Direct Sequence Spread Spectrum (DSSS)

Một phần của tài liệu Mạng truyền thông và di động (Trang 40)

i) Các quy tắc của FCC liên quan đến FHSS

2.3.2. Direct Sequence Spread Spectrum (DSSS)

Trải phổ chuỗi trực tiếp (DSSS) rất phổ biến và được sử dụng rộng rãi nhất trong số các công nghệ trải phổ vì nó dễ dàng cài đặt và có tốc độ cao. Hầu hết các thiết bị WLAN trên thị trường đều sử dụng công nghệ trải phổ DSSS (nhưng sẽ bị thay thế bằng OFDM có tốc độ cao hơn). DSSS là một phương pháp truyền dữ liệu trong đó hệ thống truyền và hệ thống nhận đều sử dụng một tập các tần số có độ rộng 22 MHz. Các kênh rộng này cho phép các thiết bị truyền thông tin với tốc độ cao hơn hệ thống FHSS nhiều.

a) Nguyên lý làm việc của DSSS

DSSS kết hợp tín hiệu dữ liệu tại trạm truyền với một chuỗi bit dữ liệu tốc độ cao (quá trình này được gọi là Chipping code hay Processing gain). Processing gain cao sẽ làm tăng tính kháng cự của tín hiệu đối với nhiễu. Processing gain tối thiểu mà FCC cho phép là 10 và hầu hết các sản phẩm thương mại đều hoạt động dưới 20. Nhóm làm việc IEEE 802.11 đã thiết lập yêu cầu processing gain tối thiểu là 11.

Tiến trình của DSSS bắt đầu với một sóng mang được modulate với một chuỗi mã (code sequence). Số lượng chip trong code sẽ xác định trải rộng bao nhiêu, và số lượng chip trên một bit (chip per bit) và tốc độ của code (tính bằng chip per second) sẽ xác định tốc độ dữ liệu.

b) Direct Sequence System

Trong băng tần 2.4 GHz ISM, chuẩn IEEE 802.11xác định việc sử dụng DSSS ở tốc độ dữ liệu 1 và 2 Mbps. Đối với chuẩn 802.11b thì tốc độ lên đến 5.5 và 11 Mbps

Các thiết bị 802.11b hoạt động ở tốc độ 5.5 và 11 Mbps đều có thể giao tiếp với các thiết bị 802.11 hoạt động ở 1 và 2 Mbps bởi vì chuẩn 802.11b cho phép tương thích ngược. Vì thế người dùng không cần nâng cấp thiết bị 802.11 trên toàn bộ mạng WLAN của họ sang thiết bị 802.11b.

Hiện nay thì các thiết bị theo chuẩn 802.11a cho phép tốc độ lên đến 54 Mbps nhưng không may là các thiết của chuẩn 802.11a không thể giao tiếp được với các thiết bị của chuẩn 802.11 và 802.11b (và chuẩn mới 802.11g) bởi vì 802.11a sử dụng băng tần 5 GHz UNII trong khi 802.11 và 802.11b sử dụng 2.4 GHz ISM.

Điều này có thể gây ra nhiều vấn đề bởi vì nhiều người sử dụng muốn tận dụng những lợi thế của công nghệ DSSS để truyền dữ liệu với tốc độ 54 Mbp nhưng lại không muốn tốn thêm chi phí cho việc nâng cấp lên một mạng mới. Vì thế, một chuẩn mới là chuẩn 802.11g đã ra đời cho phép hệ thống DSSS hoạt động trong băng tần 2.4 GHz ISM có thể truyền dữ liệu lên đến 54 Mbps. Công nghệ 802.11g là công nghệ 54 Mbps đầu tiên có thể tương thích ngược với các thiết bị 802.11 và 802.11b.

c) Channels

Không giống như hệ thống nhảy tần sử dụng chuỗi nhảy để xác định kênh, hệ thống DSSS sử dụng một quy ước để định nghĩa kênh. Mỗi kênh là một băng tần số liên tục rộng 22 MHz có tần số sóng mang là 1 MHz (giống với FHSS). Ví dụ, kênh 1 hoạt động từ 2.401 GHz đến 2.423 GHz (2.412 GHz +/- 11 MHz); kênh 2 hoạt động từ 2.406 GHz đến 2.429 GHz (2.417 GHz +/- 11 MHz) … Hình dưới minh họa điều này, hệ thống DSSS đạt được trải phổ bằng cách nhân tín hiệu nguồn với một tín hiệu giả ngẫu nhiên có tốc độ chip (Rc=1/Tc, Tc là thời gian một chip) cao hơn nhiều tốc độ bit (Rb=1/Tb, Tb là thời gian một bit) của luồng số cần phát.

Hình 2.12. Trải phổ chuỗi trực tiếp (DSSS)

Ký hiệu:

Tb = thời gian một bit của luồng số cần phát

Tn = Chu kỳ của mã giả ngẫu nhiên dùng cho trải phổ Tc = Thời gian một chip của mã trải phổ

FCC xác định chỉ 11 kênh đối với tần số không được cấp phép được sử dụng tại Mỹ. Chúng ta có thể thấy rằng kênh 1 và 2 trùng lặp với nhau một lượng đáng kể. Mỗi tần số liệt kê trong bảng được xem như là tần số trung tâm. Từ tần số trung tâm này, 11 MHz được cộng thêm hay trừ đi để có được một kênh rộng 22 MHz. Chúng ta cũng có thể dễ dàng nhận thấy rằng các kênh nằm cạnh nhau sẽ trùng lặp với nhau một lượng đáng kể.

Việc sử dụng hệ thống DSSS với các kênh trùng lặp trong cùng một vị trí vật lý sẽ gây nên nhiễu giữa các hệ thống. Hệ thống DSSS với các kênh trùng lặp không nên co- located bởi vì gần như chúng luôn luôn gây nên một sự giảm cấp đáng kể đối với băng thông. Bởi vì sóng mang được cách nhau 5 MHz và kênh rộng 22 MHz, nên các kênh chỉ nên co-located nếu như số kênh cách nhau ít nhất là 5 kênh. Ví dụ, kênh 1 và 6 không trùng lặp nhau, kênh 2 và 7 không trùng lặp nhau … Có tối đa 3 hệ thống DSSS có thể co-located đó là các kênh 1, 6 và 11 và các kênh không trùng lặp chỉ trên lý thuyết. Các kênh chỉ không trùng lặp trên lý thuyết là bởi vì trong thực tế kênh 1 và 6 (hay 6 và 11) có trùng nhau một phần nhỏ (tùy thuộc vào thiết bị sử dụng và khoảng cách giữa các hệ thống). Các kênh không trùng lặp này được minh họa trong hình dưới.

d) Ảnh hưởng của nhiễu băng hẹp

Cũng giống như hệ thống nhảy tần, hệ thống DSSS cũng có tính kháng cự đối với nhiễu băng hẹp bởi vì đặc tính trải phổ của nó. Một tín hiệu DSSS là dễ bị nhiễu băng hẹp hơn so với tín hiệu FHSS bởi vì băng tần DSSS sử dụng nhỏ hơn so với FHSS (rộng 22 MHz so với rộng 79 MHz như trong FHSS) và thông tin được truyền trên toàn bộ băng tần một cách đồng thời thay vì chỉ một tần số tại một thời điểm như trong FHSS. Với FHSS, sự nhanh nhạy của tần số và độ rộng băng tần số bảo đảm rằng nhiễu chỉ ảnh hưởng chỉ trong một thời gian ngắn làm hỏng chỉ một phần nhỏ dữ liệu.

e) Các quy tắc của FCC liên quan đến DSSS

Cũng giống như hệ thống FHSS, FCC quy định rằng hệ thống DSSS sử dụng tối đa 1 Watt công suất phát trong cấu hình điểm-đa điểm. Công suất phát tối đa không phụ thuộc vào sự lựa chọn kênh, có nghĩa là cho dù kênh nào được sử dụng đi nữa thì công suất phát tối đa cũng như nhau. Quy tắc này áp dụng cho cả công nghệ trải phổ 2.4 GHz ISM lẫn 5 GHz UNII.

Trong hệ thống THSS một khối các bit số liệu được nén và được phát ngắt quãng trong một hay nhiều khe thời gian trong một khung chứa một số lượng lớn các khe thời gian. Một mẫu nhẩy thời gian sẽ xác định các khe thời gian nào được sử dụng để truyền dẫn trong mỗi khung.

Lúc đầu các kỹ thuật SS được sử dụng trong các hệ thống thông tin của quân sự. Ý tưởng lúc đầu là làm cho tín hiệu được phát giống như tạp âm đối với các máy thu không mong muốn bằng cách gây khó khăn cho các máy thu này trong việc tách và lấy ra được bản tin. Để biến đổi bản tin vào tín hiệu tựa tạp âm, ta sử dụng một mã đươc "coi là" ngẫu nhiên để mã hoá cho bản tin. Ta muốn mã này giống ngẫu nhiên nhất. Tuy nhiên máy thu chủ định phải biết được mã này, vì nó cần tạo ra chính mã này một cách chính xác và đồng bộ với mã được phát để lấy ra bản tin (giải mã). Vì thế mã "giả định" ngẫu nhiên phải là xác định. Nên ta phải sử dụng mã giả ngẫu nhiên (hay mã giả tạp âm). Mã giả ngẫu nhiên phải được thiết kế để có độ rộng băng lớn hơn nhiều so với độ rộng băng cuả bản tin. Bản tin trên được biến đổi bởi mã sao cho tín hiệu nhận được có độ rộng phổ gần bằng độ rộng phổ của tín hiệu giả ngẫu nhiên. Có thể coi sự biến đổi này như một quá trình "mã hoá". Quá trình này được gọi là quá trình trải phổ. Ta nói rằng ở máy phát bản tin được trải phổ bởi mã giả ngẫu nhiên. Máy thu phải giải trải phổ của tín hiệu thu được để trả lại độ rộng phổ bằng độ rộng phổ của bản tin.

Hiện này phần lớn các quan tâm về các hệ thống SS là các ứng dụng đa truy nhập mà ở đó nhiều người sử dụng cùng chia sẻ một độ rộng băng tần truyền dẫn. Trong hệ thống DSSS tất cả các người sử dụng cùng dùng chung một băng tần và phát tín hiệu của họ đồng thời. Máy thu sử dụng tín hiệu giả ngẫu nhiên chính xác để lấy ra tín hiệu mong muốn bằng cách giải trải phổ.

Các tín hiệu khác xuất hiện ở dạng các nhiễu phổ rộng công suất thấp tựa tạp âm. Ở các hệ thống FHSS và THSS mỗi người sử dụng được ấn định một mã giả ngẫu nhiên sao cho không có cặp máy phát nào sử dụng cùng tần số hay cùng khe thời gian, như vậy các máy phát sẽ tránh được xung đột. Như vậy FH và TH là các kiểu hệ thống tránh xung đột, trong khi đó DS là kiểu hệ thống lấy trung bình.

Các mã trải phổ có thể là các mã giả tạp âm (PN code) hoặc các mã được tạo ra từ các hàm trực giao.

2.4. Antenna

IEEE định nghĩa anten là “phần của hệ thống truyền hay nhận được thiết kế để bức xạ hay nhận sóng điện từ”. Nói cách khác, anten lấy tín hiệu RF (được sinh ra bởi radio) và bức xạ nó vào trong không khí hay anten có thể nhận sóng điện từ cho radio.

Một khái niệm quan trọng cần phải biết là anten đẳng hướng (hay bức xạ đẳng hướng - isotropic). Theo phương diện toán học, đây là trường hợp lý tưởng khi một anten không bị suy hao (lossless anten) phát ra tín hiệu theo mọi hướng một cách bằng nhau. Xét một hình cầu và bộ bức xạ đẳng hướng nằm ở trung tâm của hình cầu, lúc đó trường điện từ sẽ bằng nhau ở tất cả các điểm trên bề mặt hình cầu. Anten đẳng hướng là một điểm tham chiếu hữu ích khi chúng ta xem xét các loại anten khác nhau.

Một phần của tài liệu Mạng truyền thông và di động (Trang 40)

Tải bản đầy đủ (DOCX)

(174 trang)
w