debilitationăandăreactiveăenhancementăinăformaldehydeăabatement,”ăMaterials Letters, vol 305, p 130777, Dec 2021, doi: 10.1016/j.matlet.2021.130777 47 TÀI LI U THAM KH O [1] USăEPA,ăắTechnicalăOverview of Volatile Organic Compounds | Indoor Air Qualityă(IAQ),”ăβ019.ăAccessed:ăJun.ăβ0,ăβ0ββ.ă[Online].ăAvailable:ă https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatileorganic-compounds [2] ắDirectiveăβ010/75/EUăofătheăEuropeanăParliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control),”ăOJăLăγγ4,ăpp.ă17ậ119, 2010, Accessed: Jun 20, 2022 [Online] Available: http://data.europa.eu/eli/dir/2010/75/2011-01-06 [3] ắDirective 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants,”ăOJăLăγ09,ăpp.ăββậ30, 2001, Accessed: Jun 20, 2022 [Online] Available: http://data.europa.eu/eli/dir/2001/81/2018-07-01 [4] A Vale, ắEthanol,”ăMedicine, vol 35, no 11, pp 615ậ616, Nov 01, 2007 doi: 10.1016/j.mpmed.2007.08.015 [5] T W Patzek, ắThermodynamicsăofătheăcorn-ethanolăbiofuelăcycle,”ăCritical Reviews in Plant Sciences, vol 23, no 6, pp 519ậ567, 2004 doi: 10.1080/07352680490886905 [6] A Guenther, ắAăglobalămodelăofănaturalăvolatileăorganicăcompoundă emissions,”ăJournal of Geophysical Research, vol 100, no D5, pp 8873ậ 8892, May 1995, doi: 10.1029/94JD02950 [7] B TƠiănguyênăvƠăMôiătr – Chuyên đ : Môi tr tr [8] ng, Báo cáo hi n tr ng môi tr ng qu c gia 2016 ng đô th Hà N i: Nhà xu t b n Tài nguyên ậ Môi ng B n đ Vi t Nam, 2016 G T Miller and S Spoolman, Living in the environment: principles, connections, and solutions Cengage Learning, 2011 [9] J S Fuglestvedt et al., ắEstimatesăofăindirectăglobalăwarmingăpotentialsăforă 48 CH4, CO and NOx,”ăClimatic Change, vol 34, no 3ậ4, pp 405ậ437, 1996, doi: 10.1007/BF00139300 [10] K Hayhoe et al., ắContributionăofăCH4 to Multi-Gas Emission Reduction Targets,”ăNon-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation, pp 425ậ432, 2000, doi: 10.1007/978-94-015-93434_67 [11] L Mølhave, ắVolatileăOrganicăCompounds,ăIndoorăAirăQualityăandăHealth,”ă Indoor Air, vol 1, no 4, pp 357ậ376, Dec 1991, doi: 10.1111/j.16000668.1991.00001.x [12] X Tang et al., ắCompleteăoxidationăofăformaldehydeăoverăAg/MnOx-CeO2 catalysts,”ăChemical Engineering Journal, vol 118, no 1ậ2, pp 119ậ125, May 2006, doi: 10.1016/j.cej.2006.02.002 [13] B Oury et al., ắBehaviorăofătheăGABIE,ăγMăγ500,ăPerkinElmerăTenaxăTA,ă and RADIELLO 145 Diffusive Samplers Exposed Over a Long Time to a Low ConcentrationăofăVOCs,”ăJournal of Occupational and Environmental Hygiene, vol 3, no 10, pp 547ậ557, Oct 2006, doi: 10.1080/15459620600906613 [14] W T Tsai, ắToxicăvolatileăorganicăcompoundsă(VOCs)ăinătheăatmospherică environment:ăRegulatoryăaspectsăandămonitoringăinăJapanăandăKorea,”ă Environments - MDPI, vol 3, no 3, pp 1ậ7, Sep 2016, doi: 10.3390/environments3030023 [15] A L McRae et al., ắAlcoholăandăsubstanceăabuse,”ăMedical Clinics of North America, vol 85, no 3, pp 779ậ801, May 2001, doi: 10.1016/S00257125(05)70340-0 [16] M K Sun and D J Reis, ắEffectsăofăsystemicăethanolăonămedullaryă vasomotorăneuronsăandăbaroreflexes,”ăNeuroscience Letters, vol 137, no 2, pp 232ậ236, Mar 1992, doi: 10.1016/0304-3940(92)90411-Y 49 [17] B Y T ắBan hành Quy chu n k thu t qu c gia - Giá tr gi i h n ti p xúc choăphépăđ i v i 50 y u t hóa h c t iăn iălƠmăvi c.” Vi t Nam S 10/2019/TT-BYT, ngày 10 tháng 06 n m 2019 [18] CancerăCouncilăVictoria,ăắWaysăalcoholăcausesăcanceră|ăCancerăCouncilă Victoria,”ăβ0β1.ăAccessed:ăJul.ă0β,ăβ0ββ.ă[Online].ăAvailable:ă https://www.cancervic.org.au/preventing-cancer/limit-alcohol/how-alcoholcauses-cancer [19] P O Larsson and A Andersson, ắCompleteăoxidationăofăCO,ăethanol,ăandă ethyl acetate over copper oxide supported on titania and ceria modified titania,”ăJournal of Catalysis, vol 179, no 1, pp 72ậ89, Oct 1998, doi: 10.1006/jcat.1998.2198 [20] P Papaefthimiou et al., ắCatalyticăincinerationăofăvolatileăorganicăcompoundsă Presentăinăindustrialăwasteăstreams,”ăApplied Thermal Engineering, vol 18, no 11, pp 1005ậ1012, Nov 1998, doi: 10.1016/S1359-4311(98)00021-0 [21] S A C Carabineiro et al., ắCatalyticăoxidationăofătolueneăonăCe-Co and LaCoămixedăoxidesăsynthesizedăbyăexotemplatingăandăevaporationămethods,”ă Catalysis Today, vol 244, pp 161ậ171, Apr 2015, doi: 10.1016/j.cattod.2014.06.018 [22] X Chen et al., ắExotemplatedăcopper,ăcobalt,ăiron,ălanthanumăandănickelă oxidesăforăcatalyticăoxidationăofăethylăacetate,”ăJournal of Environmental Chemical Engineering, vol 1, no 4, pp 795ậ804, Dec 2013, doi: 10.1016/j.jece.2013.07.019 [23] M Konsolakis et al., ắRedox properties and VOC oxidation activity of Cu catalysts supported on Ce1-xSmxO mixedăoxides,”ăJournal of Hazardous Materials, vol 261, pp 512ậ521, Oct 2013, doi: 10.1016/j.jhazmat.2013.08.016 [24] B A Tichenor and M A Palazzolo, ắDestructionăofăvolatile organic 50 compoundsăviaăcatalyticăincineration,”ăEnvironmental Progress and Sustainable Energy, vol 6, no 3, pp 172ậ176, Aug 1987, doi: 10.1002/ep.670060328 [25] J Hermia and S Vigneron, ắCatalyticăincinerationăforăodourăabatementăandă VOC destruction,”ăCatalysis Today, vol 17, no 1ậ2, pp 349ậ358, May 1993, doi: 10.1016/0920-5861(93)80038-3 [26] J Pei et al., ắPerformanceăandăkineticsăofăcatalyticăoxidationăofăformaldehydeă overăcopperămanganeseăoxideăcatalyst,”ăBuilding and Environment, vol 84, pp 134ậ141, Jan 2015, doi: 10.1016/j.buildenv.2014.11.002 [27] N Radic et al., ắKineticsăofădeepăoxidationăofăn-hexane and toluene over Pt/Al2O3 catalysts:ăPlatinumăcrystalliteăsizeăeffect,”ăApplied Catalysis B: Environmental, vol 50, no 3, pp 153ậ159, Jul 2004, doi: 10.1016/j.apcatb.2004.01.011 [28] J Bedia et al., ắPdăsupportedăonămesoporousăactivatedăcarbons with high oxidationăresistanceăasăcatalystsăforătolueneăoxidation,”ăApplied Catalysis B: Environmental, vol 94, no 1ậ2, pp 8ậ18, Feb 2010, doi: 10.1016/j.apcatb.2009.10.015 [29] E Jo et al., ắ55Mn nuclear magnetic resonance for antiferromagnetică Mn2O3,”ăNew Journal of Physics, vol 13, no 1, pp 13018ậ13024, Jan 2011, doi: 10.1088/1367-2630/13/1/013018 [30] H Sun et al., ắTheăroleăofălatticeăoxygenăonătheăactivityăandăselectivityăofătheă OMS-2 catalyst for the total oxidationăofătoluene,”ăChemical Engineering Journal, vol 270, pp 58ậ65, Jun 2015, doi: 10.1016/j.cej.2015.02.017 [31] J Hou et al., ắTuningătheăK+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation,”ăEnvironmental Science and Technology, vol 47, no 23, pp 13730ậ13736, Dec 2013, doi: 10.1021/es403910s 51 [32] R Wang and J Li, ắEffectsăofăprecursorăandăsulfationăonăOMS-2 Catalyst for oxidationăofăethanolăandăacetaldehydeăatălowătemperatures,”ăEnvironmental Science and Technology, vol 44, no 11, pp 4282ậ4287, Jun 2010, doi: 10.1021/es100253c [33] J Huang et al., ắSilver-Containingă -MnO2 Nanorods: Electrochemistry in Na-BasedăBatteryăSystems,”ăACS Applied Materials and Interfaces, vol 9, no 5, pp 4333ậ4342, Feb 08, 2017 doi: 10.1021/acsami.6b08549 [34] R Jothiramalingam and M K Wang, ắManganeseăoxideănanocomposites with improved surface area prepared by one-pot surfactant route for electro catalyticăandăbiosensorăapplications,”ăJournal of Porous Materials, vol 17, no 6, pp 677ậ683, Dec 2010, doi: 10.1007/s10934-009-9338-8 [35] E Cockayne and L Li, ắFirst-principles DFT + U studies of the atomic, electronic,ăandămagneticăstructureăofă -MnO2 (cryptomelane),”ăChemical Physics Letters, vol 544, pp 53ậ58, Aug 2012, doi: 10.1016/j.cplett.2012.06.061 [36] A S Poyraz et al., ắSynthesisăofăcryptomelaneătypeă -MnO2 (KXMn8O16) cathode materials with tunable K+ content: The role of tunnel cation concentrationăonăelectrochemistry,”ăJournal of Materials Chemistry A, vol 5, no 32, pp 16914ậ16928, Aug 2017, doi: 10.1039/c7ta03476h [37] T Gao et al., ắMicrostructuresăandăspectroscopicăpropertiesăofăcryptomelanetypeămanganeseădioxideănanofibers,”ăJournal of Physical Chemistry C, vol 112, no 34, pp 13134ậ13140, Aug 2008, doi: 10.1021/jp804924f [38] R Jothiramalingam et al., ắSynthesis,ăcharacterizationăandăcatalyticăoxidationă activity of zirconium doped K-OMS-βătypeămanganeseăoxideămaterials,”ă Journal of Molecular Catalysis A: Chemical, vol 252, no 1ậ2, pp 49ậ55, Jun 2006, doi: 10.1016/j.molcata.2006.01.054 [39] J E Post, ắManganeseăoxideăminerals:ăCrystalăstructuresăandăeconomicăandă 52 environmentalăsignificance,”ăProceedings of the National Academy of Sciences of the United States of America, vol 96, no 7, pp 3447ậ3454, Mar 1999, doi: 10.1073/pnas.96.7.3447 [40] Y S Ding et al., ắSynthesisăandăcatalyticăactivityăofăcryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-freeămethod,”ă Chemistry of Materials, vol 17, no 21, pp 5382ậ5389, Oct 2005, doi: 10.1021/cm051294w [41] Q Feng et al., ắAlkaliăMetalăIonsăInsertion/ExtractionăReactionsăwithă Hollandite-TypeăManganeseăOxideăinătheăAqueousăPhase,”ăChemistry of Materials, vol 7, no 1, pp 148ậ153, 1995, doi: 10.1021/cm00049a023 [42] J Luo et al., ắTotalăoxidationăofăvolatile organic compounds with hydrophobic cryptomelane-typeăoctahedralămolecularăsieves,”ăMicroporous and Mesoporous Materials, vol 35ậ36, pp 209ậ217, Apr 2000, doi: 10.1016/S1387-1811(99)00221-8 [43] D F M Santos et al., ắEffectăofăballămillingăonătheăcatalytic activity of cryptomelaneăforăVOCăoxidation,”ăEnvironmental Technology, vol 41, no 1, pp 117ậ130, Jan 2020, doi: 10.1080/09593330.2018.1491639 [44] C Wang et al., ắTheăEffectsăofăMn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts,”ăJournal of Physical Chemistry C, vol 119, no 40, pp 23119ậ 23126, Oct 2015, doi: 10.1021/acs.jpcc.5b08095 [45] T Chen et al., ắTunnel structure effect of manganese oxides in complete oxidationăofăformaldehyde,”ăMicroporous and Mesoporous Materials, vol 122, no 1ậ3, pp 270ậ274, Jun 2009, doi: 10.1016/j.micromeso.2009.03.010 [46] V P Santos et al., ắTheăroleăofălatticeăoxygenăonăthe activity of manganese oxidesătowardsătheăoxidationăofăvolatileăorganicăcompounds,”ăApplied Catalysis B: Environmental, vol 99, no 1ậ2, pp 353ậ363, Aug 2010, doi: 53 10.1016/j.apcatb.2010.07.007 [47] O S G P Soares et al., ắOxidationăofămixturesăof ethyl acetate and butyl acetateăoverăcryptomelaneăandătheăeffectăofăwaterăvapor,”ăEnvironmental Progress and Sustainable Energy, vol 35, no 5, pp 1324ậ1329, Sep 2016, doi: 10.1002/ep.12348 [48] R Wang and J Li, ắOMS-2 catalysts for formaldehyde oxidation: Effects of CeăandăPtăonăstructureăandăperformanceăofătheăcatalysts,”ăCatalysis Letters, vol 131, no 3ậ4, pp 500ậ505, Sep 2009, doi: 10.1007/s10562-009-9939-5 [49] M Sun et al., ắTransitionămetalădopedăcryptomelane-type manganese oxide for low-temperatureăcatalyticăcombustionăofădimethylăether,”ăChemical Engineering Journal, vol 220, pp 320ậ327, Mar 2013, doi: 10.1016/j.cej.2013.01.061 [50] C Ni et al., ắTheăremarkableăeffect of alkali earth metal ion on the catalytic activity of OMS-βăforăbenzeneăoxidation,”ăChemosphere, vol 250, p 126211, Jul 2020, doi: 10.1016/j.chemosphere.2020.126211 [51] L.ăT.ăPh ng, ắNghiênăc u bi n tính b m t v t li u OMS-2 v i chromium s c i thi n kh n ngăx lỦăphaăh iăformaldehydeă nhi tăđ th p,”ăLu năv nă Th căs ,ă [52] i h c Bách Khoa - HQGăTPHCM,ăβ0β1 .ăM.ăAn,ăắ nhăh ng c aăhƠmăl ngănikenăđ i v i kh n ngădi t khu n t c u vàng (Staphylococcus aureus) v t li u Ni-Ag-dopedăcryptomelane,”ă Lu năv nă i h c, i h c Bách Khoa - HQGăTPHCM,ăβ0β1 [53] T T X Phúc, ắNghiênăc u c i thi n ho tătínhăoxyăhóaăphaăh iăformaldehydeă c a v t li u Ag-OMS-2 b ngăph i h c, ngăphápăco-doping v iăniken,”ăLu năv nă i h c Bách Khoa - HQGăTPHCM,ăβ0β1 [54] N K Châu, ắ ánhăgiáătínhăch t hố lý c a v t li u nanorod Ni/Ag-OMS-β,”ă Lu năv nă i h c, i h c Bách Khoa - HQGăTPHCM, 2021 [55] J Hou et al., ắEffectăofăgiantăoxygenăvacancyădefectsăonătheăcatalytică 54 oxidation of OMS-βănanorods,”ăJournal of Materials Chemistry A, vol 1, no 23, pp 6736ậ6741, May 2013, doi: 10.1039/c3ta11566f [56] J Hou et al., ắTremendousăeffectăofăoxygenăvacancyădefectsăonătheăoxidationă of arsenite to arsenate on cryptomelane-type manganeseăoxide,”ăChemical Engineering Journal, vol 306, pp 597ậ606, Dec 2016, doi: 10.1016/j.cej.2016.07.072 [57] J Ma et al., ắTransitionămetalădopedăcryptomelane-type manganese oxide catalystsăforăozoneădecomposition,”ăApplied Catalysis B: Environmental, vol 201, pp 503ậ510, Feb 2017, doi: 10.1016/j.apcatb.2016.08.050 [58] D J Gardiner and P R Graves, Practical Raman Spectroscopy Springer Berlin Heidelberg, 1989 doi: 10.1007/978-3-642-74040-4 [59] T M Tran-Thuy et al., ắChromium-doped cryptomelane: Mn-O debilitation andăreactiveăenhancementăinăformaldehydeăabatement,”ăMaterials Letters, vol 305, p 130777, Dec 2021, doi: 10.1016/j.matlet.2021.130777 [60] C S Fadley, ắX-rayăphotoelectronăspectroscopy:ăProgressăandăperspectives,”ă Journal of Electron Spectroscopy and Related Phenomena, vol 178ậ179, no C, pp 2ậ32, May 2010, doi: 10.1016/j.elspec.2010.01.006 [61] R N DeGuzman et al.,ăắSynthesis and Characterization of Octahedral Molecular Sieves (OMS-β)ăHavingătheăHollanditeăStructure,”ăChemistry of Materials, vol 6, no 6, pp 815ậ821, Jun 1994, doi: 10.1021/cm00042a019 [62] T.ăT.ăPhú,ăắCo-doped cryptomelane: S c i thi n ho t tính xúc tác q trình ozone hóa 4-nitrophenol,” Lu năv nă i h c, i h c Bách Khoa - HQGăTPHCM,ăβ0β0 [63] T M Tran-Thuy et al., ắTuningăsurfactant-templates of nanorod-like cryptomelane synthesis towards vapor-phase selective oxidation of benzyl alcohol,”ăMaterials Letters, vol 277, p 128333, Oct 2020, doi: 10.1016/j.matlet.2020.128333 55 [64] F Pourkarim et al., ắAăSimpleăcolorimetricămethodăforădeterminationăofă ethanolăinăexhaledăbreathăcondensate,”ăPharmaceutical Sciences, vol 27, no 2, pp 297ậ301, May 2021, doi: 10.34172/PS.2020.40 [65] W Y Hernández et al., ắModifiedăcryptomelane-type manganese dioxide nanomaterialsăforăpreferentialăoxidationăofăCOăinătheăpresenceăofăhydrogen,” Catalysis Today, Nov 2010, vol 157, no 1ậ4, pp 160ậ165 doi: 10.1016/j.cattod.2010.03.010 [66] T Gao et al., ắMicrostructuresăandăspectroscopicăpropertiesăofăcryptomelanetypeămanganeseădioxideănanofibers,”ăJournal of Physical Chemistry C, vol 112, no 34, pp 13134ậ13140, Aug 2008, doi: 10.1021/jp804924f [67] C Julien et al., ắStudyăofăstructuralădefectsăină -MnO2 by Raman spectroscopy,”ăJournal of Raman Spectroscopy, vol 33, no 4, pp 223ậ228, Apr 2002, doi: 10.1002/jrs.838 [68] V P Santos et al., ắStructuralăandăchemicalădisorderăofăcryptomelaneă promoted by alkali doping:ăInfluenceăonăcatalyticăproperties,”ăJournal of Catalysis, vol 293, pp 165ậ174, Sep 2012, doi: 10.1016/j.jcat.2012.06.020 [69] T Fu et al., ắCatalyticăthermalădecompositionăofăammoniumăperchlorateă using manganese oxide octahedral molecular sieve (OMS),”ăCatalysis Communications, vol 10, no 1, pp 108ậ112, Oct 2008, doi: 10.1016/j.catcom.2008.08.005 [70] K S W Sing et al., ắReportingăPhysisorptionăDataăforăGas/SolidăSystemsă withăSpecialăReferenceătoătheăDeterminationăofăSurfaceăAreaăandăPorosity,”ă Pure and Applied Chemistry, vol 57, no 4, pp 603ậ619, Jan 1985, doi: 10.1351/pac198557040603 [71] C Wang et al., ắTheăEffects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts,”ăJournal of Physical Chemistry C, vol 119, no 40, pp 23119ậ 56 23126, Oct 2015, doi: 10.1021/acs.jpcc.5b08095 [72] S Luo et al., ắManganeseăoxideăoctahedralămolecularăsieveă(OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presenceăofăperoxymonosulfate,”ăApplied Catalysis B: Environmental, vol 164, pp 92ậ99, Mar 2015, doi: 10.1016/j.apcatb.2014.09.008 [73] M Sun et al., ắEnhancedăcatalyticăperformance by oxygen vacancy and active interface originated from facile reduction of OMS-β,”ăChemical Engineering Journal, vol 331, pp 626ậ635, Jan 2018, doi: 10.1016/j.cej.2017.09.028 [74] X Chen et al., ắCharacterizationăofămanganeseăoxideăoctahedral molecular sieve (M-OMS-β)ămaterialsăwithădifferentămetalăcationădopants,”ăChemistry of Materials, vol 14, no 2, pp 940ậ948, 2002, doi: 10.1021/cm000868o [75] X Zhang et al., ắRoleăofăCryptomelaneăinăSurface-Adsorbed Oxygen and Mn ChemicalăValenceăinăMnOxăduringătheăCatalyticăOxidationăofăToluene,”ă Journal of Physical Chemistry C, vol 123, no 28, pp 17255ậ17264, Jun 2019, doi: 10.1021/acs.jpcc.9b02499 [76] J Fu et al., ắEnhanced performance of the OMS-2 catalyst by Ag loading for theăoxidationăofăbenzene,ătoluene,ăandăformaldehyde,”ăNew Journal of Chemistry, vol 42, no 22, pp 18117ậ18127, Nov 2018, doi: 10.1039/c8nj04030c [77] W Gac et al., ắTheăinfluenceăofăsilverăon the properties of cryptomelane type manganese oxides in N2Oădecompositionăreaction,”ăCatalysis Today, vol 137, no 2ậ4, pp 397ậ402, Sep 2008, doi: 10.1016/j.cattod.2007.11.008 [78] G I N Waterhouse et al.,ăắOxygen chemisorption on an electrolytic silver catalyst:ăAăcombinedăTPDăandăRamanăspectroscopicăstudy,”ăApplied Surface Science, vol 214, no 1ậ4, pp 36ậ51, May 2003, doi: 10.1016/S01694332(03)00350-7 [79] Y Yang et al.,ăắCatalytic removal of gaseous unintentional POPs on 57 manganeseăoxideăoctahedralămolecularăsieves,”ăApplied Catalysis B: Environmental, vol 142ậ143, pp 568ậ578, Oct 2013, doi: 10.1016/j.apcatb.2013.05.048 [80] G Zhu et al.,ăắSurface oxygen vacancy induced -MnO2 nanofiber for highly efficientăozoneăelimination,”ăApplied Catalysis B: Environmental, vol 209, pp 729ậ737, Jul 2017, doi: 10.1016/j.apcatb.2017.02.068 [81] N Zhang et al.,ăắHigh Pt utilization efficiency of electrocatalysts for oxygen reduction reactionăinăalkalineămedia,”ăCatalysis Today, vol 332., pp 101ậ 108, Jul 15, 2019 doi: 10.1016/j.cattod.2018.07.018 [82] L Chen et al.,ăắSimple strategy for the construction of oxygen vacancies on -MnO2 catalystătoăimproveătolueneăcatalyticăoxidation,”ăJournal of Hazardous Materials, vol 409, p 125020, May 2021, doi: 10.1016/j.jhazmat.2020.125020 [83] Y Huang et al.,ăắHighly efficient Co-OMS-2 catalyst for the degradation of reactiveăblueă19ăinăaqueousăsolution,”ăInorganic Chemistry Communications, vol 112, p 107757, Feb 2020, doi: 10.1016/j.inoche.2019.107757 [84] S Dang et al.,ăắNanostructured manganese dioxide with adjustable Mn3+/Mn4+ ratio for flexible high-energy quasi-solidăsupercapacitors,”ă Chemical Engineering Journal, vol 396, p 125342, Sep 2020, doi: 10.1016/j.cej.2020.125342 [85] Z Wang et al.,ăắPromoted catalytic transformation of polycyclic aromatic hydrocarbons by MnO2 polymorphs: Synergistic effects of Mn3+ and oxygen vacancies,”ăApplied Catalysis B: Environmental, vol 272, p 119030, Sep 2020, doi: 10.1016/j.apcatb.2020.119030 58 PH N LÝ L CH TRÍCH NGANG H tên: Tr n Tr ng Phú NgƠy,ătháng,ăn măsinh:ă04/11/1998 N iăsinh:ăTP.ăHCM a ch liên l c:ă140/50Că inhăB L nh,ăph ng 26, qu n Bình Th nh, TP HCM QUÁ TRỊNHă ÀOăT O 2016 ậ 2020: K s ăK thu t Hóa h c,ătr ngă i h căBáchăKhoa,ă HQGăTP.ăHCM 2020 ậ 2022: Th căs ăK thu t Hóa h c,ătr ngă i h căBáchăKhoa,ă HQGăTP.ăHCM 59 ... Ti ng Vi t: Bi n tính b m t cryptomelane ho t tính xúc tác x lý VOCs Tên Ti ng Anh: Surface modification of cryptomelane and catalytic activity in VOCs abatement II NHI M V VÀ N I DUNG: - T ng... Bedia c ng s vào n m 2010 đưănghiên c u kh n ngăphân h y h p ch t BTX xúc tác Pd/than ho t tính b ngăph ngăphápăoxyăhóa? ?xúc? ?tác [28] K t qu cho th y ho t? ?tính? ?xúc? ?tác? ?đ i v i h p ch t VOCs thayăđ... păvƠo? ?cryptomelane? ?đ n c u trúc, tính ch t b m t v t li u, thành ph n nguyên t ho t tính xúc tác c a v t li u nh m t o m t h xúc tác trênăc ăs OMS-2 cho phép x lý hi u qu h iăethanolăvƠ? ?VOCs nói

Ngày đăng: 13/10/2022, 07:55

Xem thêm:

HÌNH ẢNH LIÊN QUAN

Hình 2.1. Quá trình hình thƠnhăs ngămùăquangăhóaă[8]. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 2.1. Quá trình hình thƠnhăs ngămùăquangăhóaă[8] (Trang 17)
Hình 2.2 .M ts ng d ng ca ethanol. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 2.2 M ts ng d ng ca ethanol (Trang 18)
Hình 2.4. Cu trúc cryptomelane [40]. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 2.4. Cu trúc cryptomelane [40] (Trang 23)
Hình 3.1. Quy trìn ht ngh vt l iu M-OMS-2. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 3.1. Quy trìn ht ngh vt l iu M-OMS-2 (Trang 31)
ph Raman ca các vt li uăđ cti nx lý 30 phút trong dòng N2 300 oC. Hình thái v t li uăđc ch p b ng kính hinăviăđin t  quét Hidachi S-4800 FE-SEM t i  Phịng thí nghi m Cơng ngh  nano, Trung tâm nghiên c u tri n khai  ậ Khu công ngh   cao  TP.HCM - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
ph Raman ca các vt li uăđ cti nx lý 30 phút trong dòng N2 300 oC. Hình thái v t li uăđc ch p b ng kính hinăviăđin t quét Hidachi S-4800 FE-SEM t i Phịng thí nghi m Cơng ngh nano, Trung tâm nghiên c u tri n khai ậ Khu công ngh cao TP.HCM (Trang 32)
3.3.2. Kho sát hot tính xúc tác ca vt l iu cryptomelane trong quá trình oxy hóaăh iăethanol - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
3.3.2. Kho sát hot tính xúc tác ca vt l iu cryptomelane trong quá trình oxy hóaăh iăethanol (Trang 35)
Hình 3.2 .H th ng kho sát ho tătínhăxúcătácăoxyăhóaăh iăethanol. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 3.2 H th ng kho sát ho tătínhăxúcătácăoxyăhóaăh iăethanol (Trang 35)
Hình 4.1. Nhi ux ti aX ca các vt l iu M-OMS-2. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.1. Nhi ux ti aX ca các vt l iu M-OMS-2 (Trang 40)
Hình 4.2. Ph Raman ca các vt l iu M-OMS-2. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.2. Ph Raman ca các vt l iu M-OMS-2 (Trang 41)
K t qu nh ch p SEM trong Hình 4.3 cho thy các vt l iu M-OMS-2 t ng h pătheoăph ngăphápăh iăl uănhi t có hình thái d ng bó s i (rod) - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
t qu nh ch p SEM trong Hình 4.3 cho thy các vt l iu M-OMS-2 t ng h pătheoăph ngăphápăh iăl uănhi t có hình thái d ng bó s i (rod) (Trang 42)
Hình 4.4.ă ngăđ ng nhi th p ph ậ gi hp ph N2 trên Ag0.05Ni0.1. B ng 4.2 t ng h p di n tích b  m t riêng BET c a các v t li u M-OMS- βăđưă t ng h p - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.4. ă ngăđ ng nhi th p ph ậ gi hp ph N2 trên Ag0.05Ni0.1. B ng 4.2 t ng h p di n tích b m t riêng BET c a các v t li u M-OMS- βăđưă t ng h p (Trang 45)
4.1.6. Gi hp ph O2 theoăch ngătrìnhănhi tăđ ậ O2-TPD - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
4.1.6. Gi hp ph O2 theoăch ngătrìnhănhi tăđ ậ O2-TPD (Trang 46)
Hình 4.5. O2-TPD ca các vt l iu M-OMS-2. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.5. O2-TPD ca các vt l iu M-OMS-2 (Trang 46)
Hình 4.6 cho thy rõ hi năt ng phơnătáchăn ngăl ng vùng Mn 3s thành hai peak riêng bi t - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.6 cho thy rõ hi năt ng phơnătáchăn ngăl ng vùng Mn 3s thành hai peak riêng bi t (Trang 48)
Ph Mn 2p3/2 ca các mu trong Hình 4.7 phân tách thành ba peak vi các c n ngălng liên k t t  thpăđn cao t ngăng lnălt v i Mn2+, Mn3+  và Mn 4+  [73,  83, 84], v i m u Ag0.05 là 640.1 eV, 641.3 eV, 642.3 eV và m u Ag0.05Ni0.1 là  641.1 eV, 642.3 eV, 643.3 eV - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
h Mn 2p3/2 ca các mu trong Hình 4.7 phân tách thành ba peak vi các c n ngălng liên k t t thpăđn cao t ngăng lnălt v i Mn2+, Mn3+ và Mn 4+ [73, 83, 84], v i m u Ag0.05 là 640.1 eV, 641.3 eV, 642.3 eV và m u Ag0.05Ni0.1 là 641.1 eV, 642.3 eV, 643.3 eV (Trang 49)
Hình 4.7. Ph Mn 2p3/2 vàO 1s ca các vt li u. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.7. Ph Mn 2p3/2 vàO 1s ca các vt li u (Trang 50)
Hình 4.8.ă ng chun quanh gi aăđ hp thu vàn ngăđ ethanol. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.8. ă ng chun quanh gi aăđ hp thu vàn ngăđ ethanol (Trang 52)
Hình 4.9. nhăh ng c aădopantăđ năđ chuy năhóaăh iăethanolă nhi tăđ phòng. i u ki n thí nghi m: v t li u kh o sát g m 0.03 g M-OMS-2 và 0.02 g v n th ch  anh;  l uă lng  dòng  khơng  khí: 480ă mL/phút;ă l uă l ngă d̀ngă h iă ethanol :  20  mL/phút; nhi tăđ - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.9. nhăh ng c aădopantăđ năđ chuy năhóaăh iăethanolă nhi tăđ phòng. i u ki n thí nghi m: v t li u kh o sát g m 0.03 g M-OMS-2 và 0.02 g v n th ch anh; l uă lng dòng khơng khí: 480ă mL/phút;ă l uă l ngă d̀ngă h iă ethanol : 20 mL/phút; nhi tăđ (Trang 54)
Hình 4.10. nhăh ng can ngăđ hi ethanol trong d̀n gn pli uđ nh ot tính xúc tác.  - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.10. nhăh ng can ngăđ hi ethanol trong d̀n gn pli uđ nh ot tính xúc tác. (Trang 55)
Hình 4.11. nhăh ng cat hi gian x lỦăđ nh ot tính xúc tác. - Biến tính bề mặt cryptomelane và hoạt tính xúc tác trong xử lý vocs
Hình 4.11. nhăh ng cat hi gian x lỦăđ nh ot tính xúc tác (Trang 57)

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN