-1/ Nhõn 1 đơn thức với 1 đa thức A(B + C) = AB + AC
tớch lại
- Muốn nhõn 1 đa thức với 1 đa thức ta nhõn mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng cỏc tớch lại với nhau
- Khi thực hiện ta cú thể tớnh nhẩm, bỏ qua cỏc phộp tớnh trung gian
3/ Cỏc hằng đẳng thức đỏng nhớ
- Phỏt biểu 7 hằng đẳng thức đỏng nhớ ( GV dựng bảng phụ đưa 7 HĐT)
4/ Cỏc phương phỏp phõn tớch đa thức thàmh nhõn tử. 5/ Khi nào thỡ đơn thức A chia hết cho đơn thức B? 6/ Khi nào thỡ 1 đa thức A chia hết cho 1 đơn thức B - GV: Hóy lấy VD về đơn thức, đa thức chia hết cho 1 đơn thức.
- GV: Chốt lại: Khi xột tớnh chia hết của đa thức A cho đơn thức B ta chỉ tớnh đến phần biến trong cỏc hạng tử
+ A M B ⇔A = B. Q
7- Chia hai đa thức 1 biến đó sắp xếp
HĐ2: ỏp dụng vào bài tập Rỳt gọn cỏc biểu thức. a) (x + 2)(x -2) - ( x- 3 ) ( x+ 1) b)(2x + 1 )2 + (3x - 1 )2 +2(2x + 1)(3x - 1) - HS lờn bảng làm bài Cỏch 2 [(2x + 1) + (3x - 1)]2 = (5x)2 = 25x2
* GV: Muốn rỳt gọn được biểu thức trước hết ta quan sỏt xem biểu thức cú dạng ntn? Hoặc cú dạng HĐT nào ? Cỏch tỡm & rỳt gọn (HS làm việc theo nhúm) Bài 81: Tỡm x biết a) 2 ( 2 4) 0 3x x − = b) (x + 2)2 - (x - 2)(x + 2) = 0 c)x + 2 2 x2 + 2x3 = 0
Đại diện cỏc nhúm bỏo cỏo kết quả
Bài 79: Phõn tớch đa thức sau thành nhõn tử a) x2 - 4 + (x - 2)2 b) x3 - 2x2 + x - xy2 a) x3 - 4x2 - 12x + 27 (A + B) (C + D) = AC + BC + AD + BD - Đơn thức A chia hết cho đơn thức B khi
+ Cỏc biến trong B đều cú mặt trong A và số mũ của mỗi biến trong B khụng lớn hơn số mũ của biến đú trong A
- Đa thức A chia hết cho 1 đơn thức B:
Khi tất cả cỏc hạng tử của A chia hết cho đơn thức B thỡ đa thức A chia hết cho B
Khi: f(x) = g(x). q(x) + r(x) thỡ: Đa thức bị chia f(x), đa thức chia g(x) ≠0, đa thức thương q(x), đa thức dư r(x) + R(x) = 0 ⇒f(x) : g(x) = q(x) Hay f(x) = g(x). q(x) + R(x) ≠ 0 ⇒f(x) : g(x) = q(x) + r(x) Hay f(x) = g(x). q(x) + r(x) Bậc của r(x) < bậc của g(x)