Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
496,81 KB
Nội dung
Nguyễn Thị Huệ Chuyên đề: GIÁ TRỊ TUYỆT ĐỐI A> MỤC TIÊU Thơng qua việc giải tốn phát triển tư độc lập, sáng tạo học sinh, rèn ý chí vượt qua khó khăn B> THỜI LƯỢNG Tổng số :(6 tiết) 1) Kiến thức cần nhớ:(1 tiết) 2)Các dạng tập phương pháp giải(5 tiết) Lý thuyết *Định nghĩa: Khoảng cách từ điểm a đến điểm trục số giá trị tuyệt đối số a( a số thực) * Giá trị tuyệt đối số không âm nó, giá trị tuyệt đối số âm số đối TQ: Nếu Nếu Nếu x-a 0=> = x-a Nếu x-a 0=> = a-x *Tính chất Giá trị tuyệt đối số không âm TQ: với a R Cụ thể: =0 a=0 ≠ a ≠ * Hai số đối có giá trị tuyệt đối nhau, ngược lại hai số có giá trị tuyệt đối chúng hai số đối TQ: * Mọi số lớn đối giá trị tuyệt đối đồng thời nhỏ giá trị tuyệt đối TQ: * Trong hai số âm số nhỏ có giá trị tuyệt đối lớn TQ: Nếu * Trong hai số dương số nhỏ có giá trị tuyệt đối nhỏ TQ: Nếu * Giá trị tuyệt đối tích tích giá trị tuyệt đối TQ: * Giá trị tuyệt đối thương thương hai giá trị tuyệt đối Nguyễn Thị Huệ TQ: * Bình phương giá trị tuyệt đối số bình phương số TQ: * Tổng hai giá trị tuyệt đối hai số lớn giá trị tuyệt đối hai số, dấu xảy hai số dấu TQ: Các dạng toán : I Tìm giá trị x thoả mãn đẳng thức có chứa dấu giá trị tuyệt đối: Dạng 1: ( Trong A(x) biểu thức chứa x, k số cho trước ) * Cách giải: - Nếu k < khơng có giá trị x thoả mãn đẳng thức( Vì giá trị tuyệt đối số không âm ) - Nếu k = ta có - Nếu k > ta có: Bài 1.1: Tìm x, biết: a) b) c) Giải a) = x= a) 2x-5 = * 2x-5 = 2x = x = 4,5 * 2x-5 = - 2x =5-4 2x =1 x =0,5 Tóm lại: x = 4,5; x =0,5 b) \f(5,4 = \f(1,3 - \f(1,4 d) Bài 1.2: Tìm x, biết: a) b) c) Bài 1.3: Tìm x, biết: a) b) c) Bài 1.4: Tìm x, biết: a) b) c) Bài 1.5: Tìm x, biết: d) d) Nguyễn Thị Huệ a) b) c) d) Dạng 2: ( Trong A(x) B(x) hai biểu thức chứa x ) * Cách giải: Vận dụng tính chất: ta có: Bài 2.1: Tìm x, biết: a) b) c) d) a) * 5x-4=x+2 5x- x =2+4 4x=6 x= 1,5 * 5x-4=-x-2 5x + x =- 2+ 6x= x= \f(1,3 Vậy x= 1,5; x= \f(1,3 Bài 2.2: Tìm x, biết: a) b) c) d) Dạng 3: ( Trong A(x) B(x) hai biểu thức chứa x ) * Cách 1: Ta thấy B(x) < khơng có giá trị x thoả mãn giá trị tuyệt đối số không âm Do ta giải sau: (1) Điều kiện: B(x) (*) (1) Trở thành ( Đối chiếu giá tri x tìm với điều kiện ( * ) * Cách 2: Chia khoảng xét điều kiện bỏ dấu giá trị tuyệt đối: Nếu Nếu Ta giải sau: (1) Nếu A(x) (1) trở thành: A(x) = B(x) ( Đối chiếu giá trị x tìm với điều kiện ) Nếu A (x ) < (1) trở thành: - A(x) = B(x) ( Đối chiếu giá trị x tìm với điều kiện ) VD1: Giải : a0) Tìm x Q biết \f(2,5 =2x * Xét x+ \f(2,5 ta có x+ \f(2,5 =2x *Xét x+ \f(2,5 < ta có x+ \f(2,5 =- 2x Bài 3.1: Tìm x, biết: Nguyễn Thị Huệ a) b) c) d) Bài 3.2: Tìm x, biết: a) b) c) d) Bài 3.3: Tìm x, biết: a) b) c) d) Bài 3.4: Tìm x, biết: a) b) c) d) Bài 3.5: Tìm x, biết: a) b) c) d) Dạng 4: Đẳng thức chứa nhiều dấu giá trị tuyệt đối: * Cách giải: Lập bảng xét điều kiện bỏ dấu giá trị tuyệt đối: Căn bảng xét khoảng giải toán ( Đối chiếu điều kiện tương ứng ) Ví dụ1 : Tìm x biết x x 2x (1) v Nhận xét: Như biến đổi biểu thức chứa dấu giá trị tuyệt đối thành biểu thức không chứa dấu giá trị tuyệt đối Vậy ta biến đổi biểu thức vế trái đẳng thức Từ tìm x Giải Xét x–1=0 x = 1; x – < x < 1; x – > x > x- = x = 3; x – < x < 3; x – > x > Ta có bảng xét dấu đa thức x- x- đây: x x–1 x–3 + + + Xét khoảng x < ta có: (1) (1 – x ) + ( – x ) = 2x – -2x + = 2x – x = (giá trị không thuộc khoảng xét) Xét khoảng x ta có: (1) (x – ) + ( – x ) = 2x – = 2x – x = ( giá trị thuộc khoảng xét) Xét khoảng x > ta có: (1) (x – ) + (x – ) = 2x – - = -1 ( Vơ lí) Nguyễn Thị Huệ Kết luận: Vậy x = VD2 : Tìm x + =0 Nhận xét x+1=0 => x=-1 x-1=0 => x=1 Ta lập bảng xét dấu x -1 x+1 + x-1 Căn vào bảng xét dấu ta có ba trường hợp Nếu x1 + + Bài 4.1: Tìm x, biết: a) b) c) d) Bài 4.2: Tìm x, biết: a) c) d) e) f) Bài 4.3: Tìm x, biết: a) b) c) d) e) f) Bài 4.4: Tìm x, biết: a) c) d) b) Dạng 5: Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt: (1) Điều kiện: D(x) kéo theo Do (1) trở thành: A(x) + B(x) + C(x) = D(x) Bài 5.1: Tìm x, biết: a) b) c) d) Bài 5.2: Tìm x, biết: a) b) Nguyễn Thị Huệ c) d) Dạng 6: Dạng hỗn hợp: Bài 6.1: Tìm x, biết: a) b) c) Bài 6.2: Tìm x, biết: a) b) c) Bài 6.3: Tìm x, biết: a) b) c) Bài 6.4: Tìm x, biết: a) b) c) Dạng 7: Vận dụng tính chất không âm giá trị tuyệt đối dẫn đến phương pháp bất đẳng thức * Nhận xét: Tổng số không âm số không âm tổng số hạng tổng đồng thời * Cách giải chung: B1: đánh giá: B2: Khẳng định: Bài 7.1: Tìm x, y thoả mãn: a) b) c) Bài 7.2: Tìm x, y thoả mãn: a) b) c) * Chú ý1: Bài tốn cho dạng kết không thay đổi * Cách giải: (1) (2) Từ (1) (2) Bài 7.3: Tìm x, y thoả mãn: a) b) c) Bài 7.4: Tìm x, y thoả mãn: a) b) c) * Chú ý 2: Do tính chất khơng âm giá trị tuyệt đối tương tự tính chất khơng âm luỹ thừa bậc chẵn nên kết hợp hai kiến thức ta có tương tự Bài 7.5: Tìm x, y thoả mãn đẳng thức: Nguyễn Thị Huệ a) c) b) d) Bài 7.6: Tìm x, y thoả mãn : a) b) c) d) Bài 7.7: Tìm x, y thoả mãn: a) b) c) d) Dạng 8: * Cách giải: Sử dụng tính chất: Từ ta có: Bài 8.1: Tìm x, biết: a) b) c) d) e) f) Bài 8.2: Tìm x, biết: a) b) d) e) f) c) - Lập bảng xét dấu để bỏ dấu giá tri tuyệt đối Bài 1: Tìm x, biết: a) Ta lập bảng xét dấu x -3 x+3 + 2x-6 Căn vào bảng xét dấu ta có ba trường hợp * Nếu x3) 2- Bỏ dấu giá trị tuyệt đối theo ngun tắc từ ngồi vào Bài 1: Tìm x, biết: a) * + \f(1,2 = \f(4,5 = \f(4,5 - \f(1,2 = \f(3,10 2x-1= \f(3,10 2x-1= - \f(3,10 2x = \f(3,10 + 2x = - \f(3,10 + x= \f(13,20 x= \f(7,20 * + \f(1,2 =- \f(4,5 =- \f(4,5 - \f(1,2 (không thỏa mãn) - Sử dụng phương pháp bất đẳng thức: Bài 1: Tìm x, y thoả mãn đẳng thức: a) x-y-2 =0 x=-1 y+3 =0 y= -3 Bài 2: Tìm x, y thoả mãn : a) Bài 3: Tìm x, y thoả mãn: a) Bài 4: Tìm x thoả mãn: a) II – Tìm cặp giá trị ( x; y ) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối: Dạng 1: với * Cách giải: * Nếu m = ta có * Nếu m > ta giải sau: (1) Do nên từ (1) ta có: từ tìm giá trị tương ứng Bài 1.1: Tìm cặp số nguyên ( x, y) thoả mãn: a) b) c) Bài 1.2: Tìm cặp số nguyên ( x, y) thoả mãn: Nguyễn Thị Huệ a) b) c) Bài 1.3: Tìm cặp số nguyên (x, y ) thoả mãn: a) b) c) d) Bài 1.4: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 1.5: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Dạng 2: với m > * Cách giải: Đánh giá (1) (2) Từ (1) (2) từ giải tốn dạng với Bài 2.1: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 2.2: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Dạng 3: Sử dụng bất đẳng thức: xét khoảng giá trị ẩn số Bài 3.1: Tìm số nguyên x thoả mãn: a) b) c) d) Bài 3.2: Tìm cặp số nguyên ( x, y) thoả mãn đồng thời điều kiện sau a) x + y = b) x +y = c) x –y = d) x – 2y = Bài 3.3: Tìm cặp số nguyên ( x, y ) thoả mãn đồng thời: a) x + y = b) x – y = c) x – y = d) 2x + y = Dạng 4: Kết hợp tính chất khơng âm giá trị tuyệt đối dấu tích: * Cách giải : Đánh giá: tìm giá trị x Bài 4.1: Tìm số nguyên x thoả mãn: a) b) c) d) Bài 4.2: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) Bài 4.3: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) Nguyễn Thị Huệ Dạng 5: Sử dụng phương pháp đối lập hai vế đẳng thức: * Cách giải: Tìm x, y thoả mãn đẳng thức: A = B Đánh giá: (1) Đánh giá: (2) Từ (1) (2) ta có: Bài 5.1: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 5.2: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 5.3: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) III – Rút gọn biểu thức chứa dấu giá trị tuyệt đối: Cách giải chung: Xét điều kiện bỏ dấu giá trị tuyệt đối thu gọn: Bài 1: Rút gọn biểu thức sau với a) b) Bài 2: Rút gọn biểu thức sau x < - 1,3: a) b) Bài 3: Rút gọn biểu thức: a) b) c) Bài 4: Rút gọn biểu thức a) b) Bài 5: Rút gọn biểu thức: a) với x < - 0,8 b) với c) với d) với x > ==============&=&=&============== IV – Tính giá trị biểu thức: Bài 1: Tính giá trị biểu thức: a) M = a + 2ab – b với b) N = với Bài 2: Tính giá trị biểu thức: a) với b) với c) với d) với Bài 3: Tính giá trị biểu thức: 10 Nguyễn Thị Huệ 11 a) với b) với c) với x = d) với V – Tìm giá trị lớn – nhỏ biểu thức chứa dấu giá trị tuyệt đối: Dạng 1: Sử dụng tính chất khơng âm giá trị tuyệt đối: * Cách giải chủ yếu từ tính chất khơng âm giá trị tuyệt đối vận dụng tính chất bất đẳng thức để đánh giá giá trị biểu thức: Bài 1.1 : Tìm giá trị lớn biểu thức: a) b) c) d) e) f) g) h) i) k) l) m) n) Bài 1.2: Tìm giá trị nhỏ biểu thức: a) b) c) d) e) f) g) h) i) k) l) m) Bài 1.3: Tìm giá trị lớn biểu thức: a) b) c) d) e) Bài 1.4: Tìm giá trị lớn biểu thức: a) b) c) Bài 1.5: Tìm giá trị nhỏ biểu thức: a) b) c) Bài 1.6: Tìm giá trị nhỏ biểu thức: a) b) c) Dạng 2: Xét điều kiện bỏ dấu giá trị tuyệt đối xác định khoảng giá trị biểu thức: Bài 2.1: Tìm giá trị nhỏ biểu thức: a) b) c) d) e) f) Bài 2.2 : Tìm giá trị nhỏ biểu thức: a) b) c) Bài 2.3: Tìm giá trị lớn biểu thức: a) b) c) Bài 2.4: Tìm giá trị lớn biểu thức: Nguyễn Thị Huệ a) b) c) Bài 2.5 : Tìm giá trị nhỏ biểu thức: a) b) c) Dạng 3: Sử dụng bất đẳng thức Bài 3.1: Tìm giá trị nhỏ biểu thức: a) b) c) Bài 3.2: Tìm giá trị nhỏ biểu thức: a) b) c) Bài 3.3: Tìm giá trị nhỏ biểu thức: a) b) c) d) Bài 3.4 : Cho x + y = tìm giá trị nhỏ biểu thức: Bài 3.5: Cho x – y = 3, tìm giá trị biểu thức: Bài 3.6: Cho x – y = tìm giá trị nhỏ biểu thức: Bài 3.7: Cho 2x+y = tìm giá trị nhỏ biểu thức: 12