1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bai toan viet phuong trinh mat phang

30 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 654,27 KB

Nội dung

CHỦ ĐỀ 15: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG I LÝ THUYẾT TRỌNG TÂM II CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Viết phương trình mặt phẳng biết vectơ pháp tuyến Một số cách xác định vectơ pháp tuyến mặt phẳng hay gặp:  ( P ) qua ba điểm phân biệt A, B, C có véc tơ pháp tuyến  ( P ) qua điểm A song song với ( Q ) ta chọn cho          nP =  AB; AC    nP = nQ   nP ⊥ nα    → nP =  nα ; nβ  ( P ) vng góc với hai mặt phăng phân biệt (α ), ( β )     nP ⊥ nβ      nP ⊥ a   → nP =  a; b  ( P ) song song với hai véc tơ a; b     nP ⊥ b      nP ⊥ AB → nP =  AB; nα  ( P ) qua điểm A,B vng góc với ( α )     nP ⊥ nα      nP ⊥ ud → nP = ud ; ud  ( P ) song song với hai đường thẳng d1; d     nP ⊥ ud    ( P ) chứa đường thẳng d vuông góc mặt phẳng (α ) nP = ud ; nα     ( P ) chứa đường thẳng d song song với đường thẳng ∆ nP = ud ; u∆  Ví dụ 1: Trong khơng gian với hệ tọa độ Oxyz , phương trình phương trình mặt phẳng qua điểm M ( 3; −1;1) vng góc với đường thẳng ∆ : A x − y + z − 12 = B x + y + z − = x −1 y + z − = = ? −2 C x − y + z + = Lời giải   Gọi ( P ) mặt phẳng cần tìm ta có: ( P ) ⊥ ∆ ⇒ n( P= u∆= ) ( 3; −2;1)  Phương trình mặt phẳng ( P ) qua M ( 3; −1;1) có VTPT n ( 3; −2;1) là: hay x − y + z –12 = Chọn A ( P ) : ( x − 3) – ( y + 1) + 1( z − 1) = D x − y + z + 12 = Ví dụ 2: Trong khơng gian với hệ tọa độ Oxyz , cho điểm A (1;0; −2 ) ; B ( −1; 2; ) C ( 2;0;1) Phương trình mặt phẳng qua A vng góc với BC là: B x − y − z + = A x − y − z – = 0 C x − y − z – = D x − y − z + = 0 Lời giải   Gọi ( P ) mặt phẳng cần tìm nP = BC = ( 3; −2; −3)  Mặt phẳng ( P ) qua A (1;0; −2 ) có VTPT nP = (3; −2; −3) ⇒ ( P) : x − y − z − = Chọn C Ví dụ 3: Trong không gian với hệ tọa độ Oxyz , cho điểm M M ( 3; −1; −2 ) mặt phẳng Phương trình phương trình mặt phẳng qua M song song với (α ) : x − y + z + = (α ) ? A x − y + z − = B x + y − z − 14 = C x − y + z + = D x + y − z + 14 = Lời giải   Gọi ( P ) mặt phẳng cần tìm ta có: ( P ) / / (α ) ⇒ n( P ) =n(α ) =( 3; −1; )  Mặt phẳng ( P ) qua M ( 3; −1; −2 ) có VTPT n(P)= (3; −1; 2) có phương trình là: x − y + z − = Chọn A Ví dụ 4: Trong khơng gian với hệ tọa độ Oxyz cho mặt cầu ( S ) : x + y + z − x + y − z + = x − y + z +1 đường thẳng d : = = Viết phương trình mặt phẳng ( P ) vng góc với đường thẳng d −5 1 qua tâm mặt cầu ( S ) A ( P ) : x − y + z − = B ( P ) : x + y − z − = C ( P ) : x + y − z + = D ( P ) : x − y + z + = Lời giải Ta có: ( S ) : ( x − 3) + ( y + ) + ( z − 1) =9 ⇒ ( S ) có tâm I ( 3; −2;1) bán kính R =  VTCP d là= u 2 (1;1; −5) Mặt phẳng ( P )  qua I nhận u làm VTPT Phương trình ( P ) là: ( P ) :1( x − 3) + 1( y + 2) − 5( z − 1) = hay ( P ) : x + y − z + Chọn C  x = + 3t x −1 y + z  = = mặt phẳng ( P ) : x + y − z = Ví dụ 5: Cho hai đường thẳng d1  y =−2 + t ; d : −1 z =  Phương trình mặt phẳng qua giao điểm d1 ( P ) , đồng thời vng góc với d A x − y + z + 22 = B x − y + z + 13 = C x − y + z − 13 = D x + y + z − 22 = Lời giải Gọi giao điểm d1 ( P ) M (1 + 3t ; −2 + t ; ) ∈ d1 Do M ∈ ( P ) ⇒ + 6t − + 2t − = ⇔ t = ⇒ M (4; −1; 2)   Mặt phẳng ( Q ) cần tìm có: n(Q= u= ) d2 ( 2; −1; ) Do phương trình mặt phẳng ( Q ) là: x − y + z − 13 = Chọn C Ví dụ 6: Phương trình mặt phẳng qua A (1;0; −4 ) vng góc đồng thời với mặt phẳng là: ( P ) : x + y + z − =0 ( Q ) : x − y − z + = A y + z = B x − y − z + = C x + y − z − = D x − y + z + = Lời giải  Ta có : n( = P)  (1;1;1) ; n(Q=) ( 2; −1; )      (α ) ⊥ ( P ) n ⊥ n( P ) Do  ⇒    ⇒ n = n( P ) ; n(Q )  =− −3(1; −2;1) ( 3;6; −3) = (α ) ⊥ ( Q ) n ⊥ n(Q ) Khi ( α ) qua A (1;0; −4 ) có VTPT (1; −2;1) ⇒ (α ) : x − y + z + = Chọn D Ví dụ 7: Phương trình mặt phẳng qua A (1; 2;0 ) vng góc với ( P ) : x + y = song song với đường thẳng d : x −1 y z +1 là: = = −4 −3 A x + y − z − = B x − y + z + = C x − y + z − =0 Lời giải D x − y + z + =  Ta có : n( P ) =  (1;1;0 ) ; ud = ( 2; −4; −3)      (α ) ⊥ ( P ) n ⊥ n( P ) Do  ⇒    ⇒ n = n( P ) ; ud  =− ( 3;3; −6 ) =−3(1; −1; 2) (α ) / / d n ⊥ ud > (α ) : x − y + z + = Chọn B Khi ( α ) qua A (1; 2;0 ) có VTPT (1; −1; ) = x y −1 z Ví dụ 8: Phương trình mặt phẳng qua gốc toạ độ song song với đường thẳng d1= = : 1 d2 : x +1 y z −1 là: = = −3 A x + y − z = B x − y + z = C x + y = D y + z = Lời giải   Ta có : u= u( d1= )  (1;1;1) ; u=2  u( d2= ) (1; −3; )      n ⊥ u1 (α ) ⊥ d1 ⇒    ⇒ n = u1 ; u2  = Do  (α ) / / d n ⊥ u2 ( 2; −6; ) = 2(1; −3; 2) Chọn B Khi ( α ) qua O ( 0;0;0 ) có VTPT (1; −3; ) ⇒ (α ) : x − y + z = Ví dụ 9: Phương trình mặt phẳng qua điểm A ( 2; 4;1) B ( 5;7; −1) vng góc với mặt phẳng ( P ) : x − y + z + =0 là: A x − y − z + = B x − y − z − = C y + z − 11 = D x + y + z − = Lời giải     Ta có: AB =( 3;3; −2 ) ⇒ n = AB; n( P )  =( 0; −8; −12 ) =−4(0; 2;3)    Mặt phẳng ( α ) cần tìm qua A ( 2; 4;1) có VTPT n ( 0; 2;3) ⇒ (α ) : y + z − 11 = Chọn C Ví dụ 10: Cho đường thẳng ∆ : x +1 y − z Phương trình mặt mặt phẳng ( P ) : x − y + z − = = = −1 −3 phẳng qua O, song song với ∆ vuông góc với mặt phẳng ( P ) A x + y + z = B x − y + z = C x + y + z − = D x − y + z + = Lời giải ( P ) ⊥ ( Q )      (1; 2;1) Gọi mặt phẳng cần tìm ( Q ) ta có:  ⇒ n= = ∆ ( Q )  n( P ) ; u Q / / ∆ ( )  ⇒ (Q ) : x + y + z = Chọn A Ví dụ 11: Trong khơng gian Oxyz , cho điểm M (1;0; −1) Mặt phẳng ( α ) qua M chứa trục Ox có phương trình A x + z = B y + z + =0 C y = D  0 x+ y+z = Lời giải   Mặt phẳng ( α ) nhận OM ; uOx  VTPT  OM   = (1;0; −1) Mà   ⇒ OM ; uOx  = (0; −1;0) uOx = (1;0;0) Kết hợp với ( α ) qua M (1;0; −1) ⇒ (α ) : − ( y − ) =0 ⇔ y =0 Chọn C Ví dụ 12: Trong không gian với hệ trục tọa độ Oxyz cho điểm A ( 0;1;1) , B ( 2;5; −1) Tìm phương trình mặt phẳng ( P ) qua A, B song song với trục hoành A ( P ) : y + z − = B ( P ) : y + z − = C ( P ) : y + z + = D ( P ) : x + y − z − = Lời giải   Ta có = AB (2; 4; −2) u(Ox ) = (1;0;0 ) suy     AB; u(Ox )  = (0; −2; −4) ⇒ n( P ) =   ( 0;1; )  Phương trình mặt phẳng ( P ) qua A có n( P ) y − + 2( z − 1) = ⇔ y + z − = Chọn C Ví dụ 13: Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt phẳng đường thẳng ( Q ) : x + y − 12 = x+ y−z−2= 0, x −1 y + z +1 d:= = Viết phương trình mặt phẳng ( R ) chứa đường −1 thẳng d giao tuyến hai mặt phẳng ( P ) , ( Q ) A ( R ) : x + y − z − =0 ( P) : B ( R ) : x + 2y − z + = C ( R ) : x + y − z = D ( R ) :15 x + 11 y − 17 z − 10 = Lời giải  VTPT mặt phẳng ( P ) là= n1 (1;1; −1) , VTPT mặt phẳng ( Q )     d ' ( P) ∩ ( Q ) Khi vtcp d ' = Gọi = u  n1 ; n2=  ( 3; −1; )  n2 = (1;3;0 ) vtcp d ⇒ d / / d ' A(1; −2; −1) ∈ d ; B (0; 4; 2) ∈ d '     Ta có: AB(−1;6;3) VTPT ( R ) = là: n  AB ; u  = (15;11; −17 ) Phương trình mặt phẳng ( R ) là: Chọn D ( R) :15 ( x − ) + 11( y − ) − 17 ( z − ) = hay ( R ) :15 x + 11 y − 17 z − 10 = Dạng 2: Viết phương trình mặt phẳng liên quan đến khoảng cách  - Giả sử mặt phẳng cần lập có vectơ pháp tuyến nP = ( a; b; c ) , a + b + c ≠ - Mặt phẳng ( P ) chứa đường thẳng d nên ( P ) qua M ( x0 ; y0 ; z0 ) ∈ d vng góc với vectơ phương d ( P ) : a ( x − x0 ) + b ( y − y0 ) + c ( z − z0 ) Khi ta có    nQ ud = ⇔ a = f ( b; c ) - Từ kiện góc, khoảng cách ta phương trình đẳng cấp bậc hai theo ẩn a, b, c Thay a = f ( b; c ) vào phương trình này, giải b = m.c b = n.c Chọn cho c = , từ tìm giá trị tương ứng a b ⇒ phương trình mặt phẳng ( P ) cần lập Chú ý: Phương trình đẳng cấp bậc hai phương trình có dạng x x x Ax + Bxy + Cy =0 ⇔ A   + B   + C =0 ⇒ =t ⇔ x =t y y  y  y 2 Ví dụ 1: Cho hai mặt phẳng ( α ) : x + y − z + = ; (β) : x − y + = Lập ( P ) vng góc với hai mặt phẳng cho đồng thời khoảng cách từ điểm A ( 3;1;1) đến ( P ) 30 Lời giải       ( P ) ⊥ ( α ) n( P ) ⊥ n( α )  n( α ) ; n(β)  , n= Ta có:  ⇒    ⇒ n( P ) = (α)   ( P ) ⊥ ( β ) n( P ) ⊥ n(β) (1; 2; −1) ;  n(= β) ( 4; −2;0 )  ⇒ n( P ) =− ( 2; −4; −10 ) =−2 (1; 2;5) ⇒ Phương trình mặt phẳng ( P ) có dạng: x + y + z + D = Lại có: d ( A; ( P ) )= 3+ 2+5+ D ⇔ = 30 + + 25  D = −2 ⇔ D + 10= ⇔  30  D = −18 0 ( P ) : x + y + z − 18 = Do ( P ) : x + y + z − = Ví dụ 2: Lập phương trình ( P ) qua A (1; −1;0 ) , B ( 2; −1; −1) cho khoảng cách từ M ( −2;1;3) đến ( P) Lời giải  Giả sử mặt phẳng cần lập có vectơ pháp tuyến n( P ) = ( a; b; c ) , a + b + c ≠    Ta có: AB (1;0; −1) , ( P ) chứa AB nên n( P ) AB = ⇔ a − c = ⇔ a = c Khi đó: ( P ) : a ( x − 1) + b ( y + 1) + az = −3a + 2b + 3a Ta có: d ( M ; ( P ) ) = =⇔ 2a + b b = ⇔ 9b = 2a + b ⇔ 4b = a2 ⇔ a = ±2b 2a + b 2 • Với a = 2b chọn b = ⇒ a = = c ⇒ ( P ) : x + y + z − = • Với a = −2b chọn b =−1 ⇒ a =2 =c ⇒ ( P ) : x + y + z − =0 Ví dụ 3: Lập phương trình ( P ) chứa d : x +1 y z + cho khoảng cách từ A ( −3;1;1) đến ( P ) = = 1 −2 Lời giải  Giả sử mặt phẳng cần lập có vectơ pháp tuyến n( P ) = ( a; b; c ) , a + b + c ≠   Mặt phẳng ( P ) chứa d nên n( P ) ud = ⇔ a + b − 2c = ⇒ b = 2c − a ( P) qua điểm ( −1;0; ) ⇒ ( P ) : a ( x + 1) + by + c ( z + ) = = d ( A; ( P ) ) −2a + b + 3c = a + b2 + c2 −2a + 2c − a + 3c = 2 a + ( 2c − a ) + c ⇔ ( 2a − 4ac + 5c ) = ( 3a − 5c ) −3a + 5c = 2a − 4ac + 5c 2 a = c ⇔ 19a − 74ac + 55c = 0⇔ 19a = 55c • Với a = c chọn a = c =1 ⇒ b =1 ⇒ ( P ) : x + y + z + = • Với 19a = 55c chọn a = 55; c = 19 ⇒ b =−17 ⇒ ( P ) : 55 x − 17 y + 19 z + 93 =0 Ví dụ 4: Cho ∆ : x − y +1 z = = ; ( P ) : 2x + y − z + = −1 Lập ( Q ) / / ∆ ; ( Q ) ⊥ ( P ) đồng thời khoảng cách từ A (1; 2;0 ) đến ( P )  Ta có: n= ( P)  u∆ ( 2;1; −1) ; = 30 Lời giải (1;3; −1)      Do ( Q ) / / ∆ ( Q ) ⊥ ( P ) ⇒ n= = ∆ ( Q )  n( P ) ; u ( 2;1;5) Phương trình mặt phẳng ( Q ) có dạng: x + y + z + D = Lại có: d ( A; ( P )= ) ⇔ 30 4+ D = + + 25 D = ⇔ D + 4= ⇔  30  D = −11 Suy phương trình mặt phẳng ( Q ) là: ( Q ) : x + y + z + = ( Q ) : x + y + z − 11 = Ví dụ 5: Lập phương trình ( P ) qua A ( −1; 2;1) , vuông góc với mặt phẳng ( xOy ) đồng thời khoảng cách từ điểm B (1;1; −3) đến ( P ) Lời giải  Giả mặt phẳng cần lập có vectơ pháp tuyến n( P ) = ( a; b; c ) , a + b + c ≠   Mặt phẳng ( P ) vng góc với mặt phẳng ( xOy ) : z = nên n( P ) n( xOy ) = ⇔ c = ( P) qua điểm A ( −1; 2;1) ⇒ ( P ) : a ( x + 1) + b ( y − ) = d ( B; ( P ) ) =  a = 2b ( a + b ) ⇔ 11a − 20a − 4b = 0⇔ = ⇔ ( 2a − b ) = a + b2 11a = −2b 2a − b • Với a = 2b chọn b =1 ⇒ a =2 ⇒ ( P ) : x + y =0 • Với 11a = −2b chọn a =2 ⇒ b =−11 ⇒ ( P ) : x − 11 y + 24 =0  x= + t  Ví dụ 6: Cho d :  y = − 2t điểm A (1;1; ) , B ( 3;1; −1)  z = −t  Lập ( P ) chứa d cho khoảng cách từ A đến ( P ) hai lần khoảng cách từ B tới ( P ) Lời giải  Giả sử mặt phẳng cần lập có vectơ pháp tuyến n( P ) = ( a; b; c ) , a + b + c ≠   Mặt phẳng ( P ) chứa d nên n( P ) ud = ⇔ a − 2b − c = ⇒ c = a − 2b ( P) qua điểm M ( 2;1;0 ) ⇒ ( P ) : a ( x − ) + b ( y − 1) + cz = Lại có: d ( A; ( P ) ) = 2d ( B; ( P ) ) ⇒ −a + 2c a + b2 + c2 = a−c a + b2 + c2 ⇔ a − 2c = 2a − 2c  a − 2c = 2a − 2c a = ⇔ ⇔ −2a + 2c 4c  a − 2c = 3a = • Với a = chọn b =1 ⇒ c =−2 ⇒ ( P ) : y − z =0 • Với 3a = 4c chọn a = ⇒ c = ⇒ b = 17 y ⇒ ( P ) : x + + 3z − = 2 hay ( P ) : x + y − z − 17 = x −1 y +1 z Ví dụ 7: Cho d : = = điểm A (1; 2; ) , B ( 4;3;0 ) −1 −2 Lập ( P ) chứa d cho khoảng cách từ A tới ( P ) khoảng cách từ B tới ( P ) Lời giải  Giả sử mặt phẳng cần lập có vectơ pháp tuyến n( P ) = ( a; b; c ) , a + b + c ≠   Mặt phẳng ( P ) chứa d nên n( P ) ud = ⇔ 2a − b − 2c = ⇒ 2c = 2a − b ( P) qua điểm M (1; −1;0 ) ⇒ ( P ) : a ( x − 1) + b ( y + 1) + cz = Lại có: d ( A; ( P ) ) = d ( B; ( P ) ) ⇒ 3b + 2c 2 a +b +c = 3a + 4b a + b2 + c2 ⇔ 3b + 2c = 3a + 4b 3a + 4b −2b  2a + 2b = a = ⇔ 3b + 2a − b = 3a + 4b ⇔ 2a + 2b = 3a + 4b ⇔  ⇒ −3a − 4b 5a = −6b  2a + 2b = • Với a = −2b chọn b =−1 ⇒ a =2; c = ⇒ ( P ) : x − y + z − 10 =0 • 17 Với 5a = −6b chọn a =6 ⇒ b =−5; c = ⇒ ( P ) :12 x − 10 y + 17 z − 22 =0 Ví dụ 8: Trong không gian với hệ trục tọa độ Oxyz , cho điểm M (1;1;0 ) hai đường thẳng x −1 y + z − x −1 y − z −1 ; d2 : = = Viết phương trình mặt phẳng ( P ) song song với d1 d1 : = = −1 1 −1 d đồng thời cách M khoảng Lời giải  u=    (1; −1;1) u1 ; u2=  Vì ( P ) / / d1 ; d nên ( P ) có cặp VTCP là:   ⇒ n(= P)   ( −1; 2; −3) u2 = (1; 2;1) Phương trình mặt phẳng ( P ) có dạng: x + y + z + D = Lại có: d ( M ; ( P ) ) =6 ⇔ ( P1 ) : x + y + z + = D = =6 ⇔  ⇒  D = −9 ( P2 ) : x + y + z − = 3+ D Lấy K (1;3;1) ∈ d1 N (1; −3; ) ∈ d thử vào phương trình (1) ( ) ta có N ∈ ( P1 ) nên d ⊂ ( P1 ) Suy phương trình mặt phẳng cần tìm là: ( P2 ) : x + y + z − = Ví dụ 9: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu ( S ) : ( x + 1) + ( y − 1) + ( z + ) = hai đường thẳng d : 2 x − y z −1 x y z −1 , ∆: = = Phương trình phương trình = = −1 1 −1 mặt phẳng tiếp xúc với ( S ) , song song với d ∆ ? A y + z + = B x + z + = C x + y + z = D x + z − =0 Lời giải   Các VTCP d ∆ là: u1 (1; 2; −1) , u2 (1;1; −1) ⇒ VTPT mặt phẳng cần tìm là:    u1 ; u2  =− n= −1(1;0;1)   ( 1;0; −1) = Gọi phương trình mặt phẳng cần tìm là: x + z + m = Ta có: −1 − + m = 12 + 12 m = Chọn B 2⇔ m =  Ví dụ 10: Trong khơng gian với hệ trục tọa độ Oxyz , cho mặt phẳng ( P ) nhận n = ( 3; −4; −5) vectơ pháp tuyến ( P ) tiếp xúc với mặt cầu ( S ) : ( x − ) + ( y + 1) + ( z − 1) = Phương trình mặt phẳng ( P ) là: A x − y − z − 15 = x − y − z − 25 = B x − y − z + 15 = x − y − z − 25 = 2 x = t   Ta có: ( xOy ) : z = ⇒ ∆ :  y = −5 + 2t ⇒ u∆ = (1; 2;0 ) z =  Do ( Q ) chứa đường thẳng ∆ ⇒ ( Q ) qua điểm ( 0; −5;0 ) Giả sử ( Q ) :   1  x y z ( a; c ≠ ) ⇒ n(Q ) =  ; − ;  + + = a −5 c a c   Ta có: n(Q ) u∆ = ⇒ − = ⇒ a = a Lại có: VOABC= y 125 125 abc= ⇒ ⇒ c= ± ⇒ ( ABC ) : x − ± z= 5.c= 36 36 5 Hay x − y ± z − = Ví dụ 4: Cho hai điểm M (1; 2;1) , N ( −1;0; −1) Viết ( P ) qua M, N cắt trục Ox , Oy theo tứ tự A, B (khác O) cho AM = 3BN Lời giải Gọi A ( a;0;0 ) , B ( 0; b;0 ) C ( 0;0;c ) giao điểm ( P ) với trục tọa độ Phương trình mặt phẳng ( P ) là: x y z + + = ( abc ≠ ) a b c 1 1 −1  1  + =  a + b + c = −1 a c  + = Do ( P ) qua điểm M (1; 2;1) , N ( −1;0; −1) ⇒  ⇒ ⇒ a c −1 = 2 = − b =  a c  b Lại có: AM= 2  3BN ⇔ AM= 3BN ⇔ ( a − 1) + += (1 + b + 1)=  −3  a =3⇒ c =  ⇔ ( a − 1) =4 ⇔   a =−1 ⇒ =0 ( loai )  c x y 4z Khi ( P ) : + − hay ( P ) : x + y − z − = = 3 Ví dụ 5: Cho hai điểm M (1;9; ) Viết ( P ) qua M cắt trục tọa độ theo thứ thự A, B, C (khác O) cho 8.OA = 12.OB + 16 = 37.OC , với x A > 0; yB > 0; zC < Lời giải Gọi A ( a;0;0 ) , B ( 0; b;0 ) C ( 0;0;c ) với a > 0; b > 0; c < Khi phương trình mặt phẳng ( ABC ) là: Do M (1;9; ) ∈ ( ABC ) ⇒ x y z + + = a b c + + = a b c Mặt khác OA = a = a; OB = b = b; OC = c = −c a > 0; b > 0;c < Do 8.OA = 12.OB + 16 = 37.OC ⇒ 8a = 12b + 16 = −37c Ta có: 8a =12b + 16 =−37c ⇒ a = 35 − 4a + + =1 ⇔ =1 ⇔  a 8a − 16 − a a − 2a  a = −7 ( loai ) 12 37 b = x y 37  Với a =5 ⇒  −40 ⇒ ( P ) : + − z =1 hay ( P ) : x + 20 y − 37 z − 40 = 40 c = 37 Ví dụ 6: Phương trình mặt phẳng qua điểm A ( 3;0;0 ) B ( 0;6;0 ) cắt trục Oz tai C cho thể tích tứ diện O ABC 12 là: A x y z + + = B x y z + − = C x y z + + = D Cả A B Lời giải Giả sử C ( 0;0; c ) ta có phương trình mặt phẳng ( ABC ) là: x y z + + = c 1 Ta có OA, OB, OC đơi vng góc nên VOABC = OA.OB.OC = 3.6 c = 12 ⇔ c =±4 6 Chọn D Ví dụ 7: Gọi A, B, C giao điểm mặt phẳng ( P ) : x + y z + = ( bc ≠ ) với trục tọa độ Diện tích b c tam giác ABC bằng: A b + c + bc B bc C b2 + c + b2c 2 D bc Lời giải   Ta có: A (1;0;0 ) ; B ( 0; b;0 ) ; C ( 0;0; c ) AB = ( −1; b;0 ) ; AC = ( −1;0; c ) Khi= đó: S ABC   =  ( bc; c; b )  AB; AC  2= b2 + c + b2c Chọn C Ví dụ 8: Trong không gian tọa độ Oxyz , cho điểm A ( 2;0;0 ) H (1;1;1) Viết phương trình mặt phẳng ( P ) qua A, H cho ( P ) cắt tia Oy , Oz B, C cho diện tích tam giác ABC A ( P ) : x + y + z − = B ( P ) : x + y + z − = C ( P ) : x + y + z − = D ( P ) : x + y + z − = Lời giải x y z Gọi B ( 0; b;0 ) C ( 0;0; c ) (điều kiện b, c > ) suy ( P ) : + + = b c 1 + = b c   2  AB; AC  = = ( bc ) + ( 2c ) + ( 2b ) = ⇔ b2c + 4b2 + 4c = 384   2 Vì H ∈ ( P ) nên S ABC u 8;= v 16 = u = b + c v = 2u b + c = Đặt  ⇒ ⇔ ⇒ ⇔ b =c =4 + − = = − = − v u v 384 u 6; v 12 loai = bc 16 ( ) ( ) v bc    Vậy phương trình mặt phẳng ( P ) x y z hay x + y + z − = + + = Chọn D 4 Ví dụ 9: Trong khơng gian với hệ tọa độ Oxyz , cho ba điểm A ( a;0;0 ) , B ( 0; b;0 ) C ( 0;0; c ) với a , b, c > Biết ( ABC ) ( S ) : ( x − 1) + ( y − ) + ( z − 3) A 14 B qua 1 3 M ; ;  7 7 điểm tiếp xúc với mặt 1 72 = Tính giá trị + + a b c 7 C D Lời giải Phương trình mặt phẳng ( ABC ) x y z + + = Vì M ∈ ( ABC ) ⇒ + + = a b c a b c 14 72 2 Xét mặt cầu ( S ) : ( x − 1) + ( y − ) + ( z − 3) = có tâm I (1; 2;3) , bán kính R = 7 → mp ( ABC ) là= Khoảng cách từ I  d ( I ; ( ABC ) ) + + −1 a b c = 1 + + a b2 c2 1 + + a b2 c2 Vì mặt cầu ( S ) tiếp xúc với mp ( ABC ) mp ( ABC ) ⇒ d ( I ; ( ABC ) ) =R ⇒ 1 + + = Chọn D a b2 c2 cầu BÀI TẬP TỰ LUYỆN Câu 1: Trong không gian với hệ tọa độ Oxyz , cho hai điểm M ( 2;1; ) , N ( 3; −1; ) mặt phẳng ( P ) : x − y + z − = Khi mặt phẳng ( Q ) qua hai điểm M, N vng góc với mặt phẳng ( P) có phương trình A x + y − = B x − y − z + = C x − y − z − =0 D y + z − = Câu 2: Trong không gian với hệtọa độ Oxyz , cho đường thẳng d có phương trình Viết phương trình mặt phẳng ( P) x y − z +1 = = −8 vng góc với đường thẳng d biết mặt phẳng ( P) qua điểm M ( 0; −8;1) A ( P ) : x − y − z + 19 = B ( P ) : x − y − z − 27 = C ( P ) : x − y − z − 19 = D ( P ) : −8 x − y − z − 19 = Câu 3: Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng ( Q ) : x − y + z − 15 = điểm E (1; 2; −3) Viết phương trình mặt phẳng ( P ) qua E song song với ( Q ) A ( P ) : x + y − z + 15 = B ( P ) : x + y − z − 15 = C ( P ) : x − y + z + 15 = D ( P ) : x − y + z − 15 = 0 Phương trình mặt Câu 4: Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng ( Q ) : x + y − z + = phẳng ( P ) chứa trục Oy vng góc với mặt phẳng ( Q ) là: A x − z = B x + y + z = C x + z = D x + z = Câu 5: Trong không gian với hệ tọa độ Oxyz , phương trình mặt phẳng ( P ) qua điểm A ( 2; −1; ) , song song với trục Oy vng góc với mặt phẳng ( Q ) : x − y + z − = A x − z − = B x − z − = C x − z − = D x − z + = Câu 6: Trong không gian với hệ tọa độ Oxyz , cho điểm A ( 3; −1; −5 ) , B ( 0;0; −1) hai mặt phẳng , ( Q2 ) : x − y + z + =0 Gọi ( P ) ( Q1 ) : 3x − y + z + = mặt phẳng qua A, vng góc với hai mặt phẳng ( Q1 ) ( Q2 ) Khoảng cách từ điểm B đến mặt phẳng ( P ) bằng: A B C Câu 7: Trong không gian với hệ tọa độ Oxyz , cho điểm D A ( 0;0;1) hai mặt phẳng ( Q1 ) : x + y − =0 , ( Q2 ) : x − z − =0 Gọi ( P ) mặt phẳng vng góc với hai mặt phẳng ( Q1 ) khoảng cách từ điểm A đến mặt phẳng ( P ) Phương trình mặt phẳng ( P ) là: ( Q2 )  x − y + 2z − = A   x − y + 2z + =  x − y + z − =0 B   x − y + 2z − =  x − y + 2z = C   x − y + 2z − =  x − y + 2z = D   x − y + 2z − = Câu 8: Trong không gian với hệ tọa độ Oxyz , cho điểm A ( 0;1; −4 ) , B (1;0; −2 ) mặt phẳng Gọi ( P ) ( Q ) : x + z + = mặt phẳng qua A, B vng góc với mặt phẳng ( Q ) Khoảng cách từ gốc tọa độ đến mặt phẳng ( P ) bằng: A B C D 3 Câu 9: Trong không gian với hệ tọa độ Oxyz , cho điểm A (1;0;0 ) mặt phẳng ( Q ) : x + y + z − = Gọi ( P ) mặt phẳng qua A song song với mặt phẳng ( Q ) Khoảng cách từ gốc tọa độ đến mặt phẳng ( P) bằng: A B C D Câu 10: Trong không gian với hệ tọa độ Oxyz , gọi ( P ) mặt phẳng qua G (1; 2;3) cắt Ox , Oy , Oz A, B, C cho G trọng tâm cùa tam giác ABC Phương trình mặt phẳng ( P ) A 18 x + y + z − = B x + y + z − = C 18 x + y + z − 18 = D x + y + z − 18 = Câu 11: Trong không gian với hệ tọa độ Oxyz , gọi ( P ) mặt phẳng qua G (1; 2;3) cắt Ox , Oy , Oz A, B, C cho G trực tâm cùa tam giác ABC Khoảng cách từ điểm M (1;0;0 ) đến mặt phẳng ( P ) là: A 13 14 B 14 C D 14 Câu 12: Trong không gian với hệ tọa độ Oxyz , gọi ( α ) mặt phẳng qua hình chiếu A ( 5; 4;3) lên trục tọa độ Phương trình mặt phẳng ( α ) A 12 x + 15 y + 20 z − 60 = C x y z + + = B 12 x + 15 y + 20 z + 60 = D x y z + + − 60 = Câu 13: Trong không gian với hệ tọa độ Oxyz , mặt phẳng ( α ) qua điểm M ( 5; 4;3) cắt tia Ox , Oy , Oz điểm A, B, C cho OA = OB = OC có phương trình A x + y + z − 12 = B x + y + z = C x + y + z + = D x − y + z = Câu 14: Trong không gian với hệ tọa độ Oxyz , gọi ( α ) mặt phẳng qua điểm M (1;1;1) cắt tia Ox , Oy , Oz A, B, C cho thể tích tứ diện OABC có giá trị nhỏ Phương trình ( α ) là: A x + y + z − = B x + y − z + = C x − y − = Câu 15: Trong không gian với hệ tọa độ Oxyz , gọi ( P) D x − y + z − = mặt phẳng qua M (1;1;1) cắt tia Ox , Oy , Oz A, B, C cho thể tích khối tứ diện OABC nhỏ Phương trình mặt phẳng ( P ) A x + y + z − = B x + y + z − =0 C x + y + z + = D x + y + z − = Câu 16: Trong không gian với hệ tọa độ Oxyz , gọi ( P ) mặt phẳng qua M ( 2;1; ) cắt tia Ox , Oy , Oz A, B, C cho thể tích khối tứ diện OABC nhỏ Phương trình mặt phẳng ( P ) A x + y − z − = B x + y + z − = C x + y + z − = D x + y + z − = Câu 17: Trong không gian với hệ tọa độ Oxyz , gọi ( P ) mặt phẳng qua M ( 2;1; ) cắt tia Ox , Oy , Oz A, B, C Thể tích khối tứ diện OABC nhỏ bằng: A 34 B 32 C 36 D 35 Câu 18: Trong không gian với hệ tọa độ Oxyz , gọi ( P ) mặt phẳng qua M (1;1; ) cắt tia Ox , Oy , Oz A, B, C cho thể tích khối tứ diện OABC nhỏ Khoảng cách từ điểm N ( 0;0; ) đến mặt phẳng ( P ) bằng: A B C D Câu 19: Trong không gian với hệ tọa độ Oxyz , gọi ( P ) mặt phẳng qua M ( 2; 2;1) cắt Ox , Oy , Oz A, B, C cho = OA 2= OB 2OC Phương trình mặt phẳng ( P ) A x − y + z − =0 B x + y + z − = C x − y − z + = D x − z = Câu 20: Trong không gian với hệ tọa độ Oxyz , cho điểm M ( −1; 2; −3) Gọi M , M , M điểm đối xứng M qua mặt phẳng ( Oxy ) , ( Oxz ) , ( Oyz ) Viết phương trình mặt phẳng ( M 1M M ) A x + y + z + = B x − y + z + = C x − y + z + = D x − y − z + = Câu 21: Trong không gian với hệ tọa độ Oxyz , cho điểm H (1; 2; −3) Tìm phương trình mặt phẳng ( α ) cắt trục tọa độ Ox , Oy , Oz A, B, C cho H trực tâm tam giác ABC A ( α ) : x + y − z − 14 = B ( α ) : x + y − z + = C ( α ) : x + y − z − 18 = D ( α ) : x + y − z + = Câu 22: Trong không gian với hệ tọa độ Oxyz , gọi ( P ) mặt phẳng qua M (1; 4;9 ) cắt tia Ox , Oy , Oz A, B, C cho OA + OB + OC đạt giá trị nhỏ Mặt phẳng ( P ) qua điểm điểm sau đây? A M (12;0;0 ) B M ( 0;6;0 ) C M ( 0;12;0 ) D M ( 0;0;6 ) Câu 23: Mặt phẳng (a) qua điểm M ( 4; −3;12 ) chắn tia Oz đoạn dài gấp đôi đoạn chắn tia Ox , Oy có phương trình là: A x + y + z + 14 = B x + y + z + 14 = C x + y + z − 14 = D x + y + z − 14 = Câu 24: Trong không gian với hệ tọa độ Oxyz , cho ba điểm M (1;0;0 ) , N ( 0; 2;0 ) , P ( 3;0; ) Điểm Q nằm mặt phẳng (Oyz ) cho QP vuông góc với mặt phẳng ( MNP ) Tọa độ điểm Q là: 11   A  0; − ;  2  B ( 0; −3; )  11  C  0; ; −   2  11  D  0; ;   2 Câu 25: Trong không gian với hệ tọa độ Oxyz , cho A ( 2;0;0 ) , B ( 0;3;0 ) , C ( 0;0;3) , D (1; −1; ) Gọi H chân đường vng góc kẻ từ D tứ diện DABC Viết phương trình mặt phẳng ( ADH ) ? A x + y + z − = B x − y − = C x − y − z − 12 = D −7 x + y − z + 14 = Câu 26: Trong không gian với hệ tọa độ Oxyz , mặt phẳng qua ( P ) : ax + by + cz − 27 = hai điểm Tính tổng S = a + b + c A ( 3; 2;1) , B ( −3;5; ) vuông góc với mặt phẳng ( Q ) : x + y + z + = A S = −2 B S = C S = −4 D S = −12 Câu 27: Trong không gian với hệ tọa độ Oxyz , phương trình mặt phẳng qua M ( 2;1; −2 ) chứa giao tuyến hai mặt phẳng ( α ) : x + y − z − = , (β ) : x − y + 3z + = A x − z − = B x − y + z − = C − x + y − z − 12 =0 Câu 28: Trong không gian với hệ tọa độ Oxyz , mặt phẳng ( Q ) : x + y + z − =0 cách M (1;0;3) khoảng ( P) D x − y + z + = song song với mặt phẳng Viết phương trình mặt phẳng ( P ) A x + y + z − = x + y + z − = B x + y + z − = x + y + z − =0 C x + y + z − 10 = D x + y + z − =0 x + y + z − = Câu 29: Trong không gian với hệ tọa độ Oxyz , cho điểm A ( 3;0;0 ) , B ( 0;3;0 ) , C ( 0;0;3) , D (1;1;1) E (1; 2;3) Hỏi từ điểm tạo tất mặt phẳng phân biệt qua điểm điểm đó? A mặt phẳng B 10 mặt phẳng C 12 mặt phẳng D mặt phẳng Câu 30: Trong không gian Oxyz , cho hai điểm A ( 2;1; −3) , E (1; 2;1) ( P ) : x + y + z − = Nếu C điểm ( P ) cho ba điểm A, B, C thẳng hàng tổng hồnh độ tung độ C nhận giá trị sau đây? A B C −2 D LỜI GIẢI BÀI TẬP TỰ LUYỆN   MN= (1; −2; )      ( −4;1;3) Câu 1: Ta có:   ⇒ nQ =  MN ; nP  = 2; 1;3 n = − )  P ( Mà ( Q ) qua M ⇒ ( Q ) : ( x − ) − ( y − 1) − ( z − ) ⇔ x − y − z − =0 Chọn C  Câu 2: ( P ) qua M ( 0; −8;1) nhận ud = ( 8; −3; −5 ) VTPT ⇒ ( P ) : x − ( y + ) − ( z − 1) =0 ⇔ x − y − z − 19 =0 Chọn C  Câu 3: ( P ) qua E (1; 2; −3) nhận n= ( 2; −1;5) VTPT Q ⇒ ( P ) : ( x − 1) − ( y − ) + ( z + 3) = ⇔ x − y + z + 15 = Chọn C   Câu 4: Trục Oy ⇒ uOy = ( 0;1;0 ) ( Q ) : x + y − z + = ⇒ n(Q ) = ( 2;1; −1)    Oy ⊂ ( P )  Ta có  n( P ) uOy ; n= ⇒= (Q )  P Q ⊥ ( ) ( )  (1;0; ) Phương trình mặt phẳng ( P ) x + z = Chọn C   Câu 5: Trục Oy ⇒ uOy = ( 0;1;0 ) ( Q ) : x − y + 3z − = ⇒ n(Q ) = ( 2; −1;3)    ( P ) / / Oy Ta có  ⇒ n( P ) = uOy ; n(Q )  = ( 3;0; −2 ) ( P ) ⊥ ( Q ) Phương trình mặt phẳng ( P ) x − z − = Chọn A  ( P ) ⊥ ( Q1 )  ⇒ n( P ) = ( P ) ⊥ ( Q2 )  Phương trình mặt phẳng ( P ) qua A, có n= ( P ) ( 2;1; −2 )  Câu 6: n(Q= 1) ( 3; −2; ) ,  n(Q= 2) ( 5; −4;3)    n(Q ) ; n(Q )  = ( 2;1; −2 )   ( x − 3) + y + − ( z + ) = ⇔ x + y − z − 10 = Khoảng cách từ điểm B đến mặt phẳng ( P ) = d ( B; ( P ) ) ( −2 ) ( −1) − 10 = Chọn A 22 + 12 + ( −2 )    Câu 7: nP = nQ1 ; nQ2  =( −1;1; −2 ) ⇒ ( P ) : x − y + z + m =0 m+2 m = 2 Mà d ( A; ( P ) ) = ⇒ Chọn D = ⇒ 6  m = −4     Câu 8: AB =(1; −1; ) ⇒ nP =  AB, nQ  =( −1;1;1) ⇒ ( P ) : x − y − z + m =0 Mà (P) qua A =( 0;1; ) ⇒ − − (−4) + m =0 ⇔ m =−3 ⇒ ( P ) : x − y − z − =0 Ta có d ( O, ( P= )) 0−0−0−3 = 12 + 12 + 12 = 3 Chọn A Câu 9: Do ( P ) mặt phẳng qua A (1;0;0 ) song song với ( Q ) nên ( P ) : x + y + z − =0 Khi d ( O, ( P ) ) = + 2.0 + − 1 Chọn B = 2 2 + +1 ( ) Câu 10: Phương trình mặt phẳng ( P ) : x y z + + = với A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) a b c Do G (1; 2;3) trọng tâm ∆ABC nên a = , b = , c = x y z ⇒ ( P ) : + + =1 ⇔ x + y + z − 18 =0 Chọn D Câu 11: Do OA, OB, OC đơi vng góc với G trực tâm ∆ABC  Nên OG ⊥ ( ABC ) ⇒ OG = (1; 2;3) vectơ pháp tuyến mặt phẳng ( P ) Phương trình mặt phẳng ( P ) 1( x − 1) + ( x − ) + ( z − 3) =0 ⇔ x + y + z − 14 =0 Khoảng cách từ điểm M (1;0;0 ) đến mặt phẳng ( P ) là= d ( M ; ( P )) − 14 = + 22 + 32 Câu 12: ( α ) qua điểm M ( 5;0;0 ) , N ( 0; 4;0 ) , C ( 0;0;3) x y z Phương trình đonạ chắn ⇒ ( α ) : + + = ⇔ 12 x + 15 y + 20 z − 60 = Chọn A Câu 13: A ( a;0;0 ) , B ( 0; a;0 ) , C ( 0;0; a ) ( a > ) Phương trình đoạn chắn ⇒ x y z + + =1 ⇔ x + y + z =a a a a Mà ( α ) qua M ( 5; 4;3) ⇒ a = + + = 12 ⇒ ( α ) : x + y + z − 12 = Chọn A Câu 14: Giả sử A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) ( a, b, c > ) Ta = có VOABC 1 1 OA.SOBC OA = OB.OC OA OB.OC abc = = 3 6 Phương trình đoạn chắn ⇒ ( α ) : Mà ( α ) qua M (1;1;1) ⇒ = Dấu “=” xảy ⇔ x y z + + =1 a b c 1 27 + + ≥3 ⇒ abc ≥ 27 ⇒ VOABC = abc ≥ = a b c 6 abc 1 1 = = = ⇔ a =b =c =3 a b c x y z Khi ( α ) : + + = ⇔ x + y + z − = Chọn A 3 13 Chọn A 14 Câu 15: Gọi A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) với a, b, c > Phương trình mặt phẳng ( P ) x y z + + = a b c Ta có OA, OB, OC đơi vng góc với nên = VO ABC Vì M (1;1;1) ∈ ( P ) ⇒ 1 1 + + = a b c Theo bất đẳng thức Cosi, có Khi VO ABC = 1 abc OB.OC = OA = a.b.c 6 1 1 + + ≥ 33 ⇔ abc ≥ 27 a b c abc abc 27 ≥ = Dấu = xảy a= b= c= 6 Suy ( P ) : x + y + z − = Chọn D Câu 16: Gọi A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) với a, b, c > Phương trình mặt phẳng ( P ) x y z + + = a b c Ta có OA, OB, OC đơi vng góc với nên = VO ABC Vì M ( 2;1; ) ∈ ( P ) ⇒ 2 + + = a b c Theo bất đẳng thức Cosi, có Khi VO ABC = 1 abc OA = a.b.c OB.OC = 6 2 + + ≥ 33 ⇔ abc ≥ 108 a b c abc abc 108 ≥ = 18 6 Dấu = xảy a= b= 2c Suy ( P ) : x + y + z − = Chọn D Câu 17: Gọi A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) với a, b, c > Phương trình mặt phẳng ( P ) x y z + + = a b c Ta có OA, OB, OC đơi vng góc với nên = VO ABC Mà M ( 2;1; ) ∈ ( P ) ⇒ 1 abc OA = a.b.c OB.OC = 6 + + = a b c Theo bất đẳng thức Cosi, có + + ≥ 33 ⇔ abc ≥ 216 a b c abc abc 216 Khi VO ABC = ≥ = 36 ⇒ {VO ABC } = 36 Chọn C 6 Câu 18: Gọi A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) với a, b, c > Phương trình mặt phẳng ( P ) x y z + + = a b c Ta có OA, OB, OC đơi vng góc với nên = VO ABC Mà M (1;1; ) ∈ ( P ) ⇒ 1 abc OB.OC = OA = a.b.c 6 1 + + = a b c Theo bất đẳng thức Cosi, có 1 2 abc 54 + + ≥ 33 ⇔ abc ≥ 54 ⇒ VO ABC= ≥ = a b c abc 6 a= b= Dấu = xảy  ⇒ ( P ) : x + y + z − = ⇒ d ( N ; ( P ) ) = Chọn A c = Câu 19: Gọi A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) với a, b, c > Phương trình mặt phẳng ( P ) x y z 2 + + = Ta có M ( 2; 2;1) ∈ ( P ) ⇒ + + = a b c a b c 2b  a = a = 2b a Mà OA = 2OB = 2OC ⇔  ⇔ ⇔ b =c = a = 2c  a = c Khi x y z + + = ⇔ = ⇔ a = ⇒ b = c = ⇒ ( P ) : + + = ⇔ x + y + z − = Chọn B a a a a 4 Câu 20: Tọa độ điểm M , M , M M ( −1; 2;3) , M ( −1; −2; −3) , M (1; 2; −3)   M ( 2;0; −6 ) Ta có M 1M = ( 0; −4; −6 ) , M 1=    Khi n( M1M M ) = M 1M ; M 1M  =( 24; −12;8 ) =4 ( 6; −3; ) hay x − y + z + = Phương trình mặt phẳng ( M 1M M ) ( x + 1) − ( y − ) + ( z − 3) = Chọn C Câu 21: Do A, B, C thuộc trục Ox , Oy , Oz Nên ta có OA ⊥ OB ⊥ OC Khi OC ⊥ ( OAB ) nên AB ⊥ OC (1) Do H trực tâm tam giác ABC ⇒ CH ⊥ AB ( ) Từ (1) ( ) ⇒ AB ⊥ ( OCH ) ⇒ AB ⊥ OH Tương tự ta có: BC ⊥ OH ⇒ OH ⊥ ( ABC )   ⇒ n( ABC= ) OH (1; 2; −3)  n Phương trình mặt phẳng ( α ) qua H (1; 2; −3) có VTPT là= (1; 2; −3) là: x + y − z − 14 = Chọn A Câu 22: Gọi A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) điểm thuộc tia Ox , Oy , Oz với a, b, c > Phương trình mặt phẳng ( ABC ) theo đoạn chắn Do mặt phẳng ( P ) qua M (1; 4;9 ) nên x y z + + = a b c + + = a b c Khi OA + OB + OC = a + b + c 1 9 Mặt khác theo BĐT Bunhiacopsky ta có: ( a + b + c )  + +  ≥ (1 + + 3) = 36 a b c b2 c2 b c Dấu xảy ⇔ a = = ⇒a= = Mà x y z + + =1 ⇒ + + =1 ⇒ a =6; b =12; c =18 ⇒ ( P ) : + + =1 a b c a a a 12 18 Do ( P ) qua điểm M ( 0;12;0 ) Chọn C Câu 23: Giả sử mặt phẳng ( α ) cắt tia Ox , Oy , Oz điểm A ( m;0;0 ) , B ( 0; n;0 ) , C ( 0;0; p ) với m, n, p > phương trình mặt phẳng ( α ) Theo ta có: x y z + + = m n p 12 14 12 =1 ⇔ p =14 − + = p =2m =2n ⇒ − + =1 ⇔ p p p p m n p 2 x y z Do p = 14, m = n = ⇒ ( α ) : + + = ⇒ ( α ) : x + y + z − 14 = Chọn C 7 14  Câu 24: Gọi Q ( 0; b; c ) ⇒ QP = ( 3; −b; − c )  Lại có MN =    QP ⊥ MN ( −1; 2;0 ) ; MP = ( 2;0; ) , QP vng góc với mặt phẳng ( MNP ) ⇒    QP ⊥ MP    b = −  = 2b −3 −= QP.MN  Chọn A ⇔    ⇔ ⇔ + 16 − c = 11  QP.MP = c =  Câu 25: Phương trình mặt phẳng ( ABC ) theo đoạn chắn   Ta có: n( ABC ) = ( 3; 2; ) ; AD = ( −1; −1; ) x y z + + = hay x + y + z − = 3      n ⊥ AD Mặt phẳng ( ADH ) có vectơ pháp tuyến n    ⇒ n ⊥ n( ABC ) n ⊥ DH    Khi n = AD; n( ABC )  =−   ( 6;8;1) =− ( 6; −8; −1)  Mặt phẳng ( ADH ) qua A ( 2;0;0 ) có VTPT n ( 6; −8; −1) ⇒ ( ADH ) : x − y − z − 12 = Chọn C   Câu 26: AB = ( −6;3;1) ; n(Q ) = ( 3;1;1)   n( P ) ⊥ AB     Do ( P ) chứa AB vng góc với ( Q ) nên    ⇒ n( P ) =  AB; n(Q )  =   n( P ) ⊥ n(Q ) ( 2;9; −15) hay x + y − 15 z − = Phương trình mặt phẳng ( P ) : ( x − 3) + ( y − ) − 15 ( z − 1) = a =  Suy ( P ) : x + 27 y − 45 z − 27 =0 ⇒ b =27 ⇒ a + b + c =−12 Chọn D c = −45  Câu 27: Gọi d = ( α ) ∩ ( β ) = x + y = x Cho z = 0⇒ ⇔ ⇒ A (1;3;0 ) ∈ d −1  y = 2 x − y = y − 2z = =  y 10 Cho x = ⇔ ⇒ B ( 0;10;3) ∈ d 0⇒ − y + z =−1  z =3   Mặt phẳng cần tìm qua điểm A, B, M ta có: MA = ( −1; 2; ) ; MB = ( −2;9;5)     MA; MB  = Do n( ABM ) = − ( 8; −1;5 )   ( −8;1; −5 ) = Phương trình mặt phẳng ( ABM ) là: x − y + z − = Chọn B Câu 28: Phương trình mặt phẳng ( P ) có dạng: x + y + z + D = Do d ( M ; ( P ) ) = 3⇔ 4+ D 12 + 12 + 12 =  D = −1 ⇔ D+4 = 3⇔   D = −7 Vậy phương trình mặt phẳng ( P ) là: x + y + z − =0 x + y + z − = Chọn D Câu 29: Phương trình đoạn chắn mặt phẳng qua điểm A ( 3;0;0 ) , B ( 0;3;0 ) , C ( 0;0;3) là: x y z hay x + y + z − = + + = 3 Do điểm D ∈ ( ABC ) , E ∉ ( ABC ) ⇒ từ điểm A, B, C, D, E Chọn điểm thuộc mặt phẳng ( ABCD ) điểm E có C42 = mặt phẳng Cộng thêm mặt phẳng ( ABCD ) suy có tổng cộng mặt phẳng tạo thành từ điểm Chọn D Câu 30: Gọi C ( a; b; c ) ∈ ( P ) ta có: 2a + b + c − = ( 2)   Mặt khác AC = ( a − 2; b − 1; c + 3) ; AB = ( −1;1; )   a − b −1 c + Do A, B, C thẳng hàng nên AC =k AB ⇔ = = (1) −1  a =   2a + b + c − =   Từ (1) ( ) ta có:  a − b − c + ⇔ b = ⇒ a + b = Chọn B = =  −1   11 c = 

Ngày đăng: 13/10/2022, 07:12

w