Địnhlý nhỏ Fermat

Một phần của tài liệu Bài giảng toán THSC (Trang 29 - 30)

Định lý nhỏ của Fermat (hay định lý Fermat nhỏ - phân biệt với định lý Fermat lớn) khẳng định rằng nếu p là một số nguyên tố, thì với số nguyên a bất kỳ , ap – a sẽ chia hết cho p. Nghĩa là :

Một cách phát biểu khác của định lý như sau: nếu p là số nguyên tố và a là số nguyên nguyên tố cùng nhau với p, thì ap-1 -

1 sẽ chia hết cho p. Bằng ký hiệu đồng dư ta có:

Cũng có một cách phát biểu khác là: Nếu p là một số nguyên tố và a là số nguyên không chia hết cho p, thì a lũy thừa bậc

p-1 có số dư bằng 1 khi chia cho p.

Định lý Fermat nhỏ là cơ sở để kiểm tra tính nguyên tố theo xác suất trong kiểm tra Fermat.

Lịch sử

Pierre de Fermat lần đầu thông báo định lý trong một bức thư đề ngày 18 tháng mười, năm 1640 cho bạn ông là Frénicle de Bessy (theo [1]): p chia hết khi p là nguyên tố và a là số nguyên tố cùng nhau với p.

Như thường lệ, Fermat không chứng minh định lý này chỉ thông báo:

Et cette proposition est généralement vraie en toutes progressions et en tous nombres premiers; de quoi je vous envoierois la démonstration, si je n'appréhendois d'être trop long.

(And this proposition is generally true for all progressions and for all prime numbers; the proof of which I would send to you, if I were not afraid to be too long.)

Euler lần đầu tiên công bố một chứng minh vào năm 1736 trong bài báo tựa đề "Theorematum Quorundam ad Numeros Primos Spectantium Demonstratio", nhưng Leibniz đã có chứng minh với ý tưởng tương tự trong bản thảo không được công bố vào khoảng trước năm 1683.

Tên gọi "định lý nhỏ của Fermat" được dùng lần đầu vào năm 1913 trong Zahlentheorie bởi Kurt Hensel:

Für jede endliche Gruppe besteht nun ein Fundamentalsatz, welcher der kleine Fermatsche Satz genannt zu werden pflegt, weil ein ganz spezieller Teil desselben zuerst von Fermat bewiesen worden ist."

(There is a fundamental theorem holding in every finite group, usually called Fermat's little Theorem because Fermat was the first to have proved a very special part of it.)

Một phần của tài liệu Bài giảng toán THSC (Trang 29 - 30)

Tải bản đầy đủ (DOC)

(75 trang)
w