1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập tiếp tuyến

2 831 10

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 147 KB

Nội dung

Tiếp tuyến của đồ thị hàm số. Bai 1. Cho hàm số ( ) 3 3 2 m y x mx C= − + . Tìm m để đồ thị của hàm số ( ) m C có tiếp tuyến tạo với đường thẳng : 7 0d x y+ + = góc α , biết 1 os 26 c α = Bai 2. Cho hs 3 2 3 4y x x= − + . Gọi d là đường thẳng đi qua điểm A(3;4) và có hệ số góc là m. Tìm m để d cắt (C) tại 3 điểm phân biệt A, M, N sao cho tiếp tuyến của (C) tại M, N vuông góc với nhau. Bai 3. Cho h m sà ố y = x 3 - 3x + 2 (C). Chứng minh rằng qua điểm 0 28 ;0 27 M    ÷   kẻ được ba tiếp tuyến với (C) trong đó có hai tiếp tuyến vuông góc với nhau. Bai 4. Cho hs 2 3 2 x y x − = − (C). Viết phương trình tiếp tuyến tại điểm M thuộc (C) biết tiếp tuyến cắt TCĐ và TCN tại A, B sao cho cos · ABI bằng 4 17 ,với I l giao 2 à tiệm cận của (C). Bai 5. Cho h m y = xà 4 – 4x 2 + 3 (C). Gọi (C 1 ) l à đồ thị đối xứng của đồ thị (C) qua điểm A( 1 ;2 2 ). Viết phương trình tiếp tuyến với đồ thị (C 1 ) biết rằng tiếp tuyến đó song song với đường thẳng (d): 16x + y – 2 = 0 Bai 6. Cho hs 1 1 mx y x − = − . Gọi d là tiếp tuyến của đồ thị hs tại giao điểm B của đồ thị với trục Oy. Xác định các giá trị của m để đường thẳng d cắt trục Ox tại A sao cho 1 1 3 OA OB + = Bai 7. Cho hs 3 2 3 1y x x= − + . Tìm hai điểm A, B thuộc (C) sao cho tiếp tuyến của (C) tại hai điểm A, B song song với nhau và 4 2AB = . Bai 8. Cho hs 3 2 4 1 (2 1) ( 2) 3 3 y x m x m x= − + + + + . Gọi A là giao điểm của đồ thị hs với trục tung. Tìm m sao cho tiếp tuyến của (C) tại A tạo với hai trục tọa độ một tam giác có diện tích bằng 1 3 . Bai 9. Cho hàm số: 2 2 ,(1) 1 x y x + = − . I là giao điểm hai tiệm cận của ( )C , đường thẳng ( )d có phương trình: 2 5 0x y− + = , ( )d cắt ( )C tại hai điểm ,A B với A có hoành độ dương. Viết phương trình các tiếp tuyến của ( )C vuông góc với IA . Bai 10. Hàm số: 1 2 x y x − = − . Lập phương trình tiếp tuyến của đồ thị (C ) biết tiếp tuyến này cắt trục Ox, Oy lần lượt tại hai điểm phân biệt A, B khác gốc toạ độ O sao cho OA = 4 OB Bai 11. Cho hs 2 1 ,(1) 1 x y x − = + . Gọi I là giao điểm của hai tiệm cận. Tìm trên (1) điểm M có hoành độ dương sao cho tiếp tuyến tại M với đồ thị (1) cắt hai đường tiệm cận tại A, B thỏa mãn: 2 2 40IA IB+ = . Bai 12. Cho hs 1 2 x y x − = − . Viết phương trình đường thẳng đi qua gốc tọa độ O và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho hai tiếp tuyến của (C) tại A, B song song với nhau. Bai 13. Cho hs 3 3 1y x x= − + + . Viết phương trình tiếp tuyến của đồ thị (C), tại các giao điểm của đồ thị (C) với đồ thị hàm số 4x y x − = . Bai 14. Cho hs 3 2 2y x x x= − + − . Tìm tọa độ các điểm trên trục hoành sao cho qua điểm đó kẻ được hai tiếp tuyến với đồ thị (C) và góc giữa hai tiếp tuyến này bằng 0 45 . Bai 15. Cho hs 2 3 1 x y x − = − . Viết phương trình tiếp tuyến ∆ của đồ thị (C) sao cho khoảng cách từ tâm đối xứng của (C) đến ∆ đạt giá trị lớn nhất. Bai 16. Cho hàm số y = 1 x x − . Tìm tọa độ điểm M thuộc (C), biết rằng tiếp tuyến của (C) tại M vuông góc với đường thẳng đi qua điểm M và điểm I(1; 1). Bai 17. Cho hs 4 2 4 1y x x= − + − . Tìm những điểm trên trục tung mà từ đó kẻ được đến đồ thị hs hai tiếp tuyến. Bai 18. Cho hs y = 1 x x − . Viết phương trình tiếp tuyến d của đồ thị (C), biết khoảng cách từ giao điểm I của hai tiệm cận đến tiếp tuyến d bằng 2 . Bai 19. Cho hs 2 1 1 x y x − = − . Gọi I là giao điểm của hai đường tiệm cận của đồ thị. Tìm điểm M trên đồ thị sao cho tiếp tuyến tại M vuông góc với IM. Bai 20. Cho hs 2 1 x y x − = + . Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến tạo với hai đường tiệm cận của (C) một tam giác có bán kính đường tròn nội tiếp lớn nhất. Bai 21. Cho hs 4 2 2y x x= − . Trên (C) lấy hai điểm phân biệt là A và B có hoành độ lần lượt là a và b. Tìm điều kiện của a và b để hai tiếp tuyến của (C) tại A và B song song với nhau. Bai 22. Cho hàm số mx mx y + − = 1 , (Cm). Gọi I là giao điểm hai đường tiệm cận của (Cm). Tiếp tuyến tại điểm bất kỳ của (Cm) cắt tiệm cận đứng và tiệm cận ngang tại A và B. Tìm m để tam giác IAB có diện tích bằng 12. Bai 23. Cho hs 3 2 3 3y x x= − + . Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua A(-1;-1). Bai 24. Cho hs 2 3 2 x y x − = − . Gọi M là một điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận tại A và B. Gọi I là giao điểm của hai đường tiệm cận. Tìm tọa độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích bằng 2 π . Bai 25. Cho hs 3 2 3y x x m= − + . Tìm m để tiếp tuyến của đồ thị tại điểm có hoành độ bằng 1 cắt trục Ox, Oy lần lượt tại A và B sao cho diện tích tam giác OAB bằng 3 2 . . kẻ được ba tiếp tuyến với (C) trong đó có hai tiếp tuyến vuông góc với nhau. Bai 4. Cho hs 2 3 2 x y x − = − (C). Viết phương trình tiếp tuyến tại điểm. phương trình tiếp tuyến với đồ thị (C 1 ) biết rằng tiếp tuyến đó song song với đường thẳng (d): 16x + y – 2 = 0 Bai 6. Cho hs 1 1 mx y x − = − . Gọi d là tiếp tuyến

Ngày đăng: 09/02/2014, 14:56

TỪ KHÓA LIÊN QUAN

w