Tiếng Việt

Một phần của tài liệu Hệ sinh cực tiểu của đại số đa thức xem như Môđun trên đại số Steenrod và các ứng dụng (Trang 103)

. í h{T )\ =n

Tiếng Việt

1. Trần Ngọc Nam (1999), Hệ sinh cực tiểu của đại số đa thức xem

như môđun trên đại số Steenrod, Khóa luận tốt nghiệp, Trườngđại học khoa học tự nhiên Hà nội.

2. Adams J.F. (1958), "On the structure and applications of the Steeruod algebra," Comment. Math. Helv. 32, pp. 180-214.

3. Adams J.F. (1960), "On the non-existence of elements of Hopf invariant one," Ann. of Math. 72, pp. 20-104.

4. Adams J.F. (1974), Stable homotopy and generalised cohomology,

University of Chicago Press, Chicago.

5. Adams J.F. (1978), Infinite loopspaces, A n n .of Math. Stud.,No. 90, Princeton University Press, New Jersey.

6 Adem J . (1952), "The iteration of Steenrod squares in algebraic topology," Proc. Nat Acad. Soi USA 38, pp. 720-726.

7. Alghamdi M . A . , Crabb M . c , Hubbuck J.R (1962), "Representa-

tions of the homology of BV and the Steenrod algebra I," London

Math. Sóc. Lecture Note Ser. 176 (2), pp. 217-234.

8. Atiyah M . (1961), "Characters and cohomology of finite groups,"

Inst Hautes Études Sà. PubL Math. 9, pp. 23-64.

9. Boardman J . M . (1993), "Modular representations on the homology

of powers of real projective spaces," Contemp. Math. 146, pp. 49-

70.

10. Bousfield A . K . , Kan D . M . (1972), Homotopy limits, completions

and localizations, Lecture Notes in Mathematics, Vol. 304, Springer- Verlag, Berlin-New York.

11. Browder w . (1969), "The Kervaire invariant of framed manifolds

and its generalization," Ann. of Math. 90 (2), pp. 157-186.

12. Bruner R., Lê Minh Hà, Nguyễn Hữu Việt Hưng (2005), "On be­

havior of the algebraic transfer," Trans. Amer. Math. Sóc. 357 (2), 473-487.

13. Carlisle D., Kuhn N.J (1989), "Subalgebras of the Steenrod alge­ bra and action of matrices on truncated polynomial algebras," J.

Algebra 121 (2), pp. 37Ơ-387.

14 Carlisle D.p. Wood R.M.W, "The boundedness conjecture for the action of the Steenrod algebra on polynomials," London Math. Sóc.

15. Carlsson G . (1984), "Equivariant stable homotopy theory and Se-

gal's Burnside ring conjecture," Ann. of Math. (2) 120 (2), pp.

189-224.

16. Carlsson G. (1986), "Segal's Burnside ring conjecture and related

problems in topology," Proceedings of the International Congress

of Mathematicians, California, pp. 574-579.

17. Crabb M . C . , Hubbuck J.R. (1996), "Representations of the ho-

mology of BV and the Steenrod algebra II," Progr. Math. 136, pp.

143-154.

18. Chen S.M., Shen X . Y . (1991), "On the action of Steenrod pow-

ers on polynomial algebras," Lecture Notes in Math., No. 1059,

Springer-Verlag, Berlin, pp. 326-330.

19. Crossley M . D . (1998), "H*(V) is of bounded type over A(p)," Proc.

Sympos. Pure Math. 63, pp. 183-190.

20. Crossley M . D . (1996), M(p)-annihilated elements in H*(CP°° X

C P0 0) , " Math. Proc. Cambridge Philos. Sóc. 120 (3), pp. 441-453.

21. Crossley M . D . (1999), "Monomial bases for Ht{CPx X C P0 0) over

A(p)" Trans. Amer. Math. Sóc. 351 (1), pp. 171-192.

22. Crossley M . D . (1999), nA(p) generators for H*v and Singer's ho-

23. Crossley M . D . , "On the cohomology of an elementary abelian Jh

group as a module over the Steenrod algebra," preprint.

24. Dickson L . E . (1911), " A fundamental system of invariants of the general modular linear group with a solution of the form problem,"

Trans. Amer. Math. Sóc. 12, pp. 75-98.

25. Franjou v., Schwartz L. (1990), "Reduced unstable .4-modules and

the modular representation theory of the symmetric groups," Ann.

Soi. École Norm. Sup. (4) 23 (4), pp. 593-624.

26. Giambalvo v., Nguyễn Hữu Việt Hưng, and Peterson F.p. (1994),

"H*(RP°° X • • • X RPX) as a module over the Steenrod algebra,"

CRM Proc. Lecture Notes 6, pp. 133-140.

27. Giambalvo v., Peterson F.p. (2001), "^-generators for ideals in the

Dickson algebra," J. Pure Appl. Algebra 158 (2-3), pp. 161-182.

28. Goerss p. (1986), "Unstable projectives and stable Ext: with ap­

plications," Proc. London Math. Sóc. (3) 53 (3), pp. 539-561.

29. Lê Minh Hà, "Sub-Hopf algebras of the Steenrcd algebra and the Singer transfer," preprint.

30. Husemoller D. (1966), Fibre bundles, McGraw-Hill, New York.

31. Nguyễn Hữu Việt Hưng (1991), "The action of the Steenrod squares

on the modular invariants of linear groups," Proc Amer. Math.

32. Nguyễn Hữu Việt Hưng (1997), "Spherical classes and the algebraic transfer," Trans. Amer. Math. Sóc. 349 (10), 3893-3910. Erratum 355 (9), pp. 3841-3842.

33. Nguyễn H ữ uViệt Hưng (2005), "The cohomology of the Steenrod algebra and representations of the general linear groups,"Trans. Amer. Math. Sóc. 357 (lũ),pp. 4065-4089.

34. Nguyễn Hữu Việt Hưng, Peterson F.p. (1995), ".Ả-generators for

the Dickson algebra," Trans. Amer. Math. Sóc.347 (12), pp. 4687- 4728.

35. Nguyễn Hữu Việt Hưng, Peterson F.p. (1998), "Spherical classes and the Dickson algebra," Math. Proc. Cambridge Philos. Sóc. 124 (2), pp. 253-264.

36. Janfada A.S., Wood R . M . W (2002), "The hit problem for symmet­ ric polynomials over the Steenrod algebra," Math. Proc. Cambridge Philos. Sóc. 13 (2), pp. 295-303.

37. Kahn D.s, Priddy S.B. (1978), "The transfer and stable homotopy theory," Math. Proc. Cambridge Philos. Sóc. 83 (1), pp. 103-111.

38. Kameko M . (1990), Products of projective spaces as Steenrod mod­ ules Ph.D. Thesis, Johns Hopkins University, Baltimore.

39. Kameko M . (1998), "Generators of the cohomology of w3," J. Math. Kyoto Univ. 38 (3), pp. 587-593.

40. Kameko M . , "Generators of the cohomology of BVA 11 poster Hội

nghị quốc tế về lý thuyết bất biến Gottingen, 3/2003.

41. Karaca ì. (1998), "On the action of Steenrod operations on poly-

nomial algebras," Turkish J. Math. 22 (2), pp. 163-170.

42. Lin W . H . , "Some differentials in the Adams spectral sequence for spheres," preprint.

43. Liulivicius A . (1962), The factorization of cyclic reduced powers by

secondary operations, Mem. Amer. Math. Sóc, No. 42, American

Mathematical Society, Providence.

44 Mahowald M . (1977), " A new infinite family in 27 r fT o p o l o g y 16

(3), pp. 249-256.

45. Mann B . M . , Miller E.Y., Miller H.R. (1986), "^-equivariant func-

tion spaces and characteristic classes," Trans. Amer. Math. Sóc.

295 (1), pp. 233-256.

46. May J.p. (1964), The cohomology of restricted Lie algebras and

Hopf alqebras, applications to the Steenrod algebra, Ph.D. Thesis,

Princeton University, New Jersey.

47. Meyer D . M . (2001), "Hit polynomial and excess in the mod p

Steenrod algebra," Proc. Edinburgh Math. Sóc. (2) 44 (2), pp. 323-

48. Meyer D . M . , Silverman J.H. (2000), "Corrigendum to 'Hit polyno-

mials and conjugation in the dual Steenrod algebra,'" Math. Proc.

Cambridge Philos. Sóc. 129 (2), pp. 277-289.

49. Milgram R . J . (1971), "Problems presented to the 1970 AMS sum-

mer colloquium in algebraic topology," Proc. Sympos. Pure Math.

XXII, American Mathematical Society, pp. 187-201.

50. Miller H.R. (1985), "The Sullivan conjecture on maps from classi-

fying spaces," Ann. of Math. (2) 120 (1), pp. 39-87.

51. Miller H.R. (1986), "The Sullivan conjecture and homotopical rep-

resentation theory," Proceedings of the International Congress of

Mathematicians, California, pp. 580-589.

52. M i n o r J.w. (1958), "The Steenrod algebra and its dual," Ann. of Math. 67, pp. 150-171.

53. Milnor J.W., Stasheff J.D. (1974), Characteristic classes, Ann. of

Math. Stud., No. 76, Princeton University Press, New Jersey. 54 Minami N . (1995), "The Kervaire invariant one element and the

double transfer," Topology 34 (2), pp. 481-488.

55 Minami N . (1995), "The Adams spectral sequence and the triple

transfer," Amer. J. Math. 117 (4), pp. 965-985.

doomsday conjecture," Trans. Amer. Math. Sóc. 351 (6), pp. 2325- 2351.

57. M i n a m i N . (1998), "On the Kervaire invariant problem," Contemp. Math. 220, pp. 229-253.

58. Mitchell S.A. (1985), "Splitting B(Z/p)n and F T " via modular representation theory," Math. z. 189 (1), pp. 1-9.

59. Monks K . G . (1994), "Polynomial modules over the Steenrod alge- bra and conjugation in the Milnor basis," Proc. Amer. Math. Sóc.

122 (2), pp. 625-634.

60. Mùi H . (1975), "Modular invariant theory and cohomology alge- bras of symmetric groups," J. Fac. Soi. Univ. Tokyo Sect. ỈA Math.

22, pp. 319-369.

61. Novikov s.p. (1959), "On the cohomology of the Steenrod algebra (Russian)," Dokl. Akad. Nauk SSSR 128, pp. 893-895.

62. Oliver R. (1998), "Vector bundles overclassifying spaces," Proceed­

ings of the International Congress of Mathematicians, Berlin, pp.

483-492.

63. Oliver R. (2003), "Equivalencesof classifying spaces completed at the prime 2 " Prépublications Mathématiques de ƯUniversité Paris

64. Papastavridis s. (1972), "A formula for the obstruction to transver-

sality," Topology 11, pp. 415-416.

65. Peterson F.p. (1987), "Generators of H*(RP°°A M P0 0) as a module

over the Steenrod algebra," Abstracts Amer. Math. Sóc. 833-55-

89.

66. Peterson F.p. (1989), M-generators for certain polynomial alge-

bras," Math. Proc. Cambridge Philos. Sac 105 (2), pp. 311-312.

67. Priddy s. (1985), "Recent progress in stable splittings," London

Math. Sóc. Lecture Note Ser. 117, pp. 149-174.

68. Priddy s. (1990), "On characterizing summands in the classifying

space of a group, I," Amer. J. Math. 112 (5), pp. 737-748.

69. Repka J, Selick p. (1998), "On the subalgebra of H,{(RPx)n; F2)

annihilated by Steenrod operations," J. Pure Appl. Algebra 127

(3), pp. 273-288.

70. Schwartz L . (1994), Unstable modules over the Steenrod algebra and

Sullivan's fixed point set conjecture, Chicago Lectures in Mathe- matics, Chicago.

71. Segal G . (1970), "Equivariant stable homotopy theory," Actes du

Congrès International des Mathématiciens, Nice, pp. 59-63. 72. Silverman J . H . (1995), "Hit polynomials and the canonical antiau-

(2) , pp. 627-637.

73. Silverman J.H. (1998), "Hit polynomials and conjugation in the dual Steenrod algebra," Math. Proc. Cambridge Philos. Sóc. 123 (3) , pp. 531-547.

74. Silverman J.H., Singer W . M . (1995), "On the action of Steenrod squares on polynomial algebras II," J. Pure Appl. Algebra 98 (1), pp. 95-103.

75. Singer W . M . (1989), "The transfer in homological algebra," Math, z. 202 (4), pp. 493-523.

76. Singer W . M . (1991). "On the action of Steenrod squares on poly- nomial algebras," Proc. Amer. Math. Sóc. I l l (2), pp. 577-583. 77. Spanier E . (1966), Algebraic Topology, McGraw-Hill, New York. 78. Steenrod N . E . (1947), Products of cocycles and extensions of map-

pings, Ann. of Math. 48, pp. 290-320.

79. Steenrod N.E., Epstein D.B.A. (1962), Cohomology operations, Ann. of Math. Stud., No. 50, Princeton University Press, New Jersey. 80. Sullivan D . (1971), Geometric topology. Part I: Localization, peri-

odicity, and Galois symmetry, Massachusetts Institute of Technol- ogy, Massachusetts.

81. Sullivan D. (1974), "Genetics of homotopy theory and the Adams conjecture," Ann. of Math. (2) 100, pp. 1-79.

82. Tan K . F . , X u K . (2000), "Dickson invariants hit by the Steenrod

square," Bull. Korean Math. Sóc. 37 (4) pp. 779-790

83. Tangora M.c. (1970), "On the cohomology of the Steenrod alge-

bra," Math. z. 116, pp. 18-64.

84. Tôn Thất Trí (1999), "On the first occurrence of irreducible mod­

ular representations of semigroups of all matrices," Vietnam J.

Math. 27 (1), pp. 89­92.

85. TonThất Trí (2002), "Onthe first occurrence ofirreduciblerepre­ sentations ofthe matrix semigroup," Acta Math. Vietnam. 27 (:.), pp. 5­11.

86. Walker G . ,Wood R . M . W . (2001), "Linking first occurrence poly­ nomials over F2by Steenrod operations," J. Algebra 246 (2), pp. 739­760.

87. Wang J.s.p. (1967), "On the cohomology of the mod 2 Steenrod algebra and the nonexistence of elements of Hopf invariant one,"

Illinois J. Math. 11,pp. 480­490.

88. Whitehead G . (1983), "Fifty years of homotopy theory," Bull.

Amer. Math. Sóc. (N. s.) 8 (1), pp. 1­29.

89. Wood R . M . W (1985), "Modular representations of QC{n,¥p) and homotopy theory," Lecture Notes in Math., No. 1172, Springer­ Verlag, Berlin, pp. 188­203.

90. Wood R . M . W . (1989), "Steenrod squares of polynomials and the

Peterson conjecture," Math. Proc. Cambridge Phũos. Sóc. 105 (2)

pp. 307-309.

91. W o o d R . M . W . (1989), "Steenrod squares of polynomials, Advances

in Homotopy Theory," London Math. Sóc. Lecture Note Ser. 139,

pp. 173-177.

92. Wood R . M . W . (1998), "Problems ill the Steenrod algebra," Bull.

London Math. Sóc. 146 (5), pp 449-517.

93. Wood R . M . W . , "Invariants of linear groups as modules over the

Steenrod algebra," preprint.

Tiếng Pháp

94. Cartan H . (1950), "Une théoiii? axiumatique des carrés de Steen-

rod," c. R. Acad. Set. Paris Sét. Math. 230, pp. 425-427.

95. Lannes J . (1992), "Sur les espaces fonctionnels dont la source est le

classifiant d'unp-groupe abélien élémentaire," Inst Hautes Etudes

Set. Publ. Math. 75, pp. 135-244.

96. Lannes J . (1994), "Applications dont la source est un classifi-

ant "Proceedings of the International Congress of Mathematicians,

Zurich, pp. 56&-5Ĩ3.

97. Lannes J., Zarati s. (1983), "Foncteurs dérivés de la déstabilisa-

98. Lannes J., Zarati s. (1983), "Invariants de Hopf d'ordre supérieur et suite spectrale d'Adams," c. R. Acad. Set. Paris Sér. I Math.

296 (15), pp. 695-698.

99. Trần Ngọc Nam (2003), "Transfert algébrique et representation

modulaire du gro ipe linéaire," republications Mathématiques de

ƯUniversité Paris 13.

100. Serre J.p. (1953), "Cohomologie des complexes d'Eilenberg-Mac Lane," Comment, irfath. Helv. 27, pp. 198-232.

101. Thom R. (1950), "Classes caractéristiques et i-carrés," c. R. Acad.

Sci. Pans Sér. I Math. 230, pp. 427-429.

102. Wu W . T . (1950). "Classes caractéristiques et z-carres d'une var- iété," a R. Acad. Sci. Paris Sét. I Math. 230, pp. 508-511.

Một phần của tài liệu Hệ sinh cực tiểu của đại số đa thức xem như Môđun trên đại số Steenrod và các ứng dụng (Trang 103)

Tải bản đầy đủ (PDF)

(115 trang)