La (%) Ba (%) Mn(%) O (%) Tỉ lệ La : Ba : Mn
LBM0.2 13,3 3,16 15,24 68,3 0.81 : 0.19 : 0.93
Bảng 3. 3: Bảng thành phần nguyên tố trong mẫu LMB0.2.
Ta có thể thấy trong mẫu LBM0.2 hồn tồn khơng chứa tạp chất và sự tồn tại của thành phần Ba có trong mẫu, kết hợp với kết quả của phép đo nhiễu xa tia X cho thấy đã pha tạp thành công Ba vào trong nền vật liệu Perovskite LMO với thành phần danh định tương đối chính xác.
KẾT LUẬN
Đã xây dựng thành cơng quy trình chế tạo vật liệu perovsikte bằng phương pháp kích nổ vi sóng. Đã chế tạo thành cơng bột nano LaMnO3 và LaMnO3 pha tạp Sr và Ba. Quy trình chế tạo đơn giản có khả năng ứng dụng cho nhiều loại vật liệu khác nhau.
Lượng nhiên liệu glycin sử dụng trong phương pháp kích nổ vi sóng có vai trị quyết định đến sự hình thành sản phẩm bột nano perovskite. Kết quả thực nghiệm cho thấy tỉ lệ glycine/kim loại tối ưu để pha tạp Sr và Ba vào nền LMO là F = 4.
Các perovsikte pha tạp thu được đều có cấu trúc lục giác với kích thước trung bình khoảng 20 nm. Các mẫu perovsikte thu được có độ tinh khiết cao và tỉ lệ thành phần các nguyên tố phù hợp với thành phần danh định.
Chế tạo được vật liệu LaMnO3 pha tạp Sr có độ xốp cao (30 – 40 %) có khả năng ứng dụng làm catot cho pin nhiên liệu rắn.
Các cơng trình khoa học đã cơng bố
1. Tran Thi Ha, Tang Thi Trung Anh, Pham Thuy Linh, Phi Thi Huong, Pham Nguyen Hai, Nguyen Hoang Nam, Bach Thanh Cong, Sai Cong Doanh, Nguyen Quang Hoa, Duong Van Tuan, Le Viet Bau, Ho Khac Hieu, DoanQuoc Khoa, Nguyen Viet Tuyen, “Pulsed electron deposition of LaMnO3 thin films with target made of LaMnO3 nano-powder synthesized by self-combustion method”, Proceedings of International workshop of Nanotechnology and Application, 08-11 November 2017, Phan Thiet, Viet Nam, pp.203-206, 2017.
2. Phi Thị Hương, Phạm Thùy Linh, Trần Thị Uyên, Nguyễn Hoàng Nam,
Trần Thị Hà, Nguyễn Việt Tuyên, “Nghiên cứu chế tạo hạt nano Perovskite bằng phương pháp kích nổ vi sóng”, Tạp chí Khoa học và Công nghệ Đại học Duy Tân 05(30), 72-77, 2018.
3. Thi Ha Tran, Thuy Linh Pham, Thi Huong Phi, Thi Uyen Tran, Hanh Nguyen La, Thanh Cong Bach, Cong Doanh Sai, Quang Hoa Nguyen, Viet Tuyen Nguyen, Hoang Nam Nguyen, Nguyen Hai Pham, Trong Tam Nguyen, Quoc Khoa Doan, Khac Hieu Ho,“Sr doped LaMnO3 nanoparticles prepared by microwave combustion method: a recyclable visible light photocatalyst”, Ceramic Internation, under review.
TÀI LIỆU THAM KHẢO
Tiếng Việt
1. Nguyễn Ngọc Long (2007), Vật lý chất rắn, NXB Đại học quốc gia, Hà Nội.
Tiếng Anh
2. Adler S.B., Lane J.A., Steele B.C.H (1996), "Electrodes kinetics of pouros mixed-conducting oxygen", Journal of Electrochemical Society, 143 (11),
pp. 3554-3564.
3. Albert T. (2009), "Review Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature", Energies, 2, pp. 1130-1150.
4. Antoni L. (2004), "Materials for solid oxide fuel ceels: The challenge of their stability", Materials Science Forum, 446, pp. 1073-1090.
5. Basu R. N. (2003), Recent Trend in Fuel ceel Science and Technology, Spinger, New York.
6. Berger D. , C. Matei, F. Papa, D. Macovei, V. Fruth, J. P. Deloume (2007), "Pure and doped lanthanum manganites obtained by combustion method",
Journal of the European Ceramic Society, 27, pp. 4395-4398.
7. Brichzin L., Fleig J., Habermeier H.U., Cristiani G., Maier J. (2002), "The geometry dependence of the polarization resitance of Sr-doped LaMnO3 microelectrodes on Yttria-stabilized zirconia", Solid state Ionics, 152-153,
pp. 499-507.
8. Burriel M., Garcia G., Santiso J., Kiner J.A, Chater R.J, Skinner S.J. (2008), "Anisotropic oxygen difusin properties in epitaxial thin films of La2NiO4+δ", Journal of Materials Chemistry, 18 (11), pp. 416-422.
9. Charmelle D. S., Ernst E. F., Julian S., Holger L. (2016), "A Review of using spray pyrolysis through Sol-gel materials in the synthesis of cathode
materials for lithium-ion batteries", South African Journal of Chemistry, pp. 88-97.
10. Chendong Z., Mingfei L. (2012), Solid oxide Fuel cell, Springer, New York. 11. Cheng J., Navrotsky A., Zhou X-D., Anderson H.U. (2005), "Enthalpies of
formation of LaMO3 perovskites (M = Cr, Fe, Co, and Ni)", Journal of MAterial Reseach Society, 20 (1), pp. 191-200.
12. Conceic L.D. (2010), “Combustion synthesis of LSCF porous materials for application as cathode in IT-SOFC”, Material Reseach Bulletin, 46, pp.308- 314.
13. Chunwen S. ,Rob H., Justin R. (2010), "Cathode materials for solid oxide fuel cells: A review", Solid State Electrochem, 14, pp. 1125-1144.
14. Clausen C., Bagger C., Bilde-Sorensen J.B., Horsewell A. (1994), "Interface between LaoJr o J4n03 and Y20i-stabrlized Zr02", Solid State Ionics, 70-71, pp. 59-64.
15. Colomer M. T., Steele B. C. H., Kilner J. A. (2002), "Structural and electrochemical properties of the Sr0.8Ce0.1Fe0.7Co0.3O3-𝝳 perovskite as cathode material for ITSOFCs", Solid State Ionics, 147, pp. 41-48.
16. Dang N. V. , T. D. Thanh, L. V. Hong, V. D. Lam, L. P. The (2011), "Structural optical and magnetic properties of polycrystalline BaTi1-xFexO3 ceramics",
Journal of Applied Physics, 110, pp. 043914-1-7.
17. De S. R. A., Kilner J.A., Walker J.F. (2000), "A SIMS study of oxygen tracer diffusion and surface exchange in La 0.8 Sr 0.2 MnO 3+𝝳," Materials Letters, 43, pp. 43-52
18. Endo A., Wada S., Wen C.J., Komiyama H., Yamada K. (1998), "Low Overvoltage Mechanism of High Ionic Conducting Cathode for Solid Oxide Fuel Cell", 145 (3), pp. 35-37.
19. Fergus J. W. (2005), "Metallic interconnects for solid oxide fuel cells",
Materials Science and Engineering, 397, pp. 271-283.
20. Fergus J. W. (2005), "Sealants for solid oxide fuel cells," Journal of Power Sources, 147, pp. 46-57.
21. Fergus J. W. (2003), "SOLID OXIDE FUEL CELL CATHODES: Polarization
Mechanisms and Modeling of the Electrochemical Performance", Annual Review of Materials Research, 33, pp. 361-382.
22. Fergus . F (2007), "Materials challenges for solid-oxide fuel cells", Journal of the Minerals, Metals and Materials Society, 59, pp. 56-62.
23. Fumo D. A. , J. R. Jurado, A. M. Segadães, J. R. Frade (1997), "COMBUSTION SYNTHESIS OF IRON-SUBSTITUTED STRONTIUM TITANATE PEROVSKlTES", Materials Research Bulletin, 32 (10), pp.
1459-1470.
24. Gellings P.J., Bouwmeester H. J. M. (2000), "Solid state aspects of oxidation catalysis", Catalysis Today, 58 (1), pp. 1-53.
25. Guo R. S. , Q. T. Wei, H. L. Li, F. H. Wang (2006), "Synthesis and properties of La0.7Sr0.3MnO3 cathode by gel combustion", Materials Letters, 60 (2), pp. 261-265.
26. Haile M. S. (2003), "Fuel cell materials and components", Acta Materialia, 51,
p. 5981–6000.
27. Hooger G. (2003), Fuel Cell Technology Handbook, CRC Press, New York. 28. Horita T., Yamaji K., Ishikawa M., Sakai N., Yokokawa H., Kawada T., Kato T.
(1998), "Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x/Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry", Electrochemical Society, 145 (9), pp. 3196-3202. 29. Ioroi T.H., Uchimoto T.Y., Ogumi (1998), "Preparation of Perovskite‐Type
Electrochemical Properties: II. Effects of Doping Strontium to on the Electrode Properties", Journal of Electrochemistry Society, 145(6), pp. 1999-2004.
30. Jiang S. P. (2002), "A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes", Solid State Ionics, 146, pp. 1-22.
31. Jiang S.P., Love J.G., Zhang J.P., Hoang M., Ramprakash Y., Hughes A.E., Badwal S.P.S. (1999), "The electrochemical performance of LSM/zirconia– yttria interface as a function of a-site non-stoichiometry and cathodic current treatment", Solid State Ionics, 121, pp. 1-10.
32. Jørgensenz M. J., Mogensen M. (2001), "Impedance of Solid Oxide Fuel Cell LSMO/YSZ Composite Cathodes", Journal of The Electrochemical Society, 148, pp. A433-A442.
33. Kenjo T., Nishiya M. (1992), "LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells lT.," Solid State Ionics, 57, pp. 295-302.
34. Koep E., David S. M., Das R., Charles C., Meilin L. (2005), "Characteristic Thickness for a Dense La0.8Sr0.2MnO3 Electrode", Electrochemical and Solid-State Letters, vol. 8, no. 11, pp. A592-A595.
35. La O’ G.J., Savinell R.F., Shao-Horn Y. (2009), "Activity Enhancement of Dense Strontium-Doped Lanthanum Manganite Thin Films under Cathodic Polarization: A Combined AES and XPS Study", Journal of The Electrochemical Society, 156 (6) , pp. B771-B781.
36. Lee Y.K, Kim J.Y., Moon K.I., HS P.J.W., Jacobson C.P., Visco S.J. (2003), "Conditioning effects on La1−xSrxMnO3-yttria stabilized zirconia electrodes for thin-film solid oxide fuel cells", Journal of Power Sources,
37. Li Y., Gemmen R., Liu X., “Review: Oxygen reduction and transpotation mechanisms in solid oxide fell cell cathodes”, z, 195, pp. 3345-3358.
38. Linh Nguyen Hoang , Nguyen Thuy Trang, Nguyen Tien Cuong, Pham Huong Thao, Bach Thanh Cong (2010), "Influence of doped rare earth elements on electronic properties of the R0.25Ca0.75MnO3 systems", Computational Materials Science, 50 , pp. 2-5.
39. Lu X., Faguy P.W., Liu M.L. (2002), "In Situ Potential-Dependent FTIR Emission Spectroscopy A Novel Probe for High Temperature Fuel Cell Interfaces," Journal of The Electrochemical Society, 149 (10), pp. A1293- A1298.
40. McIntosh S., Adler S.B., Vohs J.M., Gorte R.J. (2004), "Effect of Polarization on and Implications for Characterization of LSM-YSZ Composite",
Cathodes Electrochemical and Solid-State Letters, 7 (5), pp. A111-A114.
41. Minh N. Q. , Takahashi T. (1995), Science and Technology of Ceramic Fuel Cells, Elsevier Science, Amsterdam.
42. Nomura K., Tanase S. (1997), "Electrical conduction behavior in (La0.9Sr0.1)MIIIO3−δ(MIII=Al, Ga, Sc, In, and Lu) perovskites", Solid State Ionics, 98, p. 229–236.
43. Patil K. C. , S. T. Aruna, T. Mimani (2002), "Combustion synthesis: an update,"
Current Opinion in Solid State and Materials Science , 6, pp. 507-512.
44. Pingbo X. , Z. Weiping, Y. Kuo, J. Long, Z. Weiwei, X. Shangda (2000), "Size- controllable gly–nitrate low temperature combustion synthesis (LCS) of nanocrystalline La1-xSrxMnO3", Journal of Alloys and Compounds, 311, p. 90–92.
45. Prabhakaran K. , J. Joseph, N. M. Gokhale, S. C. Sharma, R. Lal (2005), "Sucrose Combustion Synthesis of LaxSr(1-x)MnO3 (x ≤0.2) Powders",
46. Segadães A. M. , M. R. Morelli, R. G. A. Kiminami (1998), "Combustion Synthesis of Aluminium Titanate", Journal of the European Ceramic Society, 18 (7), pp. 771-781.
47. Setoguchi T., Inoue T., Takebe H., Eguchi K., Morinaga K., Arai H. (1990), "Fabrication and evaluation of flat thick film type solid oxide fuel cell,"
Solid State Ionics, 37, pp. 217-221.
48. Stochniol G., Syskakis E., Naoumidis A. (1995), "Chemical Compatibility between Strontium‐Doped Lanthanum Manganite and Yttria‐Stabilized Zirconia", Journal of the American Ceramics Society, 78 (4), pp. 929-932. 49. Sujatha P. D., Sharma A. D., Maiti H. S. (2004), "Solid Oxide Fuel Cell
Materials: A Review", Transactions of the Indian Ceramic Society, 63 (2),
pp. 75-98.
50. Tanasescu S., Totir N.D., Marchidan D.I. (1998), "Thermodynamic data of the perovskite-type LaMnO3±x and La0.7Sr0.3MnO3±x by a solidstate electrochemical technique", Electrochimica Acta, 43, pp. 1675-1681.
51. Tanasescu S., Totir N.D., Marchidan D.I. (1999), "Thermodynamic properties of some perovskite type oxides used as SOFC cathode materials", Solid State Ionics, 119, pp. 311–315.
52. Tanasescu S., Totir N.D., Neiner D. (2001), "CORRELATIONS BETWEEN THE NONSTOICHIOMETRY AND THE THERMODYNAMIC DATA OF PEROVSKITE-TYPE COMPOUNDS IN THE La-Sr-Mn-O SYSTEM",
Journal of Optoelectronics and Advanced Materials, 3 (1), pp. 101 – 106.
53. Tao S.W., Irvine J.T.S. (2003), "A redox-stable efficient anode for solid-oxide fuel cells", Nature Materials, 2, p. 320–323.
54. Thuy Trang Nguyen, Thanh Cong Bach, Huong Thao Pham, The Tan Pham, Duc Tho Nguyen, Nam Nhat Hoang (2011), "Magnetic state of the bulk,
surface and nanoclusters of CaMnO3: a DFT study", Physica B: Physics of Condensed Matter, 406, pp. 3613-3621.
55. Trofimenko N.E., Ullmann H. (2000), "Oxygen stoichiometry and mixed ionic- electronic conductivity of Sr1−aCeaFe1−bCobO3−x perovskite-type oxides," Journal of the European Ceramic Society, 20, pp. 1241-1250. 56. Ullmann H., Trofimenko N. (1999), "Composition, structure and transport
properties of perovskite-type oxides," Solid State Ionics, 119, pp. 1–8.
57. Ullmann H., Trofimenko N., Tietz F., Stöver D., Ahmad-Khanlou A. (2000), "Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes", Solid State Ionics,
138, pp. 79–90.
58. Varma A. , A. S. Rogachev, A. S. Mukasyan, S. Hwang (1998), "
COMBUSTION SYNTHESIS OF ADVANCED MATERIALS:
PRINCIPLES AND APPLICATIONS", Advances in Chemical Engineering, 24, pp. 79-226.
59. Vohs J.M., Gorte R.J. (2009), "High-Performance SOFC Cathodes Prepared by Infiltration", Advanced Materials, 21, pp. 943–956.
60. Wang H. K. , Venkataraman T. (2015), "Challenges and prospects of anode for solid oxide fuel cells (SOFCs)," Solid State Ionics, 21, pp. 301–318.
61. Wang W., Jiang S.P. (2006), "A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells," Solid State Ionics, 177, pp. 1361–1369.
62. Weifan C., Fengsheng L,, Leili L., Yang L. (2006), "One- Step Synthesis of Nanocrytalline Perovskite LaMnO3 Powders via Microwave-Induced Solution Combustion Route", JOURNAL OF RARE EARTHS, 24, pp. 782 –
63. Woo L.Y., Glass R.S., Gorte R.J., Orme C.A., Nelson A.J. (2009), "Dynamic Changes in LSM Nanoparticles on YSZ: A Model System for Non- Stationary SOFC Cathode Behavior", Journal of The Electrochemical Society, 156 (5), pp. B602-B608.
64. Yamamoto O., Takeda Y., Kanno R., Noda M. (1987), "Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells", Solid State Ionics, 22, pp. 241-246.
65. Yang Y. J. , T. L. Wen, H. Tu, D. Q. Wang, J. Yang (2000), "Characteristics of lanthanum strontium chromite prepared by glycine nitrate process," Solid State Ionics, 135, pp. 475–479.
66. Yokokawa H., Sakai N., Kawada T., Dokiya M. (1990), "Thermodynamic analysis on interface between perovskite electrode and YSZ electrolyte",
Solid State Ionics, 40, pp. 398-401.
67. Yokokawa H., Sakai N., Kawada T., Dokiya M. (1992), "Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials", Solid State Ionics, 52, pp. 43-56.