0

Tổng hợp cacbon nanodots trên tio2 và ứng dụng làm xúc tác quang xử lý vocs

89 5 0
  • Tổng hợp cacbon nanodots trên tio2 và ứng dụng làm xúc tác quang xử lý vocs

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 12/05/2022, 11:09

I H C QU C GIA TP HCM I H C BÁCH KHOA NGUY NH NHÂN T ng h p Cacbon nanodots TiO2 ng d ng làm xúc tác quang x lý VOCs Chuyên ngành: K Thu t hóa h c Mã s : 8520301 LU TP H C HOÀN THÀNH T I I H C BÁCH KHOA -HCM Cán b ng d n khoa h c :PGS TS Nguy n Quang Long Cán b ch m nh n xét : TS Tr c Nh t Uyên Cán b ch m nh n xét : ng B o Trung (Ghi rõ h , tên, h c hàm, h c v ch ký) Lu c b o v t i Tr HCM ngày 23 tháng 01 2022 Thành ph n H i ng ng i h c Bách Khoa, HQG Tp nh giá lu n v n th c s g m: Ch t ch TS Tr n Th Ki u Anh Ph n bi n TS Tr c Nh t Uyên Ph n bi ng B o Trung ng Xác nh n c a Ch t ch H i ng chuyên ngành sau lu n v n ã CH T CH H h giá LV ng Khoa qu n lý c s a ch a (n u có) NG NG KHOA K THU T HĨA H C TS Tr n Th Ki u Anh II I H C QU C GIA TP.HCM I H C BÁCH KHOA C NG HÒA XÃ H I CH c l p - T - H nh phúc T NAM NHI M V LU MSHV:1970454 15/07/1996 ng : 8520301 Chuyên ngành: I TÀI: T ng h p Cacbon nanodots TiO2 ng d ng làm xúc tác quang x lý VOCs II NHI M V VÀ N I DUNG: + T ng quan v v ô nhi m ch t h lý b ng xúc tác quang x + T ng h p v t li u xúc tác quang CDs/TiO2 x lý khí nhi m c tính xúc tác CDs CDs/TiO2 + Kh o sát y u t n kh lý khí ô nhi m VOCs (formaldehyde, acetone, toluene) c a v t li u xúc tác quang CDs/TiO2 III NGÀY GIAO NHI M V : 09/2021 IV NGÀY HOÀN THÀNH NHI M V : 05/2022 V CÁN B NG D N : PGS TS Nguy n Quang Long Tp HCM, ngày 01 tháng 03 CÁN B NG D N CH NHI M B PGS TS Nguy n Quang Long 22 O PGS TS Nguy n Quang Long NG KHOA K THU T HĨA H C III L IC V i lịng bi c nh t, em xin g i l i c khoa K thu t Hóa h c n quý th y ih i h c Qu c Gia Tp.HCM t cho em v n ki n th c quý báu su t kho ng th i gian h c t p t i ng c bi t, em xin g i l i bi c nh t t i Phó g t nhi u cơng s c, tâm huy truy Ti n t nh ng ki n th c, kinh nghi m quý báu cho em trình th c hi n lu t pt c ng ng th i, xin g i l i c n Th , góp ý giúp hồn thi n nghiên c u C Hóa Lý - Khoa K thu t Hóa h Lê Nguy n Quang Tú, y, Cơ b môn K thu t i h c Bách Khoa Thành ph H Chí Minh ng ch b t u ki n cho em hoàn thành n i tài lu Sau cùng, em xin bày t lòng bi ch n bè, c ng d n t n tình cho em t nh ng anh u m i vào lab ng hành em su t trình th c hi n lu Do h n ch v th u ki ch , thi nh n th c c a b n thân v n h n u không th tránh kh i, em r t mong nh a q th giúp em có th hồn ch nh nh t lu t t nghi p c a Trân tr ng Nguy IV nh Nhân c TĨM T T LU Trong nghiên c u này, v t li u cacbon nanodots ph TiO2 (CDs/TiO2 u ch b c c s d ng làm ch t xúc tác cho ph n ng quang hóa x lý VOCs (formaldehyde, acetone toluene) v i dòng ch y liên t b c x UV- c tính v t li c ki m tra b i u x tia X (XRD), quang ph h ng ngo i Fourier (FTIR), Kính hi nt (HRTEM), kính hi ng tia X (SEM-EDX), n t quét k t h p ph tán x phân tích nhi t tr phân gi i cao ng (TGA) quang ph phát quang (PL) t vai trò quan tr ng vi c c i thi n ho TiO2, m r ng kh p th ng quang xúc tác c a ng th i kéo dài th i gian tái t h p c a electron l tr ng Xúc tác CDs/TiO2 th hi n kh v 2, chuy n hóa c a formaldehyde, acetone toluene cao nh t dòng ch y liên t Trong nh u ki n ng 0,38 mmol/g.h; 0,22 mmol/g.h; 0,2 mmol/g.h iv n ho xúc tác c a TiO2, CDs/TiO2 v n th hi n kh n a, kh x lý VOCs cao quang oxi hóa HCHO c a CDs/TiO2 v chu k V ng quang m b o kh x lý sau ABSTRACT In this research, carbon nanodots dopping TiO2 (CDs/TiO2) was prepared by the microwave method and used for the photocatalytic oxidation of VOCs (formaldehyde, acetone and toluene) in a continuous flow under UV-A radiation The material was characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), High-resolution Transmission Electron Microscopy (HRTEM), scanning electronic microscopy with energy dispersive X-ray analysis (SEM-EDX), Thermogravimetric analysis (TGA) and photoluminescence spectra (PL) Carbon nanodots played a vital role in the photocatalytic activity improvement of TiO2, extending the light absorption into the visible range and extending the existence of photo-electrons and holes The catalyst exhibited higher photocatalytic performance than TiO2, with the highest conversion of formaldehyde, acetone and toluene in a continuous flow and under humid condition are 0,38 mmol/g.h; 0,22 mmol/g.h; and 0,20 mmol/g.h., respectively While the changes in relative humidity had significant impacts on the photocatalytic activity of TiO2, CDs/TiO2 still exhibited a high and stable VOCs conversion efficiency Moreover, HCHO photooxidation efficiency of CDs/TiO2 maintained the same after cycles VI L tài T ng h p Cacbon nanodots TiO2 ng d ng làm xúc tác quang x lý VOCs n l c c a b n thân, v i s c ti n hành công khai, d a s c g ng, ng d n nhi t tình khoa h c c a PGS TS Nguy n Quang Long Các s li u k t qu nghiên c chép, ho c s d ng k t qu c l p lu n cho vi c xây d tài hồn tồn trung th c khơng tài nghiên c t c nh ng lý lu n c a lu c trích d ghi ngu n rõ ràng N u phát hi n có s chép k t qu nghiên c u c tài khác, tơi xin hồn tồn ch u trách nhi m TP.HCM, ngày 27 tháng 12 Nguy VII nh Nhân 21 DANH M C HÌNH Hình 1.1 lý VOCs Hình 2.1 Ngu n g c c a VOCs (EEA, 2017) Hình 2.2 Tác h i c n s c kh i Hình 2.3 Hình 2.4 C u trúc m ng Anatase c a TiO2 Hình 2.5 C u trúc m ng Rutile c a TiO2 .8 Hình 2.6 Hình kh i bát di n c a TiO2 Hình 2.7 Gi Hình 2.8 ng obitan liên k t c a TiO2 Anatase 10 ch q trình quang hóa .12 Hình 2.9 S (t ng n ph m công b m Google Scholar .14 Hình 2.10 Các ng h p Cacbon nanodots .15 Hình 2.11 phát quang chuy i lên UC xu ng DC c a CDs .17 Hình 2.12 HOMO-LUMO phát x b m t c a CDs .18 Hình 2.13 phát quang c a ch m Cacbon CDs 19 Hình 2.14 Gi thi t trình t ng h p CDs 19 Hình 2.15 quang hóa b m t c a CDs/TiO2 .21 Hình 2.16 trình chuy i electron 21 Hình 3.1 Quy trình t ng h p cacbon nanodots 24 Hình 3.2 Quá trình t ng h p CDs/TiO2 25 Hình 3.3 S ph n x ch n l c m t h m t ph ng (hkl) 26 Hình 3.4 Nguyên lý ho ng máy quang ph phát quang 30 Hình 3.5 Nguyên lý ho ng máy quang ph h ng ngo i 32 Hình 3.6 H th ng s c ký khí 34 Hình 3.7 h th ng ph n ng quang hóa xúc tác 35 Hình 4.1 (a,b) Hình nh HR-TEM,(c) Ph FTIR, (d) Ph quang phát x c a CDs 41 Hình 4.2 K t qu XRD c a m u CDs/TiO2 42 VIII Hình 4.3 Hình ch p SEM EDX m u CDs/ TiO2 43 Hình 4.4 Ph FTIR c a TiO2 CDs/TiO2 .44 Hình 4.5 Tauc c a CDs/TiO2 ng cong TGA c a TiO2 CDs/TiO2 45 Hình 4.6 Kh x phút (Ctoluene = 341 ppmv, F = L/h, C ng CDs doping TiO2 60 c = 18,02 mg/L) 47 Hình 4.7 Kh lý formaldehyde c a TiO2 (P25) CDs/TiO2 60 phút (F = L/h, CHCHO = 656ppmv, C c = 23,33 mg/L) 49 Hình 4.8 Kh lý formaldehyde c a TiO2 (P25) CDs/TiO2 60 phút (F = L/h, CHCHO = 56ppmv, C c = 11,20 mg/L) 50 Hình 4.9 Kh lý acetone c a TiO2 (P25) CDs/TiO2 60 phút (F= L/h, Cacetone = 254ppmv, C c = 18,20 mg/L) 51 Hình 4.10 Kh lý acetone c a TiO2 (P25) CDs/TiO2 60 phút (F = L/h, Cacetone = 254ppmv, C c = 6,07 mg/L) 52 Hình 4.11 Kh lý toluene c a TiO2 (P25) CDs/TiO2 60 phút (F = L/h, Ctoluene = 314ppmv, C c = 18,20 mg/L) 53 Hình 4.12 Kh lý toluene c a TiO2 (P25) CDs/TiO2 60 phút (F = L/h, Ctoluene = 314ppmv, C c = 6,07 mg/L) 54 Hình 4.13 Hi u su t x lý theo n formaldehyde (F = L/h) 56 Hình 4.14 Kh formaldehyde (F = L/h) .56 x lý theo n Hình 4.15 Hi u su t x lý theo n acetone 60 phút (F = 12 L/h, , C c = 18,20 mg/L) .58 Hình 4.16 Kh lý theo n acetone 60 phút (F = 12 L/h, , C c = 18,20 mg/L) .58 Hình 4.17 Hi u su t x lý formaldehyde u ki ng khác (CHCHO = 656 ppmv, C c = 23,33 mg/L) 60 Hình 4.18 Kh = 656 ppmv, C x lý formaldehyde u ki n ng khác (CHCHO c = 23,33 mg/L) 60 Hình 4.19 Hi u su t x lý acetone u ki ng khác (Cacetone = 631 ppmv, C c = 18,20 mg/L) 62 IX Hình 4.20 Kh x lý acetone u ki ng khác (Cacetone = 631 ppmv, C c = 18,20 mg/L) 62 Hình 4.21 Hi u su t x lý acetone u ki m khác (F = L/h, CHCHO = 656 ppmv) 64 Hình 4.22 Kh lý acetone u ki m khác (F = L/h, CHCHO = 656 ppmv) 64 Hình 4.23 Kh lý formaldehyde c a CDs/TiO2 qua nhi u l n tái s d ng (F = L/h, CHCHO = 656 ppmv, C c = 23,33 mg/L) .66 X 100 80 60 40 20 L/h L/h 12 L/h 0 10 20 30 40 50 hóa (mmol g-1 h-1) 0.8 0.6 acetone 0.4 0.2 L/h L/h 12 L/h 0 10 20 30 gian (phút) 62 40 50 4.20 2 n 4.2.9 K t qu ng c t tc u ki n acetone n hi u qu x u ki n ph n c nghiên c u c nh m u ki n thí nghi m: N acetone: 254 ppm ng dòng acetone: L B c x UV- dài c sóng 352 nm, cơng su t c ph n ng: 79oC Nhi ml i là: 18,20 mg/L; 12,13 mg/L; 6,07 mg/L 63 100.0 80.0 60.0 40.0 20.0 18.20 mg/L 12.13 mg/L 6.07 mg/L 0.0 10 20 30 40 50 60 hóa (mmol g-1 h-1) 0.25 0.2 0.15 acetone 0.1 0.05 18.20 mg/L 12.13 mg/L 6.07 mg/L 0 10 20 30 64 40 50 Hình 4.21 4.22 , oxy hóa quang xúc tác Theo nh ng báo cáo v nghiên c u h ng c m cao h n ch kh ng, phân t n kh n hóa c a VOCs [79] Thơng c tham gia vào ph n ng quang hóa, s có m t c cs y s hình thành c a OH Cùng lúc, ph n c s c nh tranh tâm h p ph b m t c a TiO2, làm cho s h p ph c a VOCs gi c t m t giá tr nh is nh, s hình thành OH s u khơng ng chuy n hóa c a acetone gi m v i s m nh ng thí nghi m 4.2.10 K t qu kh o sát tái s d ng xúc tác Thí nghi m kh o sát kh u ki n formaldehyde d ng c a xúc tác CDs/TiO2 hi n liên t c theo chu k gi u ki u, v n t c th c formaldehyde u sáng m i chu kì Trong chu k kh u tiên, x l n lên c chu n b quét nh t m t c gi ti p t c s ti p t c cho chu kì ti p theo mà không c n quét l i ng ph n ng Sau th c hi n chu k u m trên, ti p t c th c hi n chu k ti p theo b ng cách t ph n in u c a formaldehyde cho dòng khí có ch a formaline h p ph hồn tồn lên xúc tác r i b ph n ng n ng ti p nh k t thúc chu k ng cách t nh ng chu k ti p theo u ki n thí nghi m: N formaldehyde: 656 ppm 65 chu k ti p theo Sau èn ti p t c kh n m: 23,33 mg/L T dịng khí: 3L/h Th i gian m Th i gian t S vòng l p: vòng B c x UV- c sóng 352 nm, cơng su t c 100 80 OFF 60 40 ON 20 0 100 Thí nghi 200 b 300 400 c kh o sát 500 600 700 u ki n dịng khí liên t b m t v t li u xúc tác, không th c hi n tái sinh xúc tác thí nghi m ki m tra Th i gian m khí sang ch n ng quang hóa 60 phút Th i gian t bypass nh m b o cho trình h p thu b m hi u qu cao Theo k t qu thí nghi m hóa formaldehyde chu k ph n c th hi n hình 4.23, ta th c 95% K t qu trì u ki n t t m 66 nh c 12 ti ng n dòng t chuy n i sau K T LU N VÀ KI N NGH 5.1 K t lu n V t li u xúc tác CDs/TIO2 lu c t ng h p b bottom-up ng d ng làm xúc tác hi u qu cho q trình oxy hóa quang xúc tác x lý h p ch t ô nhi m VOCs (formaldehyde, acetone, toluene) -EDX, HRTEM, ph hu nh quang PL, FTIR phân tích nhi t TGA Qua k t qu này, ta th y v t li u sau t ng h p a TiO2, di n tích b m t riêng 50,90 m2/g v n gi K c h t CDs kho ng 10nm s hi n di n c a CDs b m t TiO2 ng vùng c m xu ng 3,20 V Ho t tính xúc tác c a v t li u CDs/TiO2 cho ph n ng oxy hóa quang xúc tác ph thu c nhi u vào thông s công ngh u ch t ô nhi toluene m, n ng ng Hi u su t phân h y c a formaldehyde, acetone i dòng m liên t c chi u sáng b n n; 1,17 l n 1,33 l n so v i xúc tác TiO2 a, v t li u CDs/TiO2 th hi n tính phân h y formaldehyde Các k t qu i nh xúc tác cao trình c m tri n v ng áp d oxy hóa nâng cao (AOPs) b ng q trình oxy hóa quang xúc tác ng d ng x lý h p ch t h 5.2 Ki n ngh Các ki n ngh cho Nghiên c ng nghiên c u ti o sát u ki n n ng 12 L/h Vì v formaldehyde th ut c kh c xem xét th c hi lý formaldehyde c a xúc tác CDs/TiO2 Vi c ng d ng h th ng x l i hi u qu x lý cao v n t c dòng khí nhi u ki n a u ki n êm d n 631 ppm n 12 L/h, hi u su t gi Do v y, ta có th l p thêm nhi u h ph n ng n i ti lý cao 67 u l n tái s d ng m b o kh Kh o sát cho k t qu xúc tác CDs/TiO2 v i (P25) o sát th c hi n t hi u su t x lý formaldehyde cao u ki n chi u ki n ngu n ánh sáng m t tr i Do v y, vi c s d ng ngu n sáng m t tr i cho nghiên c u ti p theo c n thi t 68 TÀI LI U THAM KH O [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Z Zhou, Y Lin, P Zhang, E Ashalley, M Shafa, H Li, et al., "Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties," Materials Letters, vol 131, pp 122-124, 2014 S K Batabyal, S E Lu, and J J Vittal, "Synthesis, characterization, and photocatalytic properties of In2S3, ZnIn2S4, and CdIn2S4 nanocrystals," Crystal Growth & Design, vol 16, pp 2231-2238, 2016 T Lavanya, M Dutta, S Ramaprabhu, and K Satheesh, "Superior photocatalytic performance of graphene wrapped anatase/rutile mixed phase TiO2 nanofibers synthesized by a simple and facile route," Journal of environmental chemical engineering, vol 5, pp 494-503, 2017 T Adachi, S S Latthe, S W Gosavi, N Roy, N Suzuki, H Ikari, et al., "Photocatalytic, superhydrophilic, self-cleaning TiO2 coating on cheap, light-weight, flexible polycarbonate substrates," Applied Surface Science, vol 458, pp 917-923, 2018 C H A Tsang, K Li, Y Zeng, W Zhao, T Zhang, Y Zhan, et al., "Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast," Environment international, vol 125, pp 200-228, 2019 A Schwarzenegger, "Evaluation Of Titanium Dioxide As A Photocatalyst For Removing Air Pollutants," California Energy Commission Public Interest Energy Research Program, 2008 C Zhang, D Guo, T Shen, X Hou, M Zhu, S Liu, et al., "Titanium dioxide/magnetic metal-organic framework preparation for organic pollutants removal from water under visible light," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 589, p 124484, 2020 S Bernardi, S Bianchi, A R Tomei, M A Continenza, and G Macchiarelli, "Microbiological and SEM-EDS evaluation of titanium surfaces exposed to periodontal gel: in vitro study," Materials, vol 12, p 1448, 2019 T Malevu, B Mwankemwa, S Motloung, K Tshabalala, and R Ocaya, "Effect of annealing temperature on nano-crystalline TiO2 for solar cell applications," Physica E: Low-dimensional Systems and Nanostructures, vol 106, pp 127-132, 2019 S A Hosseini, "Catalytic oxidation of volatile organic compounds by using spinel mixed oxide catalyst: A review," Adv Ceram Sci Eng, vol 5, pp 110, 2016 J Zhao and X Yang, "Photocatalytic oxidation for indoor air purification: a literature review," Building and environment, vol 38, pp 645-654, 2003 H Rajabi, M H Mosleh, P Mandal, A Lea-Langton, and M Sedighi, "Emissions of volatile organic compounds from crude oil processing Global emission inventory and environmental release," Science of The Total Environment, vol 727, p 138654, 2020 69 [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] H Rajabi, M H Mosleh, P Mandal, A Lea-Langton, and M J S o T T E Sedighi, "Emissions of volatile organic compounds from crude oil processing Global emission inventory and environmental release", Science of The Total Environment, vol 727, p 138654, 2020 D Zhao, C Yu, and H Yang, "Nanoporous materials", Encyclopedia of Nanoscience and Nanotechnology, Vol 7, pp 263-285, 2004 Z Zhang, Z Jiang, and W Shangguan, "Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review" Catalysis Today, vol 264, pp 270-278, 2016 X Xu, R Ray, Y Gu, H J Ploehn, L Gearheart, K Raker, et al., "Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments" Journal of the American Chemical Society, vol 126, pp 12736-12737, 2004 J Wei, X Zhang, Y Sheng, J Shen, P Huang, S Guo, et al., "Simple onestep synthesis of water-soluble fluorescent carbon dots from waste paper" New Journal of Chemistry, vol 38, pp 906-909, 2014 S Sahu, B Behera, T K Maiti, and S Mohapatra, "Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents" Chemical communications, vol 48, pp 88358837, 2012 P.-C Hsu, Z.-Y Shih, C.-H Lee, and H.-T Chang, "Synthesis and analytical applications of photoluminescent carbon nanodots" Green Chemistry, vol 14, pp 917-920, 2012 M Tuerhong, X Yang, and Y Xue-Bo, "Review on carbon dots and their applications" Chinese Journal of Analytical Chemistry, vol 45, pp 139-150, 2017 A Sciortino, A Cayuela, M Soriano, F Gelardi, M Cannas, M Valcárcel, et al., "Different natures of surface electronic transitions of carbon nanoparticles" Physical Chemistry Chemical Physics, vol 19, pp 2267022677, 2017 L Cao, M J Meziani, S Sahu, and Y.-P Sun, "Photoluminescence properties of graphene versus other carbon nanomaterials" Accounts of Chemical Research, vol 46, pp 171-180, 2013 J Peng, W Gao, B K Gupta, Z Liu, R Romero-Aburto, L Ge, et al., "Graphene quantum dots derived from carbon fibers" Nano letters, vol 12, pp 844-849, 2012 D Stefanakis, A Philippidis, L Sygellou, G Filippidis, D Ghanotakis, and D Anglos, "Synthesis of fluorescent carbon dots by a microwave heating process: structural characterization and cell imaging applications" Journal of nanoparticle research, vol 16, p 2646, 2014 Z.-C Yang, M Wang, A M Yong, S Y Wong, X.-H Zhang, H Tan, et al., "Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate" Chemical communications, vol 47, pp 11615-11617, 2011 70 [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] C Sakdaronnarong, A Sangjan, S Boonsith, D C Kim, and H S Shin, "Recent developments in synthesis and photocatalytic applications of carbon dots," Catalysts, vol 10, p 320, 2020 H Shi, J Wei, L Qiang, X Chen, and X Meng, "Fluorescent carbon dots for bioimaging and biosensing applications," Journal of biomedical nanotechnology, vol 10, pp 2677-2699, 2014 S Sidhik, J Velusamy, E De la Rosa, S A Pérez-García, G Ramos-Ortiz, and T López-Luke, "Role of carbon nanodots in defect passivation and photo-sensitization of mesoscopic-TiO2 for perovskite solar cells," Carbon, vol 146, pp 388-398, 2019 N M El-Shafai, M Shukry, I M El-Mehasseb, M Abdelfatah, M S Ramadan, A El-Shaer, et al., "Electrochemical property, antioxidant activities, water treatment and solar cell applications of titanium dioxide zinc oxide hybrid nanocomposite based on graphene oxide nanosheet," Materials Science and Engineering: B, vol 259, p 114596, 2020 M Abd Elkodous, A Hassaan, A Ghoneim, and Z Abdeen, "C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment," Characterization and Application of Nanomaterials, vol 1, 2018 M Han, S Zhu, S Lu, Y Song, T Feng, S Tao, et al., "Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications," Nano Today, vol 19, pp 201-218, 2018 M S Kumar, K Y Yasoda, D Kumaresan, N K Kothurkar, and S K Batabyal, "TiO2-carbon quantum dots (CQD) nanohybrid: enhanced photocatalytic activity," Materials Research Express, vol 5, p 075502, 2018 H Li, X He, Z Kang, H Huang, Y Liu, J Liu, et al fluorescent carbon quantum dots and photocatalyst design," Angewandte Chemie, vol 122, pp 4532-4536, 2010 The Chemical Record, vol 18, pp 1192-1202, 2018 P Zhao and L Zhu, "Dispersibility of carbon dots in aqueous and/or organic solvents," Chemical Communications, vol 54, pp 5401-5406, 2018 X Liu, J Liu, B Zheng, L Yan, J Dai, Z Zhuang, et al., "N-Doped carbon dots: green and efficient synthesis on a large-scale and their application in fluorescent pH sensing," New Journal of Chemistry, vol 41, pp 1060710612, 2017 H Tetsuka, R Asahi, A Nagoya, K Okamoto, I Tajima, R Ohta, et al., Advanced Materials, vol 24, pp 5333-5338, 2012 Y Ma, X Zhang, J Bai, K Huang, and L Ren, "Facile, controllable tune of blue shift or red shift of the fluorescence emission of solid-state carbon dots," Chemical Engineering Journal, vol 374, pp 787-792, 2019 71 [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] narz, K Walas, N V Bashmakova, and citric acid and urea a molecular insight," vol 10, pp 13889-13894, 2018 M Li, W Yao, J Liu, Q Tian, L Liu, J Ding, et al., "Facile synthesis and screen printing of dual-mode luminescent NaYF 4: Er, Yb (Tm)/carbon dots for anti-counterfeiting applications," Journal of Materials Chemistry C, vol 5, pp 6512-6520, 2017 S Gai, C Li, P Yang, and J Lin, "Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications," Chemical reviews, vol 114, pp 2343-2389, 2014 I Y Goryacheva, A V Sapelkin, and G B Sukhorukov, "Carbon nanodots: mechanisms of photoluminescence and principles of application," TrAC Trends in Analytical Chemistry, vol 90, pp 27-37, 2017 S Mandani, D Dey, B Sharma, and T K J C Sarma, "Natural occurrence of fluorescent carbon dots in honey," vol 119, pp 569-572, 2017 A Cadranel, J T Margraf, V Strauss, T Clark, and D M Guldi, "Carbon nanodots for charge-transfer processes," Accounts of chemical research, vol 52, pp 955-963, 2019 A Sciortino, F Ferrante, N Mauro, G Buscarino, L Sciortino, G Giammona, et al., "Disclosing the emissive surface traps in green-emitting carbon nanodots," Carbon, vol 173, pp 454-461, 2021 L Tang, R Ji, X Cao, J Lin, H Jiang, X Li, et al., "Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots," vol 6, pp 5102-5110, 2012 F Yan, Z Sun, H Zhang, X Sun, Y Jiang, and Z J M A Bai, "The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review," vol 186, pp 1-37, 2019 J Robertso amorphous carbon," vol 35, p 2946, 1987 S Y Lim, W Shen, and Z J C S R Gao, "Carbon quantum dots and their applications," vol 44, pp 362-381, 2015 Y.-P Sun, B Zhou, Y Lin, W Wang, K S Fernando, P Pathak, et al., "Quantum-sized carbon dots for bright and colorful photoluminescence," vol 128, pp 7756-7757, 2006 C Liu, P Zhang, F Tian, W Li, F Li, and W Liu, "One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging," Journal of Materials Chemistry, vol 21, pp 13163-13167, 2011 I Y Goryacheva, A V Sapelkin, and G B J T T i A C Sukhorukov, "Carbon nanodots: mechanisms of photoluminescence and principles of application," vol 90, pp 27-37, 2017 M O Dekaliuk, O Viagin, Y V Malyukin, and A P Demchenko, Physical Chemistry Chemical Physics, vol 16, pp 16075-16084, 2014 72 [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] M O Dekaliuk, O Viagin, Y V Malyukin, and A P J P C C P nanoclusters?," vol 16, pp 16075-16084, 2014 G Eda, Y Y Lin, C Mattevi, H Yamaguchi, H A Chen, I S Chen, et al., "Blue photoluminescence from chemically derived graphene oxide," vol 22, pp 505-509, 2010 L W Zhang, H B Fu, and Y F J A F M Zhu, "Efficient TiO2 photocatalyst like carbon," vol 18, pp 2180-2189, 2008 R Liu, H Li, L Duan, H Shen, Y Zhang, and X J C I Zhao, "In situ synthesis and enhanced visible light photocatalytic activity of C-TiO2 microspheres/carbon quantum dots," vol 43, pp 8648-8654, 2017 L Yang, L Jiang, W Fu, A W Weimer, X Hu, and Y Zhou, "TiO quantum dots grown on graphene by atomic layer deposition as advanced photocatalytic hybrid materials," Applied Physics A, vol 123, p 416, 2017 T Shen, Q Wang, Z Guo, J Kuang, and W Cao, "Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity," Ceramics International, vol 44, pp 11828-11834, 2018 H Zhang, H Ming, S Lian, H Huang, H Li, L Zhang, et al., "Fe O 3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light," Dalton Transactions, vol 40, pp 10822-10825, 2011 D Awfa, M Ateia, M Fujii, M S Johnson, and C Yoshimura, "Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature," Water research, vol 142, pp 26-45, 2018 "Au-TiO2 Nanocomposites and Efficient Photocatalytic Hydrogen Production under UV-Visible and Visible Light Illuminations: A Comparison of Different Crystalline Forms of TiO2," International Journal of Photoenergy, 2013 D Syafei, S Sugiarti, N Darmawan, and M J I J o C Khotib, "Synthesis of TiO 2/Carbon Nanoparticle (C-dot) Composites as Active Catalysts for Photodegradation of Persistent Organic Pollutant," vol 17, pp 37-42, 2017 A Shafi, S Bano, S Sabir, M Z Khan, and M M Rahman, "Eco-Friendly Fluorescent Carbon Nanodots: Characteristics and Potential Applications," in Carbon-Based Material for Environmental Protection and Remediation, ed: IntechOpen, 2020 J Liu, H Zhang, D Tang, X Zhang, L Yan, Y Han, et al., "Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light," ChemCatChem, vol 6, pp 2634-2641, 2014 73 [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] Z Zhang, T Zheng, X Li, J Xu, and H Zeng, "Progress of carbon quantum dots in photocatalysis applications," Particle & Particle Systems Characterization, vol 33, pp 457-472, 2016 A B Bourlinos, A Stassinopoulos, D Anglos, R Zboril, M Karakassides, and E P Giannelis, "Surface functionalized carbogenic quantum dots," small, vol 4, pp 455-458, 2008 M Sun, S Qu, W Ji, P Jing, D Li, L Qin, et al., "Towards efficient photoinduced charge separation in carbon nanodots and TiO composites in the visible region," Physical Chemistry Chemical Physics, vol 17, pp 79667971, 2015 D Syafei, S Sugiarti, N Darmawan, and M Khotib, "Synthesis of TiO 2/Carbon Nanoparticle (C-dot) Composites as Active Catalysts for Photodegradation of Persistent Organic Pollutant," Indonesian Journal of Chemistry, vol 17, pp 37-42, 2017 L He, T Wang, J An, X Li, L Zhang, L Li, et al., "Carbon nanodots@ zeolitic imidazolate framework-8 nanoparticles for simultaneous pHresponsive drug delivery and fluorescence imaging," CrystEngComm, vol 16, pp 3259-3263, 2014 White, L., Koo, Y., Yun, Y., & Sankar, J "TiO2 deposition on AZ31 magnesium alloy using plasma electrolytic oxidation," Journal of Nanomaterials, vol 2013, pp 11-19, 2013 F Zheng, Z Wang, J Chen, and S Li, "Synthesis of carbon quantum dotsurface modified P25 nanocomposites for photocatalytic degradation of pnitrophenol and acid violet 43," RSC Advances, vol 4, pp 30605-30609, 2014 N C Martins, J Ângelo, A V Girão, T Trindade, L Andrade, and A Mendes, "N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity," Applied Catalysis B: Environmental, vol 193, pp 67-74, 2016 G.-w Cui, W.-l Wang, M.-y Ma, M Zhang, X.-y Xia, F.-y Han, et al., "Rational design of carbon and TiO assembly materials: covered or strewn, which is better for photocatalysis?," Chemical Communications, vol 49, pp 6415-6417, 2013 J Mo, Y Zhang, and Q Xu, "Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation," Applied Catalysis B: Environmental, vol 132, pp 212-218, 2013 Z Shayegan, C.-S Lee, and F Haghighat, "TiO2 photocatalyst for removal of volatile organic compounds in gas phase A review," Chemical Engineering Journal, vol 334, pp 2408-2439, 2018 A H Mamaghani, F Haghighat, and C.-S Lee, "Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and by-products generation," Building and Environment, vol 138, pp 275-282, 2018 74 [78] [79] A H Mamaghani, F Haghighat, and C.-S Lee, "Photocatalytic oxidation of MEK over hierarchical TiO2 catalysts: Effect of photocatalyst features and operating conditions," Applied Catalysis B: Environmental, vol 251, pp 116, 2019 L N Q Tu, N V H Nhan, N Van Dung, N T An, and N Q Long, "Enhanced photocatalytic performance and moisture tolerance of nano-sized Me/TiO2 zeolite Y (Me= Au, Pd) for gaseous toluene removal: activity and mechanistic investigation," Journal of Nanoparticle Research, vol 21, pp 119, 2019 75 PH N LÝ L CH TRÍCH NGANG H tên: Nguy n V H nh Nhân 15/ 07/ 1996 a ch liên l c: 384 Hoàng Di N ng ng 6, qu n 4, H Chí Minh O T n Ch o Tr ng h c Thành tích 2014 2018 - 2019 2022 - QUÁ TRÌNH CƠNG TÁC T n Ch o Tr ng h c 2019 2020 2020 2022 C C 76 ITS Vietnam Khá ... p Cacbon nanodots TiO2 ng d ng làm xúc tác quang x lý VOCs II NHI M V VÀ N I DUNG: + T ng quan v v ô nhi m ch t h lý b ng xúc tác quang x + T ng h p v t li u xúc tác quang CDs /TiO2. .. i c t ng h p b - lý h p ch t VOCs khác c a xúc tác CDs /TiO2 b ng trình quang xúc tác Các y u t ô nhi m VOCs n c t p trung kh o sát ph n ng quang xúc tác x lý ch t ch t ô nhi m VOCs c n x m c a... p lu n trên, ch tài: ng h p cacbon nanodots TiO2 ng d ng làm xúc tác quang x 1.3 ng ph ng c acetone, t tài tài x lý ch t h formaldehyde, tài t p trung vào nghiên c u ch t xúc tác CDs /TiO2 v i
- Xem thêm -

Xem thêm: Tổng hợp cacbon nanodots trên tio2 và ứng dụng làm xúc tác quang xử lý vocs ,