.4 Tiềm năng NLMT ở Việt Nam

Một phần của tài liệu Giáo trình năng lượng tái tạo Kỹ thuật điện - Điện tử (Trang 41)

Vùng Giờ nắng trong năm Bức xạ kcal/cm2/năm Khả năng ứng dụng Đông bắc 1500-1700 100-125 Thấp Tây bắc 1750-1900 125-150 Trung bình Bắc trung bộ 1700-200 140-160 Tốt

Tây nguyên, nam trung bộ 2000-2600 150-175 Rất tốt

Nam bộ 2200-2500 130-150 Rất tốt

Trung bình cả nước 1700-2500 100-175 Tốt

Hai ứng dụng chính của NLMT là:

Nhiệt mặt trời : Chuyển bức xạ mặt trời thành nhiệt năng, sử dụng ở các hệ thống

sưởi hoặc để đun nước tạo hơi quay turbin điện.

Điện mặt trời: Chuyển bức xạ mặt trời (dạng ánh sáng) trực tiếp thành điện năng

(hay còn gọi là quang điện – photovoltaics - PV).

Hai dạng hệ thống dân dụng sử dụng NLMT phổ biến nhất hiện nay là hệ thống nhiệt NLMT và hệ thống quang điện cá nhân. Một số hệ thống khác là: Hệ thống đun nước mặt trời, máy bơm NLMT và điện mặt trời sử dụng cho các trạm truyền thông vô tuyến ở vùng sâu vùng xa.

Nhu cầu về điện mặt trời tăng rất nhanh trong 20 năm qua, với tốc độ trung bình là 25% mỗi năm, trong năm 2004 tổng cơng suất lắp đặt điện mặt trời tồn cầu đạt 927 MW, tăng gần gấp đôi năm 2003( 574MW) và gấp hơn 40 lần so với 25 năm trước. Các quốc gia phát trên thế giới đang thúc đẩy mạnh mẽ các kế hoạch phát triển điện mặt trời thông qua cải thiện kỹ thuật cũng như trợ vốn.

2.3. Cấu trúc của trái đất

Đặc điểm chung: Các nhà khoa học tin rằng, khi các hành tinh đất trở nên lớn hơn, nhiệt độ của chúng cũng tăng lên theo do tác động của năng lượng do động lực (bởi sự di

30

chuyển của hành tinh), do va chạm của các thiên thạch lên hành tinh. Ngoài ra, nhiệt cũng được cung cấp liên tục từ các nguồn khác mà một phần cơ bản là từ nhiệt do phân rã các nguyên tố phóng xạ tự nhiên có mặt trong thành phần của Trái Đất (uranium, thorium, potassium). Theo thời gian, các nguyên tố này có xu hướng tự phân rã để chuyển thành các nguyên tố mới và khi phân rã để tạo thành các nguyên tối mới thì chúng sẽ giải phóng nhiệt. Do đó nhiệt độ bên trong Trái Đất sẽ càng ngày càng tăng và dẫn tới sự nóng chảy các vật chất. Các vật chất bị nóng chảy có tỷ trọng nhẹ (giàu các nguyên tố silic, nhôm, kiềm…) sẽ dâng lên cao và di chuyển về phía bề mặt Trái Đất. Các vật chất có tỷ trọng nặng hơn như sắt bị nóng chảy có xu hướng chìm về phía trung tâm của Trái Đất. Ngồi ra, một khối lượng khổng lồ khí cịn được tạo thành và thoát ra ngồi vỏ Trái Đất thơng qua các họng núi lửa. Các khí này có thành phần chủ yếu là hơi nước, đioxyt cabon, metan và có thể ammoniac đã tạo nên khí quyển của Trái Đất. Cũng từ nguồn khí này mà hơi nước được ngưng tụ tạo thành nước và dần dần tràn ngập các đại dương. Sự nóng chảy từng phần đã làm cho Trái Đất chuyển từ một hành tinh đồng nhất ban đầu thành một Trái Đất bị phân lớp theo thành phần. Các lớp có thành phần khác nhau:

Hình 2. 2. Sơ đồ trái đất

Sơ đồ cấu tạo Trái Đất: Trái Đất bao gồm 3 lớp có thành phần khác nhau. Phần trung tâm của Trái Đất là phần có mật độ cao nhất của Trái Đất, được gọi là nhân. Đây là một khối có hình cầu, cấu tạo chủ yếu bởi sắt và ít hơn là niken và một số nguyên tố khác. Lớp thứ 2, được gọi là manti, có tỷ khối nhỏ hơn nhân nhưng cao hơn lớp ngoài cùng. Lớp ngoài cùng và mỏng nhất của Trái Đất được gọi là vỏ và được cấu tạo bởi loại đá cứng có tỷ trọng nhỏ hơn của manti. Trong khi nhân và manti có chiều dày tương đối

31

ổn định và đồng nhất thì lớp vỏ lại khơng đồng nhất và có chiều dày biến đổi rất mạnh. Phần vỏ nằm bên dưới các đại dương, được gọi là vỏ đại dương, có chiều dày trung bình khoảng 8km trong khi đó phần vỏ bao gồm các lục địa, được gọi là vỏ lục địa, có chiều dày lớn hơn nhiều, trung bình khoảng 45 km và biến đổi từ 30 đến 70 km. Các lớp khác nhau của vỏ Trái Đất được xác định một cách gián tiếp nhờ nghiên cứu sự thay đổi mật độ theo chiều sâu thông qua việc đo đạc tốc độ truyền sóng điện từ được tạo thành bởi các trận động đất…, trong đó mỗi lớp có mật độ và thành phần khác nhau sẽ có tốc độ truyền sóng và giá trị sóng điện từ khác nhau.

32

Hình 2. 3. Cấu tạo của trái đất

Các lớp có đặc tính vật lý khác nhau: Ngoài sự thay đổi thành phần, sự thay đổi

bên trong Trái Đất còn được đặc trưng bởi những sự biến đổi khác trong đó quan trọng nhất là sự thay đổi đặc tính vật lý như sức bền của đá và trạng thái lỏng - rắn. Những sự thay đổi này bị khống chế bởi nhiệt độ và áp suất. Những nơi mà sự thay đổi đặc tính vật

33

lý không trùng khớp với ranh giới thành phần là các ranh giới giữa vỏ, manti và nhân. Các lớp có thành phần và các lớp có đặc tính khác nhau của Trái Đất.

Nhân trong và nhân ngoài: Bên trong phần nhân Trái Đất có sự phân dị giữa phần trong và phần ngoài. Do áp suất quá cao mà phần nhân trong mặc dù có nhiệt độ rất cao nhưng sắt khơng thể tồn tại dạng dung dịch nóng chảy. Phần nhân cứng này được gọi là nhân trong (inner core). Vây quanh phần nhân trong là một lớp mà do sự cân bằng giữa nhiệt độ và áp suất làm cho sắt nóng chảy và tồn tại dạng dung dịch. Phần này được gọi là nhân ngoài (outer core). Như vậy, sự khác nhau giữa nhân ngoài và nhân trong và ở đặc tính vật lý chứ khơng phải thành phần.

Quyển giữa - quyển trung gian (Mesosphere): Sức bền của một chất rắn bị khống chế bởi cả nhiệt độ và áp suất (nếu chất rắn bị nung nóng, sức bền của nó sẽ giảm và ngược lại). Sự khác nhau về nhiệt độ và áp suất đã phân chia vỏ và manti của Trái Đất thành 3 đới có sức bền khác nhau. Ở phần trong, các đá có thể có sức bền tương đối lớn mặc dù chúng có nhiệt độ khá cao. Như vậy, trong lịng Trái Đất tồn tại một đới rắn chắc có nhiệt độ cao nhưng cũng có sức bền tương đối cao nằm giữa khoảng từ ranh giới nhân manti (khoảng 2883 km) tới độ sâu 350 km và đới này được gọi là quyển giữa hay quyển trung gian.

Quyển mềm (asthenosphere): Trong phần trên của manti, từ độ sâu 350 km tới khoảng giữa 100-200 km dưới mặt đất là một đới được gọi là quyển mềm (hay quyển yếu - weak sphere), nơi mà sự cân bằng về nhiệt độ và áp suất làm cho đá có sức bền rất kém. Khác hẳn với đá trong quyển giữa, đá trong quyển mềm rất mềm dẻo và dễ bị biến dạng, tương tự như nhựa đường bị làm nóng. Các nhà địa chất đều cho rằng quyển mềm có cùng thành phần với quyển giữa, sự khác nhau giữa chúng chỉ là đặc tính vật lý (làm thay đổi sức bền của đá).

Thạch quyển (Lithosphere): Nằm bên trên quyển mềm là đới ngồi cùng có sức

bền cao nhất, nơi mà các đá nguội hơn, bền hơn, cứng hơn các đá quyển mềm. Đới này bao gồm cả phần trên cùng của manti và phần vỏ Trái Đất và được gọi là thạch quyển. Chú ý rằng mặc dù vỏ và manti có thành phần khác nhau, nhưng đặc tính vật lý là sức bền của đá là đặc điểm để phân biệt giữa thạch quyển và quyền mềm. Sự khác nhau này được quyết định bởi nhiệt độ và áp suất. Ở nhiệt độ 1.300oC và áp suất tương ứng với độ

34

sâu 100 km, tất cả các loại đá đều mất sức bền và dễ dàng biến dạng. Độ sâu này tương ứng với đáy của thạch quyển bên dưới các đại dương (hay thường được gọi là thạch quyển đại dương (Oceanic lithosphere). Ngược lại, đáy của thạch quyển lục địa (continental lithosphere) tồn tại ở độ sâu khoảng 200 km. Lý do của sự khác nhau này là sự khác nhau của gradient địa nhiệt.

2.4. Các ứng dụng pin năng lượng mặt trời

Pin mặt trời và lịch sử phát triển: Quang điện là một hiện tượng ánh sáng sinh

điện. Khi ánh sáng rọi trên bề mặt một vật. Vật sẽ hấp thụ năng lượng nhiệt của ánh sáng cho đến tần số thời gian đạt đến mức hấp thụ cao nhất. Vật sẽ khơng cịn hấp thụ năng lượng nhiệt của ánh sáng. Tại thời điểm này năng lượng ánh sáng sẽ tách điện tử rời khỏi bề mặt của vật trở thành điện tử tự do có khả năng làm cho vật trở thành dẫn điện.

Hiệu ứng quang điện được phát hiện đầu tiên năm 1839 bởi nhà vật lý Pháp Alexandre Edmond Becquerel. Tuy nhiên cho đến 1883 một pin năng lượng mới được tạo thành, bởi Charles Fritts, ông phủ lên mạch bán dẫn selen một lớp cực mỏng vàng để tạo nên mạch nối, thiết bị chỉ có hiệu suất 1%. Russell Ohl xem là người tạo ra pin năng lượng mặt trời đầu tiên năm 1946. Sven Ason Berglund đã có phương pháp liên quan đến việc tăng khả năng cảm nhận ánh sáng của pin.

Năm 1887 Heinrich Hertz quan sát thấy hiệu ứng quang điện ngoài đối với các kim loại (cũng là năm ơng thực hiện thí nghiệm phát và thu sóng điện từ). Sau đó Aleksandr Grigorievich Stoletov đã tiến hành nghiên cứu một cách tỷ mĩ và xây dựng nên các định luật quang điện.

Một trong các cơng trình của Albert Einstein xuất bản trên tạp chí Annal der Physik đã lý giải một cách thành công hiệu ứng quang điện cũng như các định luật quang điện dựa trên mơ hình hạt ánh sáng, theo thuyết lượng tử vừa được công bố năm 1900 của Max planck. Các cơng trình này dẫn đến sự công nhận về bản chất hạt của ánh sáng và sự phát triển của lý thuyết lưỡng tính sóng-hạt của ánh sáng.

2.4.1. Ứng dụng pin quang điện

Nguyên lý hoạt động của tế bào quang điện

Hiện tượng quang điện ngoài: Hiện tượng ánh sáng làm bật các electron ra khỏi

35

các electron ra khỏi một kim loại khi bước sóng của nó ngắn hơn hoặc bằng giới hạn quang điện của kim loại đó.

(2.1) Trong đó:

λ: bước sóng ánh sáng.

λ0: giới hạn quang điện của kim loại. A: Cơng thốt.

h, c: hằng số

Hình 2. 4. Hiện tượng ánh sáng làm bật electron ra khỏi bề mặt kim loại

Hiện tượng quang điện trong: Một số chất bán dẫn như Ge, Si, PbS, PbSe, PbTe,CdS, CdSe, CdTe… có tính chất đặt biệt như sau: Chúng là chất dẫn điện kém khi không bị chiếu sáng và trở thành chất dẫn điện tốt khi bị chiếu ánh sáng thích hợp, các chất này gọi là chất quang dẫn. Dựa vào thuyết lượng tử, ta có thể giải thích đặc tính của các chất quang dẫn như sau: Khi không bị chiếu sáng, các electron ở trong các chất nói trên điều ở trạng thái liên kết với nút mạng tinh thể. Khơng có electron tự do. Khi đó các chất nói trên là chất cách điện.

Khi chiếu sáng chất quang dẫn, mỗi phơtơn của ánh sáng kích thích sẽ truyền tồn bộ năng lượng của nó cho một electron liên kết. Nếu năng lượng mà electron nhận được đủ lớn thì electron đó có thể được giải phóng khỏi mối liên kết để trở thành electron dẫn và tham gia vào quá trình dẫn điện. Mặt khác, khi electron liên kết được giải phóng thì nó

36

sẽ để lại một lỗ trống. Lỗ trống này cũng tham gia vào quá trình dẫn điện. Kết quả là khối chất nói trên trở thành chất dẫn điện.

Hiện tượng ánh sáng giải phóng các electron liên kết để cho chúng trở thành các electron dẫn, đồng thời tạo ra các lỗ trống cùng tham gia vào quá trình dẫn điện gọi là hiện tượng quang điện trong. Hiện tượng quang điện trong được ứng dụng trong quang điện trở và pin quang điện.

Pin quang điện: Pin quang điện (còn gọi là pin mặt trời) là một nguồn điện chạy

bằng năng lượng ánh sáng. Nó biến trực tiếp quang năng thành điện năng. Các pin quang điện thường được làm bằng Si, Se, Ge, Te, CdS, GaAs... Ta hãy xét cấu tạo và hoạt động chung của pin quang điện.

Hình 2. 5. Sơ đồ cấu tạo của pin quang điện

Pin có một tấm bán dẫn loại n, bên trên có phủ một lớp mỏng chất bán dẫn loại p. Có thể tạo ra lớp này bằng cách cho khuếch tán một tạp chất thích hợp vào lớp bề mặt của lớp bán dẫn loại n. Trên cùng là một lớp kim loại rất mỏng. Dưới cùng là một đế kim loại. Các kim loại này cùng đóng vai trò các điện cực trơ.

Electron sẽ khuếch tán từ bán dẫn loại n sang bán dẫn loại p, để lại những lỗ trống dương. Các electron này vẫn có liên kết với các lỗ trống tạo thành một lớp gọi là lớp tiếp xúc p – n. Trong lớp tiếp xúc này có điện trường Etx hướng từ dương sang âm, tức là hướng từ bán dẫn loại n sang bán dẫn loại p. Điện trường Etx ngăn cản sự khuếch tán của electron từ n sang p và lỗ trống từ p sang n. Vì vậy người ta cịn gọi lớp tiếp xúc này là lớp chặn.

Khi chiếu ánh sáng có bước sóng ngắn hơn giới hạn quang dẫn vào lớp kim loại mỏng phía trên cùng thì ánh sáng sẽ đi xuyên qua lớp này vào lớp bán dẫn loại p, gây ra hiện tượng quang điện trong và giải phóng ra các cặp electron và lỗ trống. Electron khuếch tán dễ dàng từ p sang n qua lớp chặn. Cịn lỗ trống thì bị chặn lại và ở lại trong

37

lớp p. Kết quả là điện cực kim loại mỏng ở trên sẽ nhiễm điện dương và trở thành điện cực dương của pin, còn đế kim loại ở phần dưới sẽ nhiễm điện âm và trở thành điện cực âm của pin.

Nếu nối hai điện cực bằng một dây dẫn thơng qua một ampe kế thì sẽ có dịng quang điện chạy từ cực dương sang cực âm. Suất điện động của pin quang điện nằm trong khoảng từ 0,5V đến 0,8V. Vậy nguyên tắc hoạt động của pin quang điện là dựa vào hiện tượng quang điện trong xảy ra bên cạnh một lớp chặn. Pin quang điện đã được dùng làm nguồn điện cho các trạm nghiên cứu và cho sinh hoạt ở những nơi khó khăn cho việc dẫn điện lưới đến như: núi cao, hải đảo, các phương tiện lưu động, vệ tinh nhân tạo, trạm vũ trụ...

Để tránh gây ô nhiễm môi trường, người ta đã nghiên cứu thay thế các động cơ chạy xăng ở ôtô, máy bay... bằng các động cơ chạy bằng pin quang điện. Người ta sử dụng Pin quang điện để biến đổi năng lượng ánh sáng mặt trời thành điện năng (Solar Cell). Nếu dùng pin quang điện bằng chất bán dẫn Silic, hiệu suất của nó có thể đạt đến 14-15%. Người ta tính được trên diện tích 1m2 của pin quang điện được ánh sáng chiếu tới ta có thể nhận được một cơng suất điện là 100W và như vậy với diện tích của một mái nhà trung bình ta có đủ điện năng để thỏa mãn mọi tiện nghi cho một gia đình. Tuy nhiên, về giá thành của các Pin quang điện hiện nay còn tương đối khá đắt so với các nguồn năng lượng khác.

Nguyên lý hoạt động:

38

Hình 2. 7. Hệ thống 2 mức năng lượng trong đó E1<E2

Bình thường điện tử chiếm mức năng lượng thấp hơn E1. Khi chiếu sáng hệ thống, lượng tử ánh sáng (photon) mang năng lượng hv (h là hằng số Plank và v là tần số ánh sáng) bị điện tử hấp thụ và chuyển lên mức E2. Phương trình cân bằng năng lượng:

hv = E1-E2 (2.2)

Trong các vật rắn ,do tương tác rất mạnh của mạng tinh thể lên điện tử vành ngoài, nên các năng lượng của nó bị tách ra nhiều mức năng lượng con rất sát nhau và tạo thành vùng năng lượng. Vùng năng lượng thấp bị các điện tử chiếm đầy khi ở trạng thái cân bằng gọi là vùng hố trị mà bên trên của nó có năng lượng EV. Vùng năng lượng phía

Một phần của tài liệu Giáo trình năng lượng tái tạo Kỹ thuật điện - Điện tử (Trang 41)

Tải bản đầy đủ (PDF)

(160 trang)