Chữa bài tập 55 SGK

Một phần của tài liệu giáo án hình 9 ( mới ) (Trang 97 - 103)

Bài 48: Cho hai điểm A, B cố định. Từ A vẽ các tiếp tuyến với các đờng tròn tâm B có bán kính

1. Chữa bài tập 55 SGK

Biết DAB = 800. DAM = 300. BMC = 700.

MAB = DAB - DAM = 800 - 300 = 500. (1) Tam giác MBC cân ( MB = MC ) nên:

BCM = 0 0 550

2 70

180 − = (2)

Tam giác MAB cân (MA = MB) mà MAB = 500 nên:

AMB = 1800 - 2 .500 = 800 (3) Tam giác MAD cân ( MA = MD) suy ra:

AMD = 1800 - 2. 300 = 1200. (4)

Ta cã DMC = 3600 - (AMD + AMB + BMC)

= 3600 - (1200 + 800 + 700) = 900. Bài 58: A

Theo gt:

DCB = ACB 300

2

1 =

Yêu cầu HS lên bảng chứng minh.

GV nhận xét cho điểm

Yêu cầu HS đọc kỹ đầu bài, vẽ hình....

Tìm phơng pháp chứng minh

GV hớng dẫn học sinh chứng minh.

D ACD = ACB + BCD

⇒ACD = 900. (1)

Do BD = CD nên tam giác BDC cân suy ra DBC = DCB = 300.

Từ đó: ABD = 900.(2)

Từ (1) và (2) ta có ACD + ABD = 1800 nên tứ giác ABCD nội tiếp đợc.

b) Vì ABD = 900. nên AD là đờng kính của đờng tròn ngoại tiếp tứ giác ABDC. Do đó tâm đờng tròn ngoại tiếp tứ giác ABDC là trung điểm của AD.

Bài tập khác:

Cho hai đờng tròn (O) và (O’) cắt nhau tại A và B sao cho điểm O’ thuộc đờng tròn (O). Qua A vẽ đ- ờng thẳng (d) nó cắt đờng tròn (O) tại điểm thứ hai C và cắt đờng tròn (O’) tại điểm thứ hai D. Chứng minh tam giác CBD là tam giác cân tại C.

Giải: hớng dẫn giải: Chứng minh tam giác CBD

đồng dạng với tam giác OBO’....

4. Củng cố: Nhắc lại định lý về tứ giác nội tiếp...

5. Hớng dẫn dặn dò: Làm các bài tập trong SGK và sách bài tập Ngày tháng năm 2007

Tiết 50: Đờng tròn ngoại tiếp, đờng tròn nội tiếp I. Mục tiêu:

HS cÇn:

- Hiểu đợc định nghĩa, hiểu đợc khái niệm, tính chất của đờng tròn ngoại tiếp (nội tiếp) một đa giác.

- Biết bất cứ một đa giác đều nào cũng có một đờng tròn ngoại tiếp và một đờng tròn nội tiếp.

- Biết vẽ tâm đa giác đều ( đó là tâm của đờng tròn ngoại tiếp, đồng thời là tâm của

đờng tròn nội tiếp ), từ đó vẽ đợc đờng tròn ngoại tiếp và đờng tròn nội tiếp của một

đa giác đều cho trớc.

II. Chuẩn bị:

- GV và HS chuẩn bị thớc. compa và êke III. Tiến trình giờ dạy:

1) ổn định lớp:

2) Kiểm tra bài cũ:thế nào là tứ giác nội tiếp đờng tròn ? nêu định lý về điều kiện

để một tứ giác nội tiếp đợc đờng tròn ? 3) Bài mới:

Hoạt động của thầy và trò Nội dung ghi bảng Hoạt động 1:Định nghĩa

Giáo viên cho HS quan sát hình 49 SGK....

Nêu khái niệm đờng tròn ngoại tiếp, nội tiếp hình vuông...

Vẽ đờng tròn tâm O bán kính R

= 2cm

- Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đ- ờng tròn (O).

- Vì sao tâm O cách đều tất cả

các cạnh của lục giác đều

Gọi khoảng cách này là r , hãy tính r và theo R?

- Vẽ đờng tròn (O;r)

GV nêu định lí

Không yêu cầu HS phải chứng minh định lí.

1) Định nghĩa:

Đờng tròn (O,R) là

đờng tròn ngoại tiếp hình vuông ABCD hình vuông ABCD là

hình vuông nội tiếp đờng tròn (O;R)

Đờng tròn (O; r ) là đờng tròn nội tiếp hình vuông ABCD và ABCD là hình vuông ngoại tiếp

đờng tròn (O;r)

Định nghĩa: SGK 2. Định lý:

SGK

Trong đa giác đều, tâm của đờng tròn ngoại tiếp trùng với tâm của đờng tròn nội tiếp và đợc gọi là tâm của đa giác đều.

4. Củng cố: Cho học sinh làm tại lớp bài tập số 61 SGK

b) Vẽ đờng tròn (O;R) ngoại tiếp tam giác đều ABC, tính R ? c) Vẽ đờng tròn (O;r) nội tiếp tam giác đều ABC, tính r ? d) Vẽ tiếp tam giác đều IJK, ngoại tiếp đờng tròn (O;R).

Giải:

a) học sinh tự vẽ tam giác đều ABC cạnh 3cm b) Vẽ đờng tròn (O;R) ngoại tiếp tam giác ABC - Xác định trọng tâm O

Vẽ đờng tròn bán kính AO TÝnh AO = R

- Tính đờng cao của tam giác đều ABC

Kẻ đờng cao AD, áp dụng định lí Pitago vào tam giác ADC ta tính đợc AD =

2 3 3 2

3

AC = từ đó tính đợc AO = 3

2 3 .3 3 AD 2 3.

2 = =

Do đó có R = 3(cm) - Vẽ đờng tròn (O;r)

- r = 1/3 đờng cao, theo trên có R = 3 nên r =

2 3(cm)

c) Vẽ các tiếp tuyến của đờng tròn (O; R) tại A, B, C giao của các tiếp tuyến này là

đỉnh của tam giác IJK: yêu cầu HS chứng minh nối I với O chứng minh đợc IO là

đờng phân giác của góc I, tơng tự chứng minh đợc OJ, OK là phân giác của các góc J và K từ đó O là tâm đờng tròn nội tiếp tam giác IJK. Dễ dàng chứng minh đợc tam giác IJK là tam giác đều.

5. Hớng dẫn dặn dò:làm các bài tập 61,63,64 SGK và các bài tập 44 đến bài 51 trang 80,81 sách bài tập.

Ngày tháng năm 2007

Tiết 51: Độ dài đờng tròn, cung tròn

I. Mục tiêu:

HS cÇn:

- Nhớ công thức tính độ dài đờng tròn C = 2πR ( hoặc C = πd ) - Biết cách tính độ dài cung tròn.

- Biết số đo π là gì.

- Giải đợc một số bài toán thực tế ( dây cua - roa, đờng xoắn, kinh tuyến...)

II. Chuẩn bị:

- Thớc, compa, bìa kéo, thớc có chia khoảng, sợi chỉ.

III. Tiến trình giờ dạy:

1) ổn định lớp:

2) Kiểm tra bài cũ: Cho tam giác đều ABC cạnh AB = a, hãy tính độ dài bán kính của đờng tròn ngoại tiếp và đờng tròn nội tiếp tam giác ABC theo a ?

3) Bài mới:

Hoạt động của thầy và trò Nội dung ghi bảng Hoạt động 1: Cách tính độ dài

cung tròn

a) Giáo viên giới thiệu công thức C = 2πR

Hớng dẫn học sinh làm bài tËp 65 SGK

GV yêu cầu HS lên bảng điền vào bảng phụ ( nội dung bài tËp 65 SGK)

GV tổ chức cho HS thực hiện ?1: Chia nhóm HS yêu cầu thực hiện các bớc theo SGK.

Các nhóm báo cáo kết quả.

( điền bảng theo SGK) GV nhận xét... kết luận.

Giáo viên yêu cầu HS điền vào bảng, nêu rõ phơng pháp tÝnh.

GV nhận xét cho điểm.

Thực hiện ?2

1. Công thức tính độ dài đờng tròn:

Độ dài đờng tròn ( C), bán kính R đợc tính theo công thức:

C = 2πR

Nếu gọi d là đờng kính ( d = 2R) thì:

C= 2πd Trong đó π≈3,14

Thực hiện ?1:

...

Điền vào bảng theo SGK ...

e) Nêu nhận xét:

áp dụng giải bài tập số 65:

BK(R) 10 5 3 1,5 3,2 4

§K(d) 20 10 6 3 6,4 8

C 62,8 31,4 18,84 9,4 20 25,1

2 2. Công thức tính độ dài cung tròn:

Cho học sinh điền vào chỗ trèng (...)

KL: Độ dài cung là....

HS tự giải

GV yêu cầu trình bày lời giải Nhận xét cho điểm

Đờng tròn bán kính R(ứng với 3600) có độ dài là: 2 πR. Vậy cung 10, bán kính R có độ dài là:

180 R 360

R

2π =π từ đó suy ra cung n0, bán kính R có độ dài là: π180R.n

Trên đờng tròn bán kính R, độ dài l của một cung n0

đợc tính theo công thức:

l =

180 n . πR

* áp dụng: tính độ dài cung 600 của đờng tròn có bán kính 2dm

áp dụng công thức l =

180 n .

πR ta cã:

l = 2,09(dm) 21(dm)

3 2 14 , 3 180

60 2 14 ,

3 ì ì = ì ≈ ≈

4. Củng cố:

5. Hớng dẫn dặn dò:

Ngày tháng năm 2007

Tiết 52: Luyện tập

I. Mục tiêu:

- áp dụng kiến thức đã học về tính độ dài đờng tròn (chu vi), độ dài cung tròn n0 vào việc giải các bài tập

- Rèn luyện kỹ năng tính toán, tìm hiểu phơng pháp tính khi cha có số π II. Chuẩn bị:

- GV soạn giáo án đầy đủ - HS làm bài tập

III. Tiến trình giờ dạy:

1) ổn định lớp:

2) Kiểm tra bài cũ: Nêu công thức tính độ dài đờng tròn, độ dài cung tròn n0?

áp dụng: Cho đờng tròn (O;3cm) tính độ dài cung tròn 450? (có thể tính đợc bằng mấy cách?)

3) Bài mới:

Hoạt động của thầy và trò Nội dung ghi bảng Hoạt động 1:

Bài tập 68 SGK trang 95 GV yêu cầu HS1 lên bảng vẽ hình.

HS2 trình bày lời giải.

Hãy tính độ dài các đờng tròn

?

So sánh (1) và (2) Kết luận

GV yêu cầu HS tự giải

Một phần của tài liệu giáo án hình 9 ( mới ) (Trang 97 - 103)

Tải bản đầy đủ (DOC)

(127 trang)
w