1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nguyên hàm – Tích phân Ứng dụng tích phân 12 (Phần 2: Tích phân)24109

20 12 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 371,5 KB

Nội dung

Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 CHỦ ĐỀ TÍCH PHÂN Khái niệm tích phân  Cho hàm số f liên tục K a, b  K Nếu F nguyên hàm f K thì: b F(b) – F(a) gọi tích phân f từ a đến b kí hiệu  f ( x )dx : b  f ( x )dx  F (b)  F (a) a a  Đối với biến số lấy tích phân, ta chọn chữ khác thay cho x, tức là: b  a b b a a f ( x )dx   f (t )dt   f (u)du   F (b)  F (a)  Ý nghóa hình học: Nếu hàm số y = f(x) liên tục không âm đoạn [a; b] diện tích S hình b thang cong giới hạn đồ thị y = f(x), trục Ox hai đường thẳng x = a, x = b laø: S   f ( x )dx a Tính chất tích phân   f ( x )dx   b  a b b a a a f ( x )dx    f ( x )dx b   kf ( x )dx  k  f ( x )dx (k: số)   b b b a a a   f ( x )  g( x )dx   f ( x )dx   g( x )dx b  a c b a c f ( x )dx   f ( x )dx   f ( x )dx  Neáu f(x)  [a; b] b  f ( x )dx  a  Neáu f(x)  g(x) [a; b] b b  f ( x )dx   g( x )dx b f u( x ).u '( x )dx  a a Phương pháp tính tích phân a) Phương pháp đổi biến số:  a u( b )  f (u)du u( a ) đó: u = u(x) có đạo hàm liên tục K, y = f(u) liên tục hàm hợp f[u(x)] xác định K, a, b  K b) Phương pháp tích phân phần b Nếu u, v hai hàm số có đạo hàm liên tục K, a, b  K thì: b b  udv  uv   vdu a a a Chú ý: – Cần xem lại phương pháp tìm nguyên hàm – Trong phương pháp tích phân phần, ta cần chọn cho b – Khi tính  b b a a  vdu dễ tính  udv f ( x)dx cần ý xem hàm số y = f(x) có liên tục a; b khơng ? Nếu có áp a dụng phương pháp học để tính tích phân cho cịn khơng kết luận tích phân khơng tồn Trang ThuVienDeThi.com Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hồ-0978333093 VẤN ĐỀ Tính tích phân cách sử dụng bảng ngun hàm + Biến đổi biểu thức hàm số để sử dụng bảng nguyên hàm baûn b  f ( x )dx  F (b)  F (a) + Tìm nguyên hàm F(x) f(x), sử dụng trực tiếp định nghóa tích phân: a Chú ý: Để sử dụng phương pháp cần phải: – Biến đổi biểu thức để có nguyên hàm – Nắm vững bảng nguyên hàm – Nắm vững phép tính vi phân Bài Tính tích phân sau: d)    x  dx  7 e  3e ĐS: a)  3ln  3 e d) e    e e   x  x  x 1 x 1 b)  dx x   a)   x   e3 x 1  dx x  1 e)  c) x  2x dx x3 f)  1  4 dx x2 2 e2 b) ln   x x   7x dx x c) f) e  7e  e) ln  Bài Tính tích phân sau: a)  x  1dx  x  x  x  dx d) b)  d)  e) ĐS: a)  x2 x3  x dx c)   x x  x dx f)  32  3   1 8  71 3 e)   60  b) 3     x    dx x2  dx x2  x2 c) 125 f)  7 3 8  Bài Tính tích phân sau: e2 x  dx a)  x e 2 e x 1  e 3 x  dx d)  x e d) Bài  e4 e4 ex b)  x dx ĐS: a) e   e x  c)  e 1   dx x   1 e)  e e b)  e) 9e3  4e  4e  e2 x x  2 e x 1 dx f)  2015 x  1 e 3 x dx c) e  e  ln  2015   3   e  x x  2015   3  e  3x f)    e C 2015 2015 ln 3 ln 3 e e Tính tích phân sau: Trang ThuVienDeThi.com Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 a)      0 sin  x   dx b)  2sin x  3cos x  x dx c)   sin 3x  cos x dx d)    tan xdx e)  b)  3 2  18 c) 2 x  dx f) dx   sin x 2 d) 3    e)   1 f) Tính tích phân sau: Bài    cos x 0  cos x dx 2 a)  2 cot  ĐS: a)  b)  2  sin x cos xdx  tan x  cot x dx c)     sin   x  4  dx d)  e)  cos xdx     x  sin     1 1 ĐS: a) b)    c) 8 4   f) tan x dx x  cos d)  ln e) 3   32 f) Bài Tính tích phân sau:    a)   cos  x   dx b) 2 1     sin x  cos x  x  dx   c)  cos xdx   4  sin x dx d) e)   cos x dx     g) dx  x x  2sin cos 2 (tan x  cot x )2 dx   x dx h)    cos x  f)  cos i)  sin x.cos3 xdx VẤN ĐỀ Tính tích phân phương pháp đổi biến b Dạng 1: Giả sử cần tính tích phân:  f ( x )dx a Nếu f ( x )  f u( x ).u '( x ) : b  f ( x )dx  u( b )  f (u)du u( a ) a b Dạng 2: Giả sử cần tính tích phân:  f ( x )dx Nhưng tính theo dạng không được, lúc ta chuyển hàm a lượng giác Ta thường gặp dạng sau:     a2  x dx dx aa2  xx 22 dx dx đặt : x  a cos t Đặt x  a sin t đặt : x  a cot t Trang Đặt x  a tan t ThuVienDeThi.com Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 x  a2 dx dx 2 x a   Đặt x  a sin t a cos t đặt x  ĐỔI BIẾN DẠNG Bài Tính tích phân sau 1  x 1  x  dx 19 a)  b) 0  d) dx c) 1  x  xdx 2x 1 ĐS: a) 420 x3 e)  x  x dx f) x  x dx ln  c) b)  16 x5 0  x dx d) e) f) Bài Tính tích phân sau 1 xdx a)  x 1 b) x d)  x  9dx 1 ln 2 ĐS: a) b) c)  f)  dx  x2 d)  x3 x5  x3 x x2  x2 dx  e) c)  x2 xdx dx e) ln 10 c) e x  e x 0 e x  e x dx f) 15  ln Bài Tính tích phân sau: a)  ln xdx x e e x dx 0 e x  b)  1  x 1 dx d)  x  x ln x ĐS: a) ln e  1 ln  e) b)  x e dx x e 1  f)  ecos x sin xdx e 1 2e 2 2 1 c) ln d) ln 2  ln  e) ln  ln Bài Tính tích phân sau e a)   ln x dx 2x x  xe dx e) ĐS: a) 32  1 d)  3ln x ln xdx x e b)  e b) 116 135 ln c) e x  1 e x x  e x dx dx f) c)  2 d) e  1 ln x dx x   e) e  e  f) Bài Tính tích phân sau : a)   2  d) sin x cos x  4sin x 2 dx cos x sin x dx b)   sin x    tan x dx cos x  e)     sin   x  4 dx   sin   x  4  Trang ThuVienDeThi.com c) sin xdx x  cos x  2sin  f)  cos 2015 x sin xdx f) e  ĐS: a)  ln 2 b) Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 c) ln d) e) f) Bài Tính tích phân sau a) x  1dx  b) 1 e) 3 3x 1 x dx f)  dx x2  x 2 1  c)  1 x x 2 dx d) e 1 e x dx g) ln x  x dx h)  xdx dx  x2 e ln2 x 1  ln x  x ĐỔI BIẾN DẠNG Bài Tính tích phân sau a) dx  1 x dx d)  x 3 b)  dx c) 4 x dx e)  2 x  1x   ĐS: a) x3 2 3 3 b) c) 2  d) f) x  e)    x dx 1  x xdx  x2   f) Bài Tính tích phân sau a)  1 x 1  d) ĐS: a) 2 dx b) dx  1 c) dx  1 x 0 e) b)   c) dx x  2x    x dx  x2  x  d) f)  12  e) x2 1 dx x3 f)  2 Bài Tính tích phân sau a) dx  b) 1  x  2 d) x x  x dx e) ĐS: a) 2   b)   c)  2 2 dx c) x x2 1  x2 dx f) 1  x  d)  x2  e) dx x dx  x2 f) VẤN ĐỀ Tính tích phân phương pháp tích phân phần Với P(x) đa thức x, ta thường gặp dạng sau: Trang ThuVienDeThi.com  dx Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 b  P( x ).e x b b a a a  P( x ).cos xdx dx a Đặt u  Đặt dv  b P(x) e x dx  P( x ).sin xdx P(x) P(x) cos xdx sin xdx  P( x ).ln xdx lnx P(x) Bài Tính tích phân sau  a) e  x.e dx x b)  x cos xdx c)  ln xdx  e d) e) ĐS: a) b)  8 x 0 cos2 x dx f) 2x   x  dx 1 e4  d) 32 c)  x e  x ln xdx e)   ln 2 f)  28 Bài Tính tích phân sau  ln a)  xe x dx b) c)   x  sin x cos xdx e) ĐS: a) ln  x e cos xdx e   2e  x ln xdx b) f) 0  x sin xdx 2 d) 2x  x  e dx c) d)   e) 4 f) e2  Bài Tính tích phân sau 2 e a) e  ln xdx b) ln x 1 x dx c)  x cos xdx e  e d)  x tan  xdx e)  ln x    1  ln x  dx f) 1  x dx ĐS: a)  2e b)  e c) 2 4 d)   2 3       ln   24  e) Bài Tính tích phân sau   x  e sin xdx a) b) c) e 3x sin xdx  e e  cos ln x dx e) e  ĐS: a) cos x  e sin xdx 0 d)  2  cos ln x dx b) c) e  1 10 e  d)  2 f)  sin x   cos x e dx x e) VẤN ĐỀ Tính tích phân hàm số có chứa giá trị tuyệt đối Trang ThuVienDeThi.com f) f) Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 b Dạng 1: Giả sử cần tính tích phân I   f ( x) dx , ta thực bước sau: a + Bước Lập bảng xét dấu (BXD) hàm số f(x) đoạn [a; b], giả sử f(x) có BXD: x f(x) b + Bước Tính I   x1 a + x2 - b + x1 x2 b a x1 x2 f ( x) dx   f ( x)dx   f ( x)dx   f ( x)dx a b  Dạng 2: Giả sử cần tính tích phân I   f ( x)  g ( x)  dx , ta thực hiện: a b b  Cách Tách I   f ( x)  g ( x)  dx  a Cách  a b f ( x) dx   g ( x) dx sử dụng dạng a Bước Lập bảng xét dấu chung hàm số f(x) g(x) đoạn [a; b] Bước Dựa vào bảng xét dấu ta bỏ giá trị tuyệt đối f(x) g(x) b b Dạng 3: Để tính tích phân I  max  f ( x), g ( x)dx J   f ( x), g ( x)dx , ta thực bước   a sau: a Bước Lập bảng xét dấu hàm số h( x)  f ( x)  g ( x) đoạn [a; b] Bước + Nếu h( x)  max  f ( x), g ( x)  f ( x)  f ( x), g ( x)  g ( x) + Nếu h( x)  max  f ( x), g ( x)  g ( x)  f ( x), g ( x)  f ( x) Bài Tính tích phân sau a)  x  dx b) d) x  c)  dx e) 3 ĐS: a) 2 x3  x dx   x   x  dx 40 d) c)  x  dx x  dx f) 2 b) x 2 f)  e) 44 ln Bài Tính tích phân sau a)  x  dx b)  x x  a dx (a tham số) e) b)  x dx  x  x  9dx c) 16 3 3   x  x  dx 1 f) ĐS: a)  1 1 d)  x3  x  xdx d)   c) a e) f) 18 16  2 5 Bài Tính tích phân sau 2 a)   cos 2xdx b)  d)      sin xdx e)   sin 2xdx c)  sin x dx  2    cos 2xdx f)  Trang ThuVienDeThi.com  cos 2xdx Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093   g)   tan x  cot x  2dx  cos x h)  b) 2 ĐS: a) cos x  cos3 xdx d) 4 c) e) g) ln  ln h) f) 2 Bài Tính tích phân sau a)  max x 2  1, x  2dx  3 , x b)  xdx  0  d)  max x , x dx e) max sin x, cos x dx     2 f)    sin x  cos x dx 0 Bài Tính tích phân sau a) x, x  dx 3 2   c) 1, x dx  b) max x , x  dx 2  x  c)  x   x  x  dx VẤN ĐỀ Tính tích phân hàm số hữu tỉ - Loại 1: Nếu bậc P(x)  bậc Q(x) ta thực phép chia đa thức - Loại 2: Nếu bậc P(x) < bậc Q(x) Q(x) có dạng tích nhiều nhân tử ta phân tích f(x) thành tổng nhiều phân thức (bằng phương pháp hệ số bất định) Các dạng dùng phương pháp hệ số bất định thường gặp: Dạng 1: Mẫu số có nghiệm đơn: P( x ) P( x ) A B    Q( x ) ( x  a)( x  b) x  a x  b P( x ) P( x ) A B C     Q( x ) ( x  a)( x  b)( x  c) x  a x  b ( x  c) Dạng 2: Mẫu số có nghiệm đơn bậc vơ nghiệm: P( x ) P( x ) A Bx  C    , với   b2  4ac  Q( x ) ( x  m)(ax  bx  c) x  m ax  bx  c Dạng 3: Mẫu số có nghiệm bội: P( x) P( x) A B    2 Q ( x ) x  a  x  a  x  a P( x) P( x) A B C     3 Q ( x ) x  a  x  a  x  a  x  a P( x ) P( x ) A B C D      2 Q( x ) ( x  a ) ( x  b ) x  a ( x  a) x  b ( x  b)2 P( x ) P( x ) A B C D E       2 Q( x ) ( x  a ) ( x  b ) x  a ( x  a) x  b ( x  b) ( x  b)3 - Loại 3: Một số nguyên hàm ta dùng phương pháp đổi biến phần Bài Tính tích phân sau Trang ThuVienDeThi.com Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093  a) 1 d) dx x  x3 x  1  x  3 dx x3 dx c)  x  2x 1 x dx  1  x  e) ) f) ln  ln 2 ĐS: a) dx b)  x  5x  c)  b) ln  ln dx  x 1  x   10 ln d) f) ln  3ln  e) Bài Tính tích phân sau a)  x  x  12 d) x2 ( x  1) 1x x dx e) ĐS: a)  25ln  16 ln f) x  x  5x   3 ln  ln  2 c)  e) ln  ln f) 3x   dx 2 x x  1 b)  d) c) x  dx b)  dx dx 4 x  11dx x2  5x  13 14 ln  ln  ln 3 15 ln 2 Bài Tính tích phân sau 1 d) x ĐS: a) b)  x   x   dx c)  3x  e)   9   b) ln x 1 2 x x  1 dx c) ln d) x dx  4x  dx a)  x  3x  f) x 2  ln  3ln e) dx  3x  dx  2x  f) Bài Tính tích phân sau x3  x  dx a)  x 1 x3  x  x  dx b)  x  3x  1 1 d) x2  3x  1 dx e) ĐS: a) d)  x 11  ln b) 32 ln  19 ln  ln  96 e) dx a)  x  2x  b)  x   x  3   e) ĐS: a) b) 3   dx 2 c)   1 dx f)  ln ln  ln 1  28  ln 1  28  ln f)  2008 2007 3x  2 x2  d)  16  x 2008 1 x 1  x 2008 dx c) x3  x  x  dx 0 x2  dx c) x3  x  0 x  dx  x4 Bài Tính tích phân sau d) 3x  3x  dx c)  x  3x  2 12 f) x e)   x dx 1 f)  Bài Tính tích phân sau a)  dx x 1  x  b)  dx  x2 Trang ThuVienDeThi.com  x2 1  x dx c) Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093  x4 dx d)   x e)  (2 x  1) 3ln  ln ĐS: a) b)  c) 7 x  199 ( x  1)2 f)  dx 101 2 x  1 6  ln   2    d)   e)  dx f)  Bài Tính tích phân sau a)  x (1  x ) dx b) d)  x7 168 b)  e) c) c)  dx  x.( x dx f) x (1  x ) 1 ln 2 dx x ( x  1) dx  x (1  x ) ĐS: a) d) e) 10  1)2 x 2001  1002 (1  x ) 117  41   135 12 f) dx 2002.21001 Bài Tính tích phân sau x3  dx a)  4x  x b) (1  x ) ĐS: a) b) dx c) e)  x dx x  3x   x7 d)   x2 1 x d) 128 5x c)  (x dx f)   4)2  x2 1 x  1  ln   2    e) dx dx f) Bài Tính tích phân sau a)  1 x xx d)  dx b) x4  x2  b) x 1 x 1 1 xdx ĐS: a) ln   e)  c) 3 dx x2  x4  x2   ln(2  3)  12  c) d) dx f)  e) x2 x4 1 dx x1006 x 2014  x1007    f) Vấn đề Tính tích phân hàm số vơ tỉ   + Dạng 1: f x  R  x , m ax  b   cx  d     + Dạng 2: f x   R   ( x  a)( x  b)      + Dạng 3: f x  R x , n ax  b , m ax  b + Dạng 4:   a2  x dx dx 2 a x tm  đặt:  đặt: t   ax  b cx  d xa  xb  đặt: t  n.m ax  b Đặt x  a sin t,   t  hoaëc: x  a cos t,  t   Trang 10 ThuVienDeThi.com  2100  900 dx Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 a2  x dx dx 2 a x  + Dạng 5:  + Dạng 6:  ax dx ax  ax dx ax Đặt x  a tan t,  t  hoaëc: x  a cot t,  t   Đặt x  a cos 2t  x  a b  x dx + Dạng 7:  Đặt x  a  b  a sin t Bài Tính tích phân sau a)  9x2  3x  d)  dx 1  b) 1 2x  dx e) c)  x2 x 1  x2   10  1 d) ln  3 x 3dx x 1 37 27 ĐS: a) x dx f)   x   x2 x 2 x  x2  38  43  25  e)  ln 1  27 b)   dx  dx c)  5  12     ln   3 f)    ln   Bài Tính tích phân sau a) x2  x  1 x x dx b) c) e)  ( x  1)3 x  x dx f) b)  ln c) ln  12 d) dx  2x  1 4x   x  x dx ĐS: a) dx 2x  1 d)  1 2x  15 e)   x3  3x  x x  x 1 15 f) dx Bài Tính tích phân sau a) 1 x  1 x d) x ĐS: a) dx b) x 1 3x   x   x  3dx dx e)  b) 3  ln c) 2x  x 1 x 1 c)  28  x dx d) x  1dx 1 11  ln x 3 f) 100  ln 27 e) 54  x dx ( x  1) f) x 1 16  11 Bài Tính tích phân sau a)  x  x 1 2 d) 2  dx x  x  2011x x4  b) x4 dx  1  x  x  x 1   dx e)  (1  x2 x 1  x x 1  2( x  1)  dx 3 c) x )  x Trang 11 ThuVienDeThi.com f)  x2 2 (1   x ) (2   x ) dx dx Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 32 3 ĐS: a) ln b) c) 2 d) 14077 213  16 128 e) 12  42 ln f) 19  4   ln      Bài Tính tích phân sau 13 x  x3  a) x4 3 b)  x ( x  1) x  10  x dx e) c) 15 ln f) Bài Tính tích phân sau 1  1 x  a)   x ln 1  x  dx  1 x   0 b)  (x e) b) 2 c)  1  3 16 d)   x )  x dx c)  f) x dx   2x  x2 f)   3 4 Bài Tính tích phân sau 8 a)  x  x dx b) 3 2014 e) x  2014  b) ln 16 dx dx 1 x 2 dx  d) ĐS: a) x  12  c)  2 f) (1  x )3  8   x  x dx dx c)  d) e) x dx  x2 f) Bài Tính tích phân sau 2 a)  x x  1dx b) 0 d)  x 1 x x 1 dx e) x3 x2 1 dx  dx  2x  1 c) 4x  f) dx x 1  x x4  x5  dx Bài Tính tích phân sau 10 a)  x  x 1 d)  dx x 1 3x  b)  x x  1dx dx e)  dx x x 4 Bài 10 Tính tích phân sau Trang 12 ThuVienDeThi.com 4x  c) 2 f)  3x  x5  x3 1 x   x dx 2x4 e)   18 3  2 2 x dx x2 3 2  x6 ĐS: a) x dx  d) dx 2        ln   1 ln 2 f) x  x 1  2 b)    ln ĐS: a) x  c) x 3dx d)  e)  x2 dx x x  1dx  d) dx dx dx Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 2 a)  1 x dx 1 x b)  2 dx c) x x2   1 dx d) x x3   1  dx x  x2  Bài 11 Tính tích phân sau a) 2  x  x dx b) 2014  d)  1 x  2014dx e) x2  x2 x2  1 dx c)  x dx  f) 0   dx (1  x )3 12 x  x  8dx VẤN ĐỀ Tính tích phân hàm số lượng giác  sin ax.sin bxdx   Dạng 1: Các dạng:   sin ax.sin bxdx    sin ax.sin bxdx  cos a.cos b  cos a  b   cos a  b    Phương pháp giải: Dùng công thức biến đổi thành tổng: sin a.sin b  cos a  b   cos a  b    sin a.cos b  sin a  b   sin a  b   n  sin axdx  Dạng 2:  n  N  n cos axdx   + Với n lẻ :  sin n axdx   sin n1 ax sin axdx   sin n1 ax sin axdx   cos   sin ax n  n 1  sin axdx    cos ax  sin n n 1 sin axdx Đặt : u  cos x axdx Phân tích sau đặt: u  sin x + Với n chẵn: Sử dụng công thức hạ bậc: cos ax  Dạng 3:   cos 2ax  cos 2ax ; sin ax  2 ax cos m axdx (n, m  N) + Với n lẻ hay m lẻ : n lẻ Đặt u = cosax ; + Với n m chẵn: Sử dụng công thức hạ bậc: cos ax   cos 2ax ; sin ax  m lẻ Đặt u = sinax 1  cos 2ax ; sin x cos x  sin x 2     cos ax dx Dạng 4:   dx    cos ax Sử dụng công thức:  cos ax  cos ax ax  cos ax  sin 2 Trang 13 ThuVienDeThi.com Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093    sin a  cos a  sin  a         Cần nhớ: sin a  cos a  cos  a   4      sin a  cos a   cos  a   4      sin ax dx Dạng 5:   dx   cos ax Phương pháp:    sin n ax dx Dạng 6:   dx   cos n ax Phương pháp: sin ax sin ax dx   dx Đặt u  cos x ax  cos ax cos ax cos ax  cos ax dx   cos2 ax dx    sin ax dx Đặt u  sin x  sin axdx   sin n  N   sin n ax dx    cosn ax dx    tan n axdx  Dạng 7:  n   cot axdx Phương pháp: sin ax n2  n2 cos ax  n2     dx    tan ax sin ax dx    cot ax cos ax n2 dx ; Đặt u  tan ax sin ax dx ; Đặt u  cot ax cos ax n  N  + Biến đổi cho tan ax làm thừa số chung + Thay : tan ax   tan n ax dx   cos ax Dạng 8:  n  N  n cot ax  dx   sin ax dx Dạng 9:  a.sin x  b.cos x  c Cách 1: Phương pháp chung: 1 cos ax Phương pháp: đặt u  tan ax u  cot ax 2dt  dx   x  1 t2 Đặt : t  tan   2 sin x  2t ; cos x   t ; tan x  2t 1 t2 1 t2 1- t  Cách 2: Phương pháp riêng: Nếu c  a  b Ta có: 1 1   a sin x  b cos x  c c 1  cos x -   2c cos x   Trang 14 ThuVienDeThi.com Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 a Trong : sin   b ; cos   a  b2 a  b2 dx  x   Khi : I   tan  C  2c cos x   c   a.sin x  b.cos x Dạng 10:  dx c.sin x  d cos x a sin x  b cos x B(c cos x  d sin x) Phương pháp: Phân tích  A c sin x  d cos x c sin x  d cos x Sau dùng đồng thức tìm A, B Dạng 11: a.sin x  b.cos x  m  c.sin x  d cos x  n dx Phương pháp: Phân tích a sin x  b cos x  m B(c cos x  d sin x) C  A  c sin x  d cos x  n c sin x  d cos x  n c sin x  d cos x  n Sau dùng đồng thức tìm A, B, C Dạng 12: dx  sin x  a sin x  b  Ta thực theo bước sau : + Bước 1: Sử dụng đồng thức :  sin a  b  sin x  a   x  b   sin a  b  a  b  + Bước 2: Ta : sin x  a   x  b  dx   sin x  a sin x  b  sin a  b   sin x  a sin x  b  dx  sin x  a cos x - b   sin x  b cos x - a  dx  sin a  b  sin x  a sin x  b    cos x  b  cos x  a   dx  dx   sin a  b   sin x  b  sin x  a    ln sin x  b   ln sin x  a   sin a  b    sin x  b  C ln sin a  b  sin x  a  * Chú ý: phương pháp áp dụng cho dạng tích phân sau :  cos x  a cos x  b  dx sử dụng đồng thức :  sin a  b  sin a  b  dx sử dụng đồng thức :  cos a  b  cos a  b   sin x  a cos x  b  Dạng 13: dx  sin x  sin  * Dùng cơng thức tổng thành tích biến đổi dạng 12 giải bình thường * Chú ý : Phương pháp áp dụng cho dạng tích phân sau : dx  cos x  cos  ; dx  cos x  m dx  sin x  m ; Trang 15 ThuVienDeThi.com m 1 Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 a1 sin x  b1 sin x cos x  c1 cos x dx Dạng 14:  a2 sin x  b2 cos x  + Biến đổi : a1 sin x  b1 sin x cos x  c1 cos x   A sin x  B cos x a2 sin x  b2 cos x   C sin x  cos x + Khi đó:   A sin x  B cos x a2 sin x  b2 cos x   C sin x  cos x  a2 sin x  b2 cos x dx    A sin x  B cos x   C  a2 sin x  b2 cos x C   A cos x  B sin x  b2 Trong : sin   dx a22  b22  sin x      A cos x  B sin x  a2 ; cos   C a22  b22 ln tan x  C a b a  b22 dx Dạng 15:  a sin x  b sin x cos x  c cos x dx dx + Biến đổi dạng :   2 a sin x  b sin x cos x  c cos x atan x  b tan x  c cot x 2 2 2 dt dx  1  tan x dx  1  t dx  dx  cos x 1 t2 dx dt + Khi   2 a sin x  b sin x cos x  c cos x at  bt  c + Đặt: t  tan x  dt  Dạng Tính tích phân lượng giác cách biến đổi lượng giác Bài Tính tích phân sau  a)  sin x cos xdx b) c) e)   sin  c) x  cos x dx f) cos3 x 0 cos x  dx e) x  cos3 x dx b)  2  sin x cos xdx  cos x sin  ĐS: a)  2  sin xdx  d)   d)  32 f) 3  Bài Tính tích phân sau  a)    sin x  cos x  sin x  cos x dx 2 cos x   cos x dx    2 b)  cos 3xdx c) d) 4 6  (sin x  cos x )(sin x  cos x )dx e) ĐS: a) b)  c)  1 d) 4  cos x(sin x  cos x )dx f)  cos x cos xdx 33  128 e) f)  Bài Tính tích phân sau  a) 2 8cos x  sin x  dx sin x cos x   b)  Trang 16 ThuVienDeThi.com  sin xdx c)  Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093  4sin3 x   cos x dx ĐS: a) 3 6 b) c) Dạng Tính tích phân lượng giác phương pháp đổi biến Bài Tính tích phân sau a) d)    sin x 0  3cos x dx    tan xdx b)  sin x cos xdx e) c)  sin xdx xdx  3  tan xdx f)  tan  ln ĐS: a) 2 ln b) c) 3  ln e) 2 d) 15 f)  2 Bài Tính tích phân sau a)   dx  sin x cos3 x b)  3 sin x 0  cos2 x dx c)  dx x.cos x   d)   sin   cos3 x sin x cos5 xdx e)   cos x tan x  cos x dx f)  tan x  e sin x cos x dx ĐS: a) d)  ln  2 b) 45 e)  2 c)  1 14 ln 3        ln   27    f) ln  e 2 1 Bài Tính tích phân sau a)   2 sin x cos x 0  cos x dx    sin x cos xdx b) d) e) 48 315  c)  1  sin x  sin xdx sin x tan x  1 cos x  2      b)    ln  c) dx f)  sin  d)  2 a)  dx  sin x ln   dx b)   cos x Trang 17 ThuVienDeThi.com c) dx   cos x dx x  cos x Bài Tính tích phân sau    sin x ln cos x dx ĐS: a)  e) ln 2 f) 2 27 Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093   ĐS: a)  cos x d)  dx  cos x ln b)  c) 3  d) 1  sin x cos x sin x e)  dx  sin x f)  1  sin x 2  cos x dx 2   3 e)   2 f) ln 2 Bài Tính tích phân sau   2 a)  dx sin x  cos x  b)    sin x  cos x  0 4sin x  3cos x  dx d)  b)  ĐS: a) ln   sin x  cos x  dx sin x  cos x   4sin x  3cos x  dx c)  dx dx    sin x.cos  x   4   c) d)  ln  e)  ln 2 dx   sin x sin x    6  e)  ln f) ln 2 f)   Dạng Tính tích phân lượng giác phương pháp phần Kết hợp với đổi biến Bài Tính tích phân sau a)    2 x  1cos xdx  c) e) ĐS: a)   b)  2  x cos xdx  2 x  1cos xdx f)  3  ln c) xdx   cos x  d)  xdx b)  cos x   ln d) 2 dx  cos 2 e) x 12     1  2  f) Bài Tính tích phân sau a)   2  x tan xdx b)    sin xdx c)  x sin x cos xdx d)   ln sin x  cos x ĐS: a)    ln  32 b) c)  d) 3 3ln   ln  Bài Tính tích phân sau  a)  sin x.e x 1 dx b) ĐS: a)  1 e e   e b) 5e 2 7 12 2x sin xdx c)  cos ln x dx d) c) sin ln  d) BÀI TẬP TỔNG HỢP TÍCH PHÂN LƯỢNG GIÁC Bài Tính tích phân sau Trang 18 ThuVienDeThi.com  ln 1  tan x dx  ln Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093    0  cos x dx  cos x  e) cos x dx f)    x sin x   ĐS: a)  c) tan xdx  g) b) cos5 xdx  d)  cos xdx a)  (sin x  1) x cos x 1  sin x  24 b) h) 15 c) g) h) 0  x dx i)  sin x.cos x a sin x  b cos x dx 13   15  f) e x 1 dx  cos x       cos x .e  dx   sin x d)   16 i)  e) 4 2  ln 2 2a Bài Tính tích phân sau a)    (cos x  1) cos x.dx b)  0 d) I   dx c) cos6 x    2  e) sin x  cos x dx  dx  2sin x  sin x.cos x   cos x dx f)  sin x tan xdx ĐS: a)   15 b) 28 15 c) d) e) ln  f) ln  Bài Tính tích phân sau   a)  sin x (2   cos x )dx b)    d)    sin x  cos x dx e) dx 2 sin x.cos x e c) sin x  2  sin x  dx  sin x sin x.cos3 x dx f)  sin x   sin2 x  dx ĐS: a)   b) 34 c) ln  d) 2 ln 32 52 e) e 1 f) (  2) 16 Bài Tính tích phân sau a)    sin x 6 sin x  cos x dx b)  d) I   sin x    sin x sin x  cos x  dx cos x dx e)  sin x  cos2 x  cos2 x     c)  sin x  cos2 xdx Trang 19 ThuVienDeThi.com f) sin xdx (sin x  cos x )3  dx Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 ĐS: a) b) c) 7  1 12 d) ln e)  f) Bài Tính tích phân sau  a)   b)  (sin x  cos x )3  dx c) cos3 x  sin3 x dx e) b) c)  x sin x   cos x dx     tan2 (cos x ) dx    cos (sin x ) 0 cos x sin x ĐS: a)1 3sin x  cos x   dx (sin x  cos x )3  d) 7sin x  5cos x d)  e) f) f) cos x  sin x  sin x  dx  12 Bài Tính tích phân sau  a)  cos x  sin x    tan  x   dx  cos x  ĐS: a) d) sin x b)  dx  x  ( x  sin x )sin x dx sin3 x  sin2 x c) 1 f) 2 cos x  4sin x  sin2 x.cos4 x  dx c)   2  ln    f) 34 3 e) cot x dx      sin x.sin x     4 42  b) sin x  e)    15   ln      d) 2 Bài Tính tích phân sau  a)  sin x 5sin x.cos2 x  cos x dx   sin x  cos x  sin x  cos4 x (tan x  tan x  5)  2 sin xdx  b)  d)      f) tan xdx cos x  cos2 x  ln  ln 2 d) ln 2 b)  ln ĐS: a) e) sin2 x dx sin x e)   cos3 x sin x.cos5 xdx dx c) 3  c) 12 91 ln(2  3) 3 f) Bài Tính tích phân sau a)    (cos x  sin x  3)  d) cos x  dx b)  tan( x  ) dx cos x   sin x cos x tan x  dx c) e) sin x  cos x dx    tan x 0 cos xdx Trang 20 ThuVienDeThi.com f)  cos x  cos x dx dx .. .Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093 VẤN ĐỀ Tính tích phân cách sử dụng bảng ngun hàm + Biến đổi biểu thức hàm số để sử dụng bảng nguyên. .. Tính tích phân phương pháp tích phân phần Với P(x) đa thức x, ta thường gặp dạng sau: Trang ThuVienDeThi.com  dx Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh... Loại 3: Một số nguyên hàm ta dùng phương pháp đổi biến phần Bài Tính tích phân sau Trang ThuVienDeThi.com Nguyên hàm – Tích phân - Ứng dụng tích phân- 12 TRƯƠNG NGỌC VỸ - Nha trang –Khánh Hoà-0978333093

Ngày đăng: 28/03/2022, 19:17

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w