Khi thảo luận về hệ thống nhảy tần nghĩa là chúng ta đang thảo luận về hệ thống phải truyền trên một tần số xác định trong một khoảng thời gian và sau đó nhảy sang một tần số khác để tiếp tục truyền. Khi một hệ thống nhảy tần truyền trên một tần số, nó phải dùng tần số đó trong một khoảng thời gian xác định, khoảng thời gian này được gọi là Dwell time. Một khi dwell time kết thúc, hệ thống sẽ chuyển sang một tần số khác và bắt đầu truyền tiếp.
Giả sử rằng hệ thống nhảy tần truyền trên chỉ 2 tần số 2.401 GHz và 2.402 GHz. Hệ thống sẽ truyền trên tần số 2.401 GHz trong một khoảng thời gian dwell time (ví dụ 100 milisecond). Sau 100 ms radio phải thay đổi tần số truyền của nó sang 2.402 GHz và truyền thông tin tại tần số đó trong khoảng 100 ms. Vì trong ví dụ chúng ta chỉ sử dụng 2 tần số nên radio sẽ nhảy trở lại tần số 2.401 GHz và tiếp tục tiến trình truyền.
g) Hop Time
Khi xem xét hành động nhảy của radio nhảy tần, dwell time chỉ là một phần của quá trình nhảy. Khi radio nhảy tần nhảy từ một tần số A sang một tần số B, nó phải thay đổi tần số truyền theo một trong 2 cách. Nó phải chuyển sang một mạch (điện) khác để có thể truyền ở tần số mới hoặc nó phải thay đổi một số thành phần của mạch hiện tại để có thể chuyển sang một tần số mới. Trong cả 2 trường hợp, quá trình thay đổi phải được hoàn tất trước khi việc truyền có thể bắt đầu, khoảng thời gian thay đổi này bao gồm độ trễ của mạch điện. Khoảng thời gian nhỏ này là khoảng thời gian mà radio không thể
khoảng thời gian dwell time tương đối lớn vào khoảng 100-200 ms thì hop time là không đáng kể. Một hệ thống 802.11 FHSS thường nhảy giữa các kênh khoảng 200-300 us.
Với dwell time rất ngắn khoảng 500-600 us được sử dụng trong một số hệ thống nhảy tần như Bluetooth thì hop time có thể rất đáng kể. Nếu chúng ta nhìn vào tác dụng của hop time đối với băng thông dữ liệu, chúng ta sẽ phát hiện rằng hop time càng lớn (trong mối liên quan với dwell time) thì tốc độ truyền dữ liệu càng chậm. Điều này cũng có nghĩa là dwell time càng lớn thì tốc độ càng cao.