toán nâng cao và các chuyên đề hình học 8

Tài liệu Các chuyên đề Hình học 12 – Chương trình Nâng cao ppt

Tài liệu Các chuyên đề Hình học 12 – Chương trình Nâng cao ppt

... Các chuyên đề Hình học 12 – Chương trình Nâng cao Trang 7 Giáo viên: HUỲNH VĂN KHÁNH Mob: 0 985 .80 4.279 Bài 56. (ĐH – Khối B – 20 08) Cho hình chóp S.ABCD có đáy ABCD là hình vuông ... chóp A.BCNM.  Các chuyên đề Hình học 12 – Chương trình Nâng cao Trang 3 Giáo viên: HUỲNH VĂN KHÁNH Mob: 0 985 .80 4.279 a. Tính . O ABC V đường cao OH theo a, b c. b. Tính diện ... tích bằng nhau. Các chuyên đề Hình học 12 – Chương trình Nâng cao Trang 2 Giáo viên: HUỲNH VĂN KHÁNH Mob: 0 985 .80 4.279 Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a,  0 120 ABC  ....

Ngày tải lên: 23/02/2014, 08:20

7 879 6
Tài liệu TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌC TRÊN TẠP CHÍ TOÁN HỌC - TUỔI TRẺ docx

Tài liệu TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌC TRÊN TẠP CHÍ TOÁN HỌC - TUỔI TRẺ docx

... VNMATH.COM VNMATH.COM 46 VNMATH.COM VNMATH.COM 12 VNMATH.COM VNMATH.COM 48 VNMATH.COM VNMATH.COM 17 VNMATH.COM VNMATH.COM 16 VNMATH.COM VNMATH.COM ... VNMATH.COM VNMATH.COM 10 VNMATH.COM VNMATH.COM 37 VNMATH.COM VNMATH.COM 28 VNMATH.COM VNMATH.COM 43 VNMATH.COM VNMATH.COM 30 VNMATH.COM...

Ngày tải lên: 20/01/2014, 15:20

82 914 5
Các chuyên đề hình học giải tích 12

Các chuyên đề hình học giải tích 12

... tích các điểm cách đều ( ) α và ( ) γ c)Tính khoảng cách giữa hai mp ( ) α và ( ) γ d)Tìm quỹ tích các điểm cách ( ) β một khoảng bằng 1 e)Viết phương trình mặt cầu có tâm thuộc trục Ox ... AD’ BD lúc đó MN song song với AC. 5.Cho hình chóp S.ABCD có đáy là hình thoi tâm O cạnh a, góc · 0 60BAD = đường cao SA = a. a) Tính khoảng cách từ O đến mp (SBC) b) Tính khoảng cách ... với BD tính theo a khoảng cách giữa hai đường thẳng MN AC. (Đề chính thức khối A năm 2007). 16.Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều nằm...

Ngày tải lên: 13/05/2014, 17:22

14 707 0
Các chuyên đề Hình học giải tích

Các chuyên đề Hình học giải tích

... y M ) là : CHUYÊN ĐỀ 8 VECTƠ TRONG KHÔNG GIAN Các định nghóa phép toán của vectơ trong không gian cũng giống như trong mặt phẳng, ta cần lưu ý đến các vấn đề cơ bản thông dụng ... tọa độ của A B là: A 243 , 77 ⎛⎞ ⎜⎟ ⎜⎟ ⎝⎠ B 243 , 77 ⎛⎞ − ⎜⎟ ⎜⎟ ⎝⎠ hoặc A 243 , 77 ⎛⎞ − ⎜⎟ ⎜⎟ ⎝⎠ B 243 , 77 ⎛⎞ ⎜⎟ ⎜⎟ ⎝⎠ CHUYÊN ĐỀ 6 HYPEBOL Để giải các bài toán có liên ... tuyến với (E) qua M (8, 0) là : 15 6 x – y – 8 5 6 = 0 ⇔ 15 x – 6y – 8 5 = 0 hay – 15 6 x – y + 8 5 6 = 0 ⇔ 15 x + 6y – 8 5 = 0 d) Phöông trình tieáp tuyến với (E) vuông góc với (D)...

Ngày tải lên: 25/05/2014, 03:09

48 440 0
TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌCTRÊN TẠP CHÍ TOÁN HỌC VÀ TUỔI TRẺ ppsx

TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌCTRÊN TẠP CHÍ TOÁN HỌC VÀ TUỔI TRẺ ppsx

... VNMATH.COM 1 www.vnmath.com TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌC TRÊN TẠP CHÍ TOÁN HỌC TUỔI TRẺ VNMATH.COM VNMATH.COM 21 ... VNMATH.COM VNMATH.COM 29 VNMATH.COM VNMATH.COM 44 VNMATH.COM VNMATH.COM 48 VNMATH.COM VNMATH.COM 11 VNMATH.COM VNMATH.COM 32 VNMATH.COM VNMATH.COM...

Ngày tải lên: 05/07/2014, 01:21

82 576 4
(Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích_Bài tập và hướng dẫn giải

(Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích_Bài tập và hướng dẫn giải

... song song cách đều (P) (Q) có PT: (α): ( 2 4) ( 2 6) 2 1 0 2 x y x y x y + − + + + = + + = Page 8 of 11 TRUNG TÂM HOCMAI.ONLINE P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-4 08 Hà Nội, ... một đường tròn có chu vi là 8 . Bài 10 : Tìm tập hợp tâm các mặt cầu đi qua gốc tọa độ tiếp xúc với 2 mặt phẳng có phương trình lần lượt là: (P): x+2y-4=0 (Q): x+2y+6=0 Bài 11 : Trong ... 2 ( ),( )d d và song song với Page 6 of 11 TRUNG TÂM HOCMAI.ONLINE P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-4 08 Hà Nội, ngày 12 tháng 06 năm 2010 B ÀI TẬP VỀ NHÀ (Hình học giải tích...

Ngày tải lên: 06/11/2013, 20:15

11 799 5
Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích phẳng_Bài tập và hướng dẫn giải pptx

Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích phẳng_Bài tập và hướng dẫn giải pptx

... (094)-2222-4 08 Hà Nội, ngày 12 tháng 06 năm 2010 HDG CÁC BÀI TẬP VỀ NHÀ Các bài toán về hình học giải tích phẳng thực sự cũng không khó khăn gì đâu các bạn ah!, Để học tốt phần này các bạn cần ... kiến thức từ trung học cơ sở như các yếu tố về điểm, đường thẳng trong tam giác tứ giác, kỹ năng phát hiện các yếu tố làm cơ sở để tìm ra hướng giải cho bài toán. Bài 1: Một hình thoi có một ... thẳng BG là: 7x-4y -8= 0. Tìm tọa độ các đỉnh A,B,C. Bài 9: Trong mặt phẳng Oxy, cho hình chữ nhật có tâm I(1/2;0). Phương trình đường thẳng AB là: x-2y+2=0 AB=2AD. Tìm tọa độ các đỉnh A,B,C,D....

Ngày tải lên: 13/12/2013, 17:15

12 3,1K 17
Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học không gian_Bài tập và hướng dẫn giải ppt

Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học không gian_Bài tập và hướng dẫn giải ppt

... Nội, ngày 10 tháng 06 năm 2010 BÀI TẬP VỀ NHÀ (Hình học không gian) Thể tích khối đa diện. (Các em tự vẽ hình vào các bài tập) Bài 1: Cho hình chóp S.ABC, trong đó SA vuông góc với mặt phẳng ... S.BCMN Bài 3: Cho hình chóp tứ giác đều S.ABCD có cạnh bằng a , SH là đường cao của hình chóp. Khoảng cách từ trung điểm I của SH đến mặt bên (SDC) bằng b . Tìm thể tích hình chóp S.ABCD Bài ... = = = Bài 3: Cho hình chóp tứ giác đều S.ABCD có cạnh bằng a , SH là đường cao của hình chóp. Khoảng cách từ trung điểm I của SH đến mặt bên (SDC) bằng b . Tìm thể tích hình chóp S.ABCD HDG...

Ngày tải lên: 13/12/2013, 17:15

8 960 31
Chuyên đề Hình học giải tích trong không gian OXYZ

Chuyên đề Hình học giải tích trong không gian OXYZ

... từ các ĐTQG Toán học – 263 + d 1 a d 2 a không cùng phương: d 1 d 2 chéo nhau.  Cách 2:  Tìm vectơ chỉ phương d 1 a , d 2 a của d 1 d 2  Tìm điểm A  d 1 ... z 4 3 2 1 .  Vấn đề 2: HÌNH CHIẾU ĐỐI XỨNG A. PHƯƠNG PHÁP GIẢI HÌNH CHIẾU Phương pháp  Cách 1: (d) cho bởi phương trình tham số: Bài toán 1: Tìm hình chiếu H của điểm A ... d 1 cắt d 2 , nên  đi qua giao điểm B của d 2 (). Tọa độ giao điểm B của d 2 () là nghiệm của hệ B H K A Q Hướng dẫn giải CDBT từ các ĐTQG Toán học – 2 38 Phương...

Ngày tải lên: 02/06/2014, 20:02

51 7,3K 9
Chuyên đề hình học không gian (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

Chuyên đề hình học không gian (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

... CDBT từ các ĐTQG Toán học – 160 Chiều cao h là khoảng cách từ đỉnh tới đáy. Hình chóp đều là hình chóp có đáy là đa giác đều các cạnh bên bằng nhau. Đỉnh của hình chóp đều có hình chiếu ... src=" 58+ XYgGmsLVXewWWai1AAAqWkNDgypXbNiwIS+bE6VzuVx///d/v3XrVhF5/fXXly1bZrW55FGB6i5UWeYcqqi1AAAK/Zk7lUotWLBARILBYCAQyONxWs9s0TTt5MmT+dpx+lb5qrvYM7JQawEAVDqPx6NW2W9tbc19c6J0kzLQ/PnzVXAp3GvJS92FKgupBQBgX1u2bFFhYvPmzfl6zlAopDpaLO+///6JEyeKEAJyyS5WZBGRI0eOEFlILQAAe3G5XAcOHBCRcDgci8Vyf8JUKqXmVLe1taXf/tvf/rZoLyqL7JIeWQrRnkxqAQAgD5qbm30+n4hs3Lgx92dTU6k1Tevr61O3qPjy4osvpj/MNM14PG6T7EJkyRX7mgIAirb3r7UhczAYzMsW0LquWzeqHYhEZGxsTN0yPj6uctLx48eLc95m2Ed6fHzcarixyebS7PkMAMBMZYnu7m4R6ejoyKUt 980 331TFlfS5QnV1dZqm+Xw+a/LzjRs3ksmkiKxduzbvy9DNqe7y+uuvr1mzhipLjpj5DACY6vJQsBmwhmEsXrw4kUh0d3d3dnZm/TyxWOy+++5zu92TnnzSLenL0Pl8vhMnThRhH0dl0hxpq8pi58hi85nPpBYAQLGvXtbmRKOjo7W1tUV4OT09PV1dXSJS/JnGKrtcunQpFovZv8pCagEAkFomq6+v13Xd5/OdOnWqOK/I2lig0MvQOTQQOOIg6WsBAJTA4cOHRSQSiQwPDxfnJzY0NCSTSU3T7r///iVLlvAWODJMU2sBnMs0zXnz5s36MP6b5+sDaEHZ7W0qwmfuQCAQDoc1Tbty5UomvSbRaPTXv/71lBsCTHm0pmne+rSqBXhS70vZnNKyP0hqLYCDuVyuzKcyIsdIUZwZpxVl//79IpJIJPbt25dJRt+wYUNra2smU4FisVh9ff3TTz99611ut7skkQX5CVX8RQMAlOozt9WWm0wmZ+6QbW9v7+/v1zTt8uXLt8aOSUdrtbCMjY3NmlHUQr1FaHOh1pI7ai0AgJJpaWlRC6+phW5nCBb9/f0icuDAgUwqJQ0NDepph4aGZn5kKpVavXq11+stWnsNSC0AAEdyuVxHjhwRkXA4PN3ePaZprl69WkR8Pl9zc3OGz7x161YR+c53vjPrIxcsWCA3l6EzTZM3xc4YIQIATHV5KOJIgWrL9Xq9 58+ fv7V/Vo0NyYyjSLcebTweX7RokWQw9mSa5tNPP63WgivoMnSMEOWOWgsAoMR27twpIrquDw4OTrrLGhsKBoNzWhqutrbW6/WKyN69e2d+pMvlCoVCap+BSCRSU1NjbQgA24Uqai0AgJJ/5rbWrp3UP5tKpdRU55kXo5vyaFWrr6ZpV69ezeQYrB5eyayN1+antCwPktQCACj91cs0zZqamkQi0dbWpkov6W7dXSgThmFUV1d7vd5IJJJhnSaVSnm93q1bt+ayQRKphdQCACjzq9fw8PDatWslr5sTxePxuT5VdgmJ1EJqAQBU1tVLbU7k9XovXrzIKeUgb0U3LgDALtTyKrquh0Ih+xxVKBRSK9GB1AIAwB/U1ta2tbWJyJe//OULFy7Y4ZBisVhra6vX67VVkCK1AABQej09PS6X63//938feeQROxyPpmk+n09E1BZILENHagEA4A9+8IMfqGTwzjvvxOPxDL+rqqpqhn25Y7FYU1PTrl27sjgej8dz4sQJv98vIl1dXWvWrFG7RqMk6MYFAEydA6ToXZnWgrb33HPPb37zG5/PN/MyLRke7a5du7Zv3575wi0zPImIaJqm6/qclrwr4Skts4MktQAAbHH1Mk1z2bJlag7RP/7jPz7wwAMiMjIy0tDQkOPRplIptdmQruu57O1sLUOXXQAiteSOESIAgC0MDg7qui4iQ0NDS5cuVYMyGzZsyL2VxOPxqN6U733ve7k8T0NDQzKZ1DRN7fiIEoQqai0AgJJ/5lbr2IrIwMDAtm3bprwll6O1lrAbHx8v0OaIdjulZXmQpBYAgC2uXrFYbOPGjenbPlutJLPuCjTr0ZqmOW/ePMl4yInUYs/DY4QIAGALdXV1Fy9eTC+EbNmyRdM0Edm8eXOOT+5yudRKMN/4xjfye9imaQYCAZahI7UAACqay+VSHSThcDj3WPDss8+KyKVLl/K75sq+ffvC4TDL0JFaAACVrqGhQTXSbty4cYa0MTExMeugRl1d3cjIyNWrV/Pb1/LUU09Zy9C1t7ezDF1B0dcCAJjq8lCU/oZM9mS2FnEJBoOBQMCG58o0zY6Ojv7+fhHx+Xw//vGPp+zCoa8ld9RaAAClkUqlFi1a1NTUNPNqs7W1td3d3SLS0dFhz3VpXS7Xzp07BwYGRCQSiSxevDjzVX1BagEAOEB7e7uIXLp06fbbb5/5kTt27NA0LZFI7Nixw7YvZ9u2bSMjI+o4c28fxpQYIQIATHV5KPBIgbWASobr1YZCodbWVhEZHR2ddVCphFKplM/nO3v27K2DRIwQkVoAAM67ehmGsXjx4kQi4ff7M596U19fr9b7v3jxYi4/PRqNDg4OtrS0FHnhFlJL7hghAgAU2+bNmxOJhKZp+/fvz/y7hoaGRETX9eHh4VuvtTPs+TzJ4OBgf3//7t27eSMch9QCACiq4eHhcDgsIgcOHJh5xdtJamtr1UpxzzzzTC4TjFtaWkQkHA4Xp7c3lUrV19dHo1HeelILAMBhDh8+LCJ+v7+5uXmu39vb2ysiiURCfZGd5cuXqyV3z5w5U4TX297eruu62iwaOaKvBQAw1eWhkP0NoVBo3bp1cyq0pH+vastNJpMejye7o+3p6enq6sq9RSYThmE88cQTkUhE/bOE2zeW/H3PHbUWAECxBQKB7CKLiLS0tHi9Xrk5cTo7Tz/9tIjoup5KpQr9Yt1u94kTJ9TYloisWbOmCD+0XJFaAABO4nK59uzZIyLhcDjrZpHa2loVffbu3VucY965c6f6OhKJeL1elqEjtQAAKkJDQ4Pf7xeRDRs2ZN2WqxaCK05qSaeWoTt27BjvYxboawEATHV5yGt/g9qxOZPV5DKUSqUWLFggNzcnyuJoDcM4c+bM6tWri9Zlog4ymUx +85 vftEov5f2+k1oAAA67epmmWVNTk0gk8rv94a5du7Zv3y4iY2NjWXfJEAicdZCMEAEACqujoyORSIhIU1NTHp92y5YtagJzGWz6k8vyMxWF1AIAKKBYLNbf3y8iwWDQmqicFy6X68CBAyISDofVCJRDRaPRmpoalqHLBCNEAICpLg/5GCmwxoZ8Pt+pU6cKcZxNTU1qVk4RVl4p0ClduHChqkUNDAxs27atDN73wqHWAgAolN7eXnU9znyLxLlSOxnpup71j4jH4z09PSVcQ+Xy5cs+n09Etm/f3t7ezmgRqQUAUGzxeLyrq0sKMDaUrra2tru7W0Q6Ojqy21fooYce6urqeumll0p1otQydOpV9Pf3swwdqQUAUAKapvl8vjzOG5pSR0eHiCQSib6+viy+/fnnn5ebNZtScblcnZ2dwWBQbi5D5+hOncKhrwUAMNXlIU99LTdu3CjCtGR1tCIyOjpaW1s7p++1ln7RdT2PK8pkd0pjsdjq1asTicTIyEhDQ4ND3/fCodYCAChgCaHIK6lkMQva4/GotpKXX3655Gesrq5O1/Xjx4+XJLI4IExTawEAOO4z95RHqxw/fry5uXlO3z48PLx27Vop8IbMrDKXO2otAIAyoTYneuaZZ+Y6DWflypXqi3PnztnwdZmmmV2jcfkhtQAA8iYejzc1NZVqQ2PVUZtIJPbt2zenb3S73W1tbSKye/duG57V3t7e6upqlqETRogAAFNfHrIaKaivr9d1vfhrvllHGwqFWltbRSSZTM5punUsFovFYuvWrStcI052p9QwjMWLFxdtGTp2TwQAVERqsRJDFhN58nW01mq8fr+/cEvbFTkQGIbxxBNPRCIREfH7/YcOHarY5htGiAAAeZBKpVRkGRgYKHJkUVdZdaF1uVxHjhwRkXA4XDZDKunL0IXD4Upeho5aCwAgD5+51X5AmqZduXKlcJWADAUCgXA47PV6z 58/ X/KDyfqU3sqa66Rp2k9/+tNCpENqLQCAMhcKhdT4xcmTJ+2QEnbu3Ckiuq4PDg6W03lubm7WdV3TNBEp3CYJtg7T1FoAALl85jYMo7q6WkTa2tpUXLCDnp4etQvS2NjYnBpsU6nUqVOnCrELQb7KGGp4qECphW5cAEA5pxYRCYVCHR0ddhgbslhtuXPKUlYCK8SC+qwylztGiAAAuQoEAlevXrVPZBERl8t14MABEenv 789 8/Ri3262WqnPW0FIqlaqQ/lxqLQAApxYGZj3aLNaPiUajjY2NMvehpVKdUtM016xZE4lE8lIfotYCAEBpDA0NiYiu65mv3bJ8+XLV7nrmzBlHvMYbN25cunRJRBobG3t6esr7DSW1AACyYfMhCdM0Y7HYoUOHPvaxj4lIR0dHhpsTuVyurVu3isjf/d3fOeKNcLvdV65cUdtWd3V1BQKBuW7DRGoBAJQzwzC8Xq8NL5CpVCoUCgUCgXnz5nm93q6urnfffVdEEolEb29vhk+yfv16EdF13SnNIi6XK30ZumXLlpVrmwt9LQCAqS4PM/Y3qGXcNE27fPly4TbuyTxCqYk/mqap/XosPp9v06ZNqVTqq1/9qsxlqwHVEJPffX+K0DKSvgxddm8NM58BAGWVWqxL4/Hjx5ubm0t1hLFY7MyZM0NDQ2qBO4vX633yySdXrVq1fPlyNa3JNM1ly5bpuu7z+U6dOpXh5f/NN9/cunVrHpdFKU4giMfjDz300P3335/hKyW1AADKNrVYWxCXZHvCVCr1xhtvvPrqq/39/bfee/z48QcffHDKnBGLxbxerxRmIRa7BQLDMG6//fbsJqKTWgAA5ZNaij82ZJrm22+//fLLLx89elTX9fS7vF7v5s2bV65cqRLJzFc068hLtRoeq8yRWgAAxbt6WWuZFGFsSK2sf/DgwUkDQJqmtbS0tLS0LF26dE6xyWp/yW+3iiMCQTQaveeeezLp6SG1AADKJLWoHtXCjQ0ZhnHhwoXBwcHBwcEp+2pXrFiRy0bHu3bt2r59uxRgBTk7p5ZUKrVgwQLJbHSM1AIAKJPUYppmb29vR0dHfi/5mffV5sjanCjz4KWCVF5aYUqYWrxer0qB3d3dnZ2dpBYAQPmnlvxeSqfrq/X7/Rs3bpyurzZH1iCXrut1dXUZVinyUpspYSCwVv0XEZ/Pd+LEielSIKkFAEBq+cO1c9a+2lmTRO6ampoikYjX6z1//vysJZyFCxcmEom8tMKUPBD09PR0dXWpsx2JRKYMhaQWAEBFp5a899XmKB6PL1q0SESCwWAgEJj5waoVZk77L9o2tUgGy9CRWgAADk4t8XhcRObaA1vovtocr7Wq6pDJ/G1rkCiTESX7pxa5uQxdX1/flImN1AIAcGpqGR8fV+2rGU51LlpfbY7XWqstt62tbefOnTM/WM2cmrWP1SmpRWXK6bIaqQUA4NTU0t3drTohksnkdL2xpeqrzfFaGwqFWltbJYPNidSoSu7L07HKHKkFAFDAq5dya/+HTfpqc7zWqiLKrD0r1vJ0Oe4GYOdAsGvXrkcffbS2tpbUAgBwcGpJ33HQbn21OQYCqy131vGv9vb2j370ozlupmjbQJC+Hab6gtQCAHBkavnXf/3X//zP/yxaX22RA0F7e3t/f39xNieybWpJpVI+ny+9ZkZqAQA4hlWE+JM/+ZNf/OIX6XcVuq+2yIHAGv3JvdnWualF/u8ydCIyPj5unzeX1AIAmIk1ZGBRfbWTbpzho3l6W0wRHjkpEBT5p2f4yFsfb9vjzGRqVUl8iP+cAIBJmpubk8mkiNxxxx3f/va3x8fHQ6HQDJ0fhmFkXtsoxCMnJiYy+RBe2uPMXMmP88knn7TnbyapBQAwhfnz54vI9evX//Zv/7ampiYUCpmmOTGNWztwnfXIkZER9c+RkZGZHzk+Pp5MJrP76VPWP+xzlqyT4PP5VqxYQWoBADiG2+0eGxvr7u4WkUQi0draamWX8nuxDQ0Nfr9fRDZs2DDDC4zFYvPmzfN6veV3BqxNJWfeW7Hk6GsBAMzEMIy+vj611pyIaJrW19fX0tJi2wtbdqyV+2fYnCjHhVts241rRRZN03RdL/SSgLmg1gIAmInb7e7s7Cz7uovH4xkYGBCR1tbW6VpA3G63z+cTkcHBwbJ54Q6KLEKtBQCQufKuu1ibE/n9/lAoNPM1Pou5wTastcRiMTXg5YjIItRaAACZK++6i8vlOnDggIiEw+FYLDblY5YvX66+OHnypNNfbyqVWr16tYMiC6kFAEB2+UBzc7MaA9q4ceN0yUa96hdffNHpkcXr9SYSCQdFFmGECACQi/IbM7LWBZ6uLdcaVZlhH+ypr7i2GSFyaGQRai0AgFyUX92ltrZWvZaOjo4p23Lr6uq8Xq/f7y/E+nJEllmSH7UWAEBelE3dxTCMxYsXJxKJ/G5OZIdai6MjC6kFAEB2mUIoFGptbRWR0dHRfO1oXfLU4vTIQmoBAJBdplZfX6/rus/nO3XqVBmkljKILKQWAADZZWpW1+3x48dn2DnSEamlPCILqQUAQHaZViAQCIfDmqZduXJluqM1DOPWjQltlVrKJrIIc4gAAIXm3HlG+/fvVwe8b9++W++NxWILFy 584 okn7PwSyimyCLUWAEAxOa7uYrXl3ro6i7W6/9jYWCblluLXWsossgi1FgBAMTmu7tLS0qJpmoi0t7dPuquhoUHddfDgQRseuRVZROTkyZNlEFlILQAAsstMXC7XkSNHRCQcDkej0Un3bt26VW4OJNk2soyMjNTV1ZXHbw4jRACAUnLEmJFqy/V6vefPn 08/ sFQqtWDBAslsWZeijRBNiiwNDQ1l89tCrQUAUEqOqLvs3LlTRHRdHxwcTL/d4/Go2dGHDh2yyaGaphkIBMoysgi1FgCAfdi57tLT06MObFLv7fDw8Nq1a2eeHf2HK27hay2maa5ZsyYSiZRlZBFqLQAA+7Bz3WXHjh2q93bHjh3pt69cuVJE7r///hs3bpT2CMs+sgi1FgCAPdmw7qLKKnJLF0sqlcpkhk5Bay2VEFlILQAAssscqM2JvF7vxYsX53zFLVhqqZDIIowQAQDszG5jRkNDQyKi63ooFLLJKaqcyCLUWgAATmGTukt7e3t/f38m7beTr7gFqLVUVGQRai0AAKewSd2lt7dX07REItHb21vaE1JpkYXUAgAgu8z5APr6+kSkq6srHo9btw8PD9fX1/f09BBZSC0AANglu7S0tKjF5TZv3mzd+Ktf/UrX9b179xJZCoe+FgCAs5Wk3yUWi6ngYoUGwzCqq6tFRNf1Kff9yVdfS8VGFqHWAgBwupLUXerq6vx+v4hs2LBB/RS32+3z+UTke9/7XuFebHpkCQaDFRVZhFoLAKCcFLPuYhVXBgYGtm3bJiLRaLSxsVFExsfHb/2Judda0iNLd3d3Z2dnpb2/1FoAAOWjmHUXt9s9MDAgItu3bzcMQ0SWL1+u7jp58mTeXxqRhdQCACC7ZG/Lli1qcyLVlutyudra2kTkxRdfzPuLevrppys8spBaAABkl+y5XLZDyY4AACAASURBVK4jR46ISDgcjsViIvLss8+KSDKZzG 886 unpCYfDFR5ZhL4WAEAlKGi/S1NTUyQS8Xq9 58+ fd7lc8Xg8fW/FD6642fa19PT0qCOv8MhCagEAkF1yzS7xeHzRokUiEgwGA4HAtFfcrFILkSUdI0QAgEpRoDGj2tpa9YQdHR2qLTdfiCyTkx+1FgBABcpv3cU0zZqamkQi0dbWtnPnzqmvuHOstRBZSC0AABQku4RCodbWVhEZHR3Nva+FyDIlRogAAJUrj2NGgUBArfG/bt06EYlGo01NTdFoNIujIrKQWgAAKGx2GRoaEhFd14eHhwcHByORyO7du4ksecQIEQAAH8hxzKi9vb2/v1/TtJdeemnlypUiMjY25na7JbMRIiLLzKi1AADwgRzrLr29veq7/uVf/kUtmzs0NJThxCIiy6yotQAAMLXs6i5WW+7Xv/717373u3fffffvf//7t956a8GCBTJ9rYXIQmoBAKDY2cU0zWXLlum6/vjjj7/yyivqxnvuuec3v/nNdKnFiiw+n+/EiROF2KGa1AIAANllioQRjUYbGxunfJ6RkZGGhgYiS3boawEAYHZz6ndpaGioq6uz/vmpT33K7/errxsbG+vr64eHh9V37dq1i8iSOWotAADMjaq77N27N5FIyFR1F6t8IiJdXV3f+MY35OYcIoumaX/5l3+pMhCRhdQCAEABmaY5ODjY0dExKbv09vaqyNLc3Dw8PCw3Jz+r1DI2NpY+0kRkIbUAAFCa7FJdXT02NiYi3d3dO3bsUJsT+f3+UCiUvl7L6dOnfT6fiNx///0///nPiSwZoq8FAIDsuVyuQCBw5cqVYDCoaZqKLPPnz1+8eLGIHDhwQETC4XAsFrO+JRqNqsjy8MMPv/HGG0QWUgsAACXILocOHaqurn7//fdVr+61a9dWrVolIhs3brQii5pe5PP5Tp 48+ ZGPfISzlzlGiAAAyKdJY0YejyeVSk16DL0spBYAAGyaXYgspBYAAByQXb72ta/97ne/u379OpGF1AIAgN2zy7//+78fOnToJz/5CZGF1AIAgDPiC5GF1AIAAMofM58BAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AACASuTiFMxJNBr99a9/PevDVqxYUVtby+kSkVAolMnDOGMAivlX+t57721oaOB0OU7VxMQEZ2EO56uqKpOHBYPBQCDA6UqlUgsWLOCMASia+vp6XddnfZjf 78/ wMxVshRGiOYjH4yKybdu2WR/Z2tqaYb4pb2 +88 UaGj2xtbTUMgzMGIBeGYei6/sILL8z6yHA4zF9pUkuZO3v2rIh4PJ6JzHDGXn311VWrVg0MDGRyutxuN2cMQC4uXLggIu+//z5/pUktkGPHjn3xi19cvHgxpyJDg4ODf/Znf7Zy5UpOBYAiOH36tNfrve222zgVpBZIOBz+9Kc/vWLFCk5FJlKpVCKREJElS5ZwNgAUwdGjRx955JFVq1ZxKkgtlU41tVy/fp2pLhlSTS233Xaby8VUNQAFp5paPB7P0qVLORuklkqnmlruvPNOTkWGVFPLxz72MU4FgCJQTS0f+tCHaJIjtYCmljmjqQVAMdHUQmrBB2hqmROaWgAUmWpqeeCBBzgVpJZKR1PLXNHUAqCYaGohteADNLXMFU0tAIqJphZSCz5w8OBBmlrmhKYWAMVEUwupBX9gmmYkEqGpJXM0tQAosqNHj65atYqmFlIL5O233xaaWuaCphYAxaSaWu644w6aWkgtkDNnzghNLXNx+PBhmloAFI1qajFNk6YWUksFRfWenp5AIHDrXUNDQ1u3bqWp5dYzFggEdu3adetd4XCYphYA+WWaZigUampqMk1z0l00tZBaKksoFFq8eHFXV1c4HB4eHp70/yQSidx33300taSfk56enurq6nA4vH37djUt3GL9k6YWAHn8K11TU9Pa2hqJRPbs2TPpXtXUwvZDpBa7qMpYds9/+fLloaGh+vp6Efnyl79sGIZ1l2pqSaVSNLVM8sorr9TU1IjI2rVr0z/6qFnildbUUjUX/PLYn2EYvKFF/js8s/fee+9HP/rRk 08+ KSLt7e3pH5ZUU8vdd99NUwupxS4mMpbd83d2do6Pj7/55puapr333nvPPvusddeZM2c0TWOsNJ3L5ero6Kirqzt//ryIvPXWW/v27bPuPXbsWAU2tUzMBb9C9ud2u3lDi/x3eGbbtm27fv36kSNHfD6fiDz22GPWhyXV1PK73/2OP9SklgrS0NDgcrlOnjwpIj /84 Q+tcaKhoaH169fT1HLr3/Ta2lqPxxMMBkUkfZyIphYAhdDc3CwioVBIRC5dumR9WDp9+rTP5/vQh7ickVoqT11dXVtbm4j8xV/8hWEYVlNLU1MTJ2dKgUBAffR5/PHHTdOkqQVAQd36Yeno0aOf+9znaGohtVSovr4+TdNSqdTmzZtVU4tpmh6PhzMzHfXRJxaL7du3rzKbWgCU6sNSKpXSdf3222+nqYXUUqFcLtdPf/pTEQmHwxs3btQ0rbq6mtOS4Uefjo4OVmoBULQPS2q5CppaSC0Vrba2dmBgQER0XV+/fv19993HOcnwo08ikaCpBUDRPixFIhGfz8cnJVJLpduyZcv9998vIvfdd9+DDz7ICcnwo49CUwuAInxYUr0sn/vc5/ikRGqpdC6X65//+Z//+q//+tq1azS1ZPjRR9f1J5 988 q677qKpBUARhMPhb3/728lkkk9KpBaIx+P57ne/y/ZDmaurq/vhD3+4YMECTgWA4vyV/pu/+Zv 58+ fzSalyVLHmFQAAcARqLQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAAKgELk4BgAq0a9eus2fPzvqwFStWbNu2jdMF2AS1FgCV6IUXXrh48eLExASnAnCQKv7TAqg0qVRqwYIFzz///AsvvJDJ4/k7CdgEI0QAKs4bb7whIrfddhtxBHAWRogAVJxXX331S1/60l133cWpAEgtAGBr/f39S5cuXblyJacCILUAgH3F43ERuXHjxpIlSzgbAKkFAOzLmvDsctHYB5BaAMDGjh07RlMLQGoBAAcIh8M0tQCkFgCwO5paAFILADgDTS0AqQUAnIGmFoDUAgDOQFMLQGoBAAegqQUgtQCA7RiGceuNNLUApBYAsJF4PB4IBBYvXmya5qS7aGoBSC0AYBft7e0PPfTQa6+9lkgknnvuuUn30tQCkFoAwC5aWlq++93v+nw+Edm1a1csFrPuoqkFKAMM7gIoHw0NDZ /85 Ce//OUv//73vw+Hw6tWrfrtb3+rulhoagHKALUWAGXF4/GIyP79+zVNS6VSHR0d6naaWgBSCwDYkdvtPnDggIj09/ercSKaWgBSCwDYVHNzs9/vF5GmpiYVXGhqAUgtAGBT+/fvv/vuu9955x2v16tuoakFILUAgB253e7vf//76muaWgBSCwDYmjVORFMLQGoBALs7dOjQT37yk7feeoumFsDpGOIFUO5/5lyuxsZGwzBoagGcrmpiYoKzAAAA7I8RIgAAQGoBAAAgtQAAgEpDb9q0TNOcN2+es465JF1KVVVVpXqNRf7RjnjjCv17m8dDNQyjurqa/1kA5nDF4X+jfa7HpBZSi/3fEQcdKqkFILUAAACUBn0tAACA1AJUsKampqoMBAKB0h6naZpVmQmFQrytAEqLESKgIFFg3rx569evf/nllzN5fAn/G8ZiMWs/5FmNjo7W1tby/gIoFWotQP69/fbbIvKJT3xiIjMlPNQzZ85omtbd3Z3JcRJZAJBagHKjooDb7bb/oQ4NDT322GOf/exnedcAkFqASuSUKGCaZiQSueeeex 588 EHeNQCkFqDiOCgKqJGs999/3+Px8MYBILUAFcdBUcBBI1kAQGoBKjoK0NQCgNQCVDSaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAPQ1AIApBbAGc6dOyc0tQAAqQWwD8MwYrHYrbefPn3ablEgHo/H4/Fbb6epBQCpBShzpmmGQqHq6mqv15tKpSbde/ToUftEAcMwenp6Fi1atG7dOtM0J70KmloAkFqAMldTU3Pu3LmPf/zjIrJhw4ZJKUHXdZtEgVQqVV1dfeedd4qIrut79uxJv9dBI1kAQGoBsnT58uWPfvSj3/72t0Xk9ddfD4VC1l0XLlywTxTweDzvvPPOtWvX/uEf/kFE2tvb08eJbDiSBQCkFiDP3G53Z2fnhg0bBgYGRKS1tdUaJ7JbFFiwYEFnZ2d7e7vP5xORxx57zBonstVIFgCQWoDC2rJli9frFRG/32/zKKAKQpcuXdq3b5/YbCQLAEgtQMG5XK6hoSEROX36dCgUsnMU8Hg8wWBQRLZv3x6Px201kgUApBagGGpra61xooMHD9o5CgQCAVUTevzxxwcHB2lqAeBQVRMTE5wFIDumaX7mM59Ra7domrZ169bOzk57HqphGPfdd18ymRSRzZs3P/HEE83NzbyDAJyFWguQPZfL9corr6ivbd7f6na7VUFIRGhqAUBqASqRNU60cOFCm0eB5ubmL33pS0JTCwBSC1Cxtm3bNjY29uabb9o/CoTD4ZGRkf/4j//gXQPgRPS1APmRTCYXLFjAoQIAqQUAAFQ6RogAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAACAzLnS/1FVVcUZAQAANjQxMeG69SbOCwAAsBVVWGGECAAAOAOpBQAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABy4eIUAEUQj8dnfUxtbS0nCgBmUDUxMfHBP6r+zz8B5IVpmvPmzZv1YfzvA4Bp80pV1cTEBCNEQMG9/fbbmqZl8n+ScwUAMyC1AAV35syZlpaWgYGBidlwrgCA1AKU0tDQ0NKlS1euXMmpAABSC2BfpmlGIpEbN24sWbKEswEApBbAvlRTi2maLhdT9gCA1ALYmGpq4TwAAKkFsDuaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAMYhkFTCwCQWgB7icViPT09k268cOGCpmnJZJKmFgDIC/6YAjlJpVLt7e2vvfZaIpF44IEHHnvsMeuu06dPb9iw4a677uIsAUBeUGsBcjJ//vyvfvWrKqxs3LjRMAzrrqNHjy5ZsoSmFgAgtQC24Ha7//RP/3TPnj3BYPD69euBQEDdbhiGruvXr1+nqQUASC2AjYKLy+UKBAI+n++VV14ZHh6Wm00t//M//0NTCwCQWgDbCYVCItLa2moYBk0tAEBqAezL4/EEg8Fr165t2rSJphYAyDtq10A+BQKB73//+z/60Y9EhKYWAMgvai1AnoXDYRG56667aGoBAFILYGsej0fX9YcffvjOO+/kbABAHlVNTEx88I+q//NPAFlLJpO/+93v7r33Xk4FAOQhr1RVTUxMkFoAAIAzUgsjRAAAwBlILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAPnnmvTvqqoqTgoAALChqomJCc4CAACwP0aIAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAAyp+LUwAAKAnTNOfNm8d5KLnx8XGXyxl5gFoLAKA07r//fk6CHTz66KOmaZJaAACYWjQa/cUvfqG+1jQtmUxOoFhGRka8Xq/1Xvz0pz91yq8NqQUAUAJf+cpXrK8TiYTX602lUpyWIoTF+vr6xsZGXdetG/fu3csIEQAAUwuFQuqq2dDQICLV1dUquBiGwckpTl7x+/3PP/+8iGia1tLS4pRXQWoBABSVaZodHR0i8txzz61YsUJEPvKRj4hIIpF44oknnNJg4SDxeDwQCKTnldHR0f3797/wwgsi0tfX55RCC6kFAFBsg4ODiURCROrq6v7f//t/IvLuu+8eO3ZMRCKRyJo1awgu+c0rixYtCofDVl4JhUK1tbWbN28WEa/X66BCC6kFAFBUVqGlu7v79ttvF5E777xTREZHR0dGRgguBcorXq9X13WVV9S96vY9e/Y4qNBCagEAFJVVaFHZRUQ+/vGPi8jZs2cbGhrSgwvnKjuGYfT09KTnlZGRkYsXL9bV1VmP2bFjh7pL9RWRWgAAmOKC2traKiIDAwNut1vdeO+99+q6fujQIRFpaGjo7u5WwaWnp4czlkVeqa6u7urqSs8rk6JJeqHFca+RtXEBAEXS19cnIpqmbdmyxbrx9ttvTy8DdHZ2ikhXV5e69Kp/Yta80tfXp86YOsN9fX2BQGDKBzu30EJqAQAU78qqLquzTlohuGTONM3BwcGOjg417qbySktLy3RnOBqNqkLL4cOHnfh6GSECABSDVWjJZNJKZ2enGirq6uoKhUKcvSnzSigUqqmpaW1tTSQSmqYFg8ErV64EAoEZQqFa3M/v96fXtxykamJigvceAFBQqVRqwYIFIhIMBq2Ri2g0unv37hUrVmzbtm3Kq/KaNWsikYiIjIyMOHE4o3B5Jb2+IiLd3d07duyYdTZQNBptbGwUkdHRUTWZiNQCAMBkgUAgHA57vd7z 589 PeXE1TfPcuXNyc7VcgssMyeMrX/mKtR5/d3d3R0eH1do8s/r6el3X/X6/c8tXpBYAQGHF4/FFixbNnDxCoVBra6umaVevXp2UZgguuecVERkeHl67dq04udBCagEAFJxVaLl48eJ0j7GGkJLJpMfjmS64OPqKm6 +84 vf7d+7cOekszcw0zZqamkQi0dbWtnPnTueeCrpxAQAFlOHqIB6Px+v1isipU6cm3eVyuUKhkKZpIvLQQw9V1NbQU24hFAqF5hRZJG1xv97eXkefEFILAKCArP1uZh3cefLJJ0Xk4MGDU2YaXdc1TVNbQ1dCcJlhC6G5PlX6LgqZjyjZEyNEAIBCmXnSimEYQ0NDIqJmFcViMVVuGRsbm/LimkqlvF6vmuWr6/pc6w0Oyis7duxQYUUFvsOHD+cyUVn1DM1wYkktAADMMmnF6tK1rkRVVVUyY9et1f6iadqVK1ectfPfrCYtcev1evfs2ZNjA7JhGIsXL04kEt3d3WWwXh8jRACAgohGo6obI/Neira2NhEZHByc7gEej0ftsJhIJMppa+gMtxDKQl9fn6pOqYX8SS0AAEzBWoY 181 aMlpaWtra2mRfPnbQ1tNODy6S8opa4zUtekbnsouAUjBABAPIvk9VBbh0hypzVMePz+U6cOOHES/JctxDKQk9PT1dXVzmNplFrAQDk/3r8zDPPiEh3d3eBlldpaGg4fvy4iEQiETVBxlnnJ4sthOaq/AotpBYAQP5Zq4MUNE80NzerHRb7+/t7enqcmFdUsMt7XlFUI0uG21U6xgQAAPkzPj6uVoTr7u6e+ZFjY2PqSpRMJrP+cSq4ZPLjSm5kZERN7bYOeGxsrEA/a3R0VP2UkZGRcvrtcvGZAABQkkKL2+32+/0zlCUyKT+o2bxdXV1qNMSek3tz3EIo60JLJov7UWsBAFSosbGxDAstM9ckNE3z+XyZf4uaMi0ix48ft3N9xe/351JYqvBCy8TEBH0tAIC8ycvqIHfccUcikYhEIoZhZP5zfT6fiKxduzYajdrhVORrCyEKLemY+QwAyA/DMKqrq0UkGAyqRfqzY5rmvHnzZMZFcqf8Lmtr6Dl9YyHySvqS/H6/v7e3t2hbVVsbI5T2JBQItRYAQH709fVJPiatuFyuWRfJnfK7Tpw4oSoujY2NJam4TNry0Ov16rqe3ZaHWdu4caOKSuUXWYRaCwAgL/JVaFHUInWapl29enVO32iaZk1NjWoHTiaTRdthsRBbCGVh5u0qywC1FgBAHmzevFnmXmgJhUKhUOjW/pWVK1eKSCKRiMViczoMl8ul67rqCPZ6valUqgh5pUBbCGUhi10UnIVaCwAgV9ba/HPtpVCbPE9ZGGhqaopEIgMDA9u2bZvr8aRSKa/Xq/qCdV0vUMVlUn1FLcmfe50pa2VfaBFqLSiyhQsXVpWpEv6pAkquEJNW1q1bJyJnz57N4ns9Ho+quCQSiUJUXNQSt4sXL07f8lAtcVuqt8A0zQ0bNpR3oUWE9VpQ3IUc5Ga/Hv+hgLKRy+og6htHR0dvvWt8fDzHpWOtA/P5fOPj43l5sePj48FgUI1AWXklX0+ei2AwqA6pcOvtsl4LKsuvfvUrTdNuu+22Mv4fxbsMCi354nK5clw9tra2dmRkREQikciaNWtM08y9vlKcLYSyODa1EnF3d3dBl9xlhAgVJBaLPfzww++99x6nAigb0WhUzfI9fPhw1k/y3//93wU6vIaGhrwEl2g0umzZsvS8MjY21tnZaZO9lIuzXSWpBZXl2LFjn/ /85 z/72c9yKoCyYU1aqaury+Lb1T5Ec50oVMzgEo1G6+vrrSVurbxin5JG5RRaSC0oqtdee23+/Pmf/vSnORVAeYhGo+pa3tvba+fjbGhoUG0fkUgk80OdlFfUFkK2yitKb2+vmi1V9oUWEWHPZxSJYRiJROLdd98t5+Z2oMLkvjrIihUrROTee++d4U/H0NDQe++9l8X853SBQODy5csZbg1d2iX55/qnVb2ivr6+si+0iDDlAcWiZiEODAxwKoDyoIZdZJoZQPly/PhxEdE0LS/P1t3drY55ui2pR0dH1aCVlVcK+ury9Yo0TbPDPCbmEKF80IoLlBNrdZC2traCFiGyXiR3Sp2dneoy39XV1dPTM6m+UvIthHIptNikL7jQSC0oElpxgXJiTVopdEeL2+1WOxifOXMmL0/Y2dmpdljs6upSOyyqJfnT84pakj+7/uJiUnPOc9+uktQCTEYrLlA2ijxpRe1wtH///nw9YfrW0M8++6xNthCaq3g83t/fLyIHDhyokEILqQVFQisuUE6KvDrIo 48+ KiK6rudrYX6Xy3XixIlVq1apS77cXOLWKXlFsRb3a25urpzfPVILisFaFZdTAThdfgst0Wg0FArF4/EZHlNbW6tW0H/jjTfy9SpcLtef//mfq6+///3vl3YLoSzE43E1nrVnz56K+vUjtaAYVCsu5wEoA/ldHWT37t2tra2zbpG4detWyW353UkMw/jOd74jInffffemTZscN8JSoF0U7I/1WlAMqhXX/q1tAGa92JdkdZD169ffddddaj5RXvT19V2/ft26/DtLxRZaSC0oktdee+2RRx755Cc/yakAHE3t2V78SSt1dXV5/NhjZS8Refzxxx33Lqxbt05E/H5/pRVahBEiFOfDmWrF9Xg8nA3A0f+X8746yKc+9SkROXfuXPGzl4pfjpsi4JRdFEgtcIBQKLRw4cJJm5OpVlzVTAfAuQqxOsjixYtFJF+Tg+aUvUTEicuc5L6LAqkFEMMwAoFAR0dHIpF48cUX0+9iVVygDJTN6iDpjSyOSy0VXmghtSCfvv71rz/99NMi8s1vfjO93KJacR944AFOEeD0i33JVwcxDCOXwoyVvZSlS5c66C0wTbPCCy2kFuSN2+2+5557/uqv/qq7u/v69es/+MEPrLvUqri04gLOVbhJK/fee6/f71c7P89qeHi4urpaLWubS/a6++67RcTn8zlrk+TBwUFVaNm5c2fl/i6ybWkhlMGZHxsby+5VWN84NjZm/fP555/ntwJwLrUNstfrLfnW8el/XuZqdHRUffvHP/5xEXHWCfj1owAAIABJREFUFvTj4+OqO3C63aorBLWWkmVB+9dOsnsVbrdbban6rW99S0QuXLhAKy7gaLFYzCarg9TV1ak/JtntpKgKLZ/+9Kd/+ctfishTTz3lrEJLMXdRsC1SC/JP/ad64YUXDMP4+c9/zqq4gKNt3LhRbLM6iOqfzWKRXCt7bdq0SUQ0TXPQWgxF3q6S1ILK4na7g8GgiHzrW 986 e/bs8uXLacUFHMpuk1ZUagmHw5NWWMg8e/3sZz+Tm1sEOMW+ffsotChV9h+qgBOZpllTU6P+m+3evfuLX/wiS8wBTlRfX6/rut/vD4VCNvnbMm/ePBEZGRnJvPYTjUYbGxtF5PLly2qFmDl9e2kZhlFdXS0iwWDQWVs8FgK1FhSEy+WyVp /87 W9/S2QBnKgIhZZ4PB4KhaLRaOZ/W9QcotOnT2f+U6wJw++//766Zfny5U55F0q1iwKpBZWlpaVF07Q77riDVlzAiUzT3LBhgxR4dZCzZ8+2trbu3r0 782 957rnn5vRXJT17vfzyyyLi8/mcslBeIXZRcPZHYk4BCvW75XLpun706FHrww0AB7Emrezfv7/QP2tOC8etXr366tWrmWev9JXZjh49Kjcbch2BQssk9LWgsP7rv/7rl7 /85 Wc+8xlOBeAgVmtad3d3Z2dn4X5QPB5ftGiRiBToYhQKhVpbW0UkmUyKyIIFC9TXjhi2tk4OHS0WRohQWH/0R39EZAEcpzxWB0mfMOzxeE6dOiWOmvNs7aJAZCG1AABmv9g7enWQSdnr4MGD4pw5z4XbRYHUAgAoH2p1EE3TyqbQ4na7TdOMRCIisn79ekccv1VoccoMbVILAKDYDMPYvn27iPT19dm50BKPx9vb23t6embOXnKz0HLu3Dl1+5IlS+z/LlBomQ5ziAAAHyjypBW32622Zpyr3/zmN/39/SKyY8eOW6cEW9krGAyq7KXWd/H7/Y6YP7x 582 YR8fl8FFomYQ4RAOCDi71TlmG1FsnVdb2urm7SvT09PV1dXZqmXblyRcWUhQsXJhKJ48ePNzc32/xdsFbyHR0dLdxKOQ7FCBEA4A8ctDqItUiuWjhuUvaatDJbKpVSo0UPPvig/d+F9AVm+J0ktQAAphCPx521DKtaLG7v3r2zZi8159nr9dp/zrPdtqsktQAA7Mhxq4M0NTWJSCKRSF9aN5VK3Zq91JznJ5 980 v4vikILqQUAMAsnTlrxeDxer1dEXnrpJevG9vb2SdnLMAynzHkOhUIUWkgtAIBZlGp1EMMwQqFQKBTK7ttV+WRoaGiG7HXhwgX1hc3nPKcvMEOhZTrMfAaASlfaQovaJ6ipqSmLppOtW7euWrVq6dKlM2SvwcFBEWlra7N5s0557KJAagEAFNa6deukRKuDWAvZGYaRRWrxeDzWd02XvVRq+cIXvmDnt6BsdlEoNEaIAKCiWZNW9u/f7+gXolZmm1RoicfjqoCxcuVKOx88hRZSCwBgduUxaSUajaqWW6vHRTl27JiKMnYuYBiGoYbJBgYGKLSQWgAA017sy2PSynTZS4UYVYaxLWuBmS1btvA7OTNW9AeACmWa5rJly3Rd9/v9Wc/iycN1qKpKclu9frol8K0NCqZc9d8mHLSLgh1QawGACjU4OKgKLTt37nT0C1EX+zvvvHNS7rHmPNs2soijdlGwA+YQAUAlSp+0Utp17tWez1n3cwwPD//bv/2biFy7di2VSqW/FmvOs23fhSlX8sUMGCECgEoUCoVUB+jY2JhzO0BN06ypqUkkEnffffc777wzaZBFjT3ZeZ/nQCAQDoe9Xu/ 58+ dJLZlghAgAKk7ZrA5iTRh+9tln5eZ+Q0osFlNf2HbOc/oCM0QWUgsAYJaLvaNXB0nPXk899ZSIRCIRwzDUvWfOnBERn89n21hWql0USC0AAMewVgcJBoPlUWjp6Oiw+m2tDly1aJ5a9teGnLhdJakFAFBs5TFpxTCMSYNcqutWdeAahqGmRz366KP2PP4pV/LFrBhIA4AKYhiG3SatRKPRX//61ytWrJjTei19fX2JRELTNDXOIiJf+MIX3nrrrU 984 hNyc3hI0zR7Lvg73Uq+ILUAAP7PxV5sVmjZvXt3OBwOBoOZJ4wps1dzc7M1V+jVV18VEdsWk8pjFwVSCwAniUaju3fvnvkxO3fuLO1aIEhXNquDzJq9+vv7bZtaymYXBVILACcZHBycmJhobm7+8Ic/PN1j5s+fz4myj/b2dhHxer1O72iZOXtZc56XLl1qw+On0EJqAVCa1PL1r3/96aefnvlhjl7ErJyUzeogqpFlhkLLyy+/LHad8zw8PEyhhdQCoNhSqVQikfjwhz/M+trOutg7fdJKPB5Xoz9HjhyZLnsdPXpUbDnn2TTNZ555RkS6u7sptGSHmc8AsvHGG2/4fL4PfYi/IY652JfH6iCzZq/XX39dFTPUunO2Uh6L+5FaADjP4cOHV61a9cADD3AqHKE8VgfJJHtdunRJffHHf/zHtjr4stlFgdQCwHnC4fAdd9xhz25HTGLz1UFWrFjh9/vvvffeWR+ZySDXT37yE/XFuXPnbPUyKbSQWgCU7COv+uzIR0ZHsPmklW3btoVCoVmLQLFYbNZCi2maP/zhD62UYJ/XeOtKviC1ACiSs2fP0tTiFGWzOsjGjRtV9poh37z99tvW17ZKLbeu5AtSC4AiOXbsGE0tTlEeq4NkmL3UnOeHH35YRBKJhLVwS2nZcBcFUguACkJTi1OEQqHyKLRkmL3UnOdnn33W5/PJzd2ISq48tqsktQBwJJpanCJ90kolFFpSqZR6WFNTk1qsxQ7dxxRaSC0ASommFqdwyqSVeDweCoWi0eh02SvDQsupU6dERNM0j8ezadOmZDKpbiktNeecQgupBUBp0NTiCA5aHeTs2bOtra3T7cQ5ODioKij79++f+XkOHjwoIlu3bhURt9tth207rQVmZljJF6QWAHkQjUbr6+uHh4cn3U5TiyOUx+ogmWcv0zTVmjTr16+3z/GXxy4KtkL0AzCFpqYmj8ej6/pTTz2VSCSsCwZNLY5gGEZra6uIDAwMOPqdyjx7WWvKLVmyxCYHXza7KNgKtRYAU/jxj3/8qU996rnnnhsbGwsEAtbtNLU4gjVpZcuWLc59FXMa5Dp9+rSI+P1++wzEUGgpBGotAKbgdrs7OztN0zx9+vQrr7wyPDzc3NwsNLU4QdlMWtm3b1/mg1x79+6VmyvRpZ+KM2fOXLt2LT15F0c0GlWFlsOHD/M7mUd8YAIw/ccal0v1CrS2thqGITS1OEF5rA5iGMb27dtFJBgMzlpoSaVSKt 88+ OCD6befOXNm7dq1JensseY91dXV8TtJagFQJB6PJxgMXrt2bdOmTTS1OOJiXx6Fljllr5deeklEvF7vpHlDK1euFJFEIqF+dYumbHZRILUAcJ5A4P+3d/+xUdeH48dfZWe2SeOMsXi6McqGmS7r+SMSEmDqxjHHj61ZdCZX/WdxS5RJieE//ii7JmN/sURKpgkxJlvabh3GMCkOKRE3SmJ0ibSG+QeRY2za9RJ/bL1shvfs94/X10s/BUp/XMvd+Xj8Va/H9foG6ZPX+/Wjbd26db///e9bW1tNaqlycXeQTCZTQwMty5Yty+Vyq1evnnV7xd3k7r///kmPL168OJPJhBAOHjy4kN9RfZyiUJ0axsfHXQVgasViccmSJSGEX/ziF9 /85 jfNLqxOhUJh+fLlIYTjx4/X9O9RZ2fnzp070+n0uXPnLlstpVKpsbExhDA0NHTh7Zi9e/du3bo1k8mcPHlyYd 784 ODg2rVrQwhnzpxRLRXn30zA5cX7RCGExsZGk1qqVn0sWikWizMaaHnjjTfiBxdd87x 58+ YYNHFi1nxLkuSBBx4IIbS3t0sW1QJcMW1tbWNjY3/6059MaqlOdbM7yLZt22J7TXPhT19fX6yEiyZOc3NzOp0OC3WSYnmDGTNaVAtwhS1evHjv3r2uQ3Wqj4GWWbRXrJb77rvvUk+Ie/wvwArkGjpFoXbZrwWYgTi7hWpTN7uDzLS9CoVCHNuIy4UuKu7xv27duvl +8/ VxioJqAWB+1fTuIKVSKS4CWr169UwHWuLioEwmM8XYRktLywJcFgMtqgWAy6v13UGKxWI8NSmbzYYZ3uSKuRPXe19Zu3btGhkZSafTBlrmlZXPALXttttuGxoayuVyPT09tfj+ywu2o+kvGJ56zfNCKr+T7u7uhT894FPFbFyAGnbo0KF62oZ1RjuzlZcFXfH7YvVxioJqAWAeJUnyyCOPhDraHWRG7XX48OH4vU//chWLxYq/57o5RUG1ADCP6mx3kJlugb9nz54w5ZrniQYHB6+66qo4daay4ronAy2qBYCpRg7qY9FKnFE70/YaHh6OH0yx5nmia665JszDJrmFQiHG0zPPPGOgRbUAcHH1sTtIkiQ///nP48czGmiJk1qy2ew0i62lpWU+NsktbzCzceNGfyZVCwAXUSqV6mOgpa+vL841+eEPfzijX7hv374QQmtr6/R/SbyDU8GN+OrmFIUaYuUzQO2Z0anIVStJkqVLl46MjOTz+Y6OjhlFW1xpPKNzlcunMZ8/f74iF62tra23t3chD5RGtQDUmLrZHaSnpyfuLzc2NjajEaNDhw5t2rQpnU6/++67M4qkq666KlRof5fh4eFMJhNCOH78eE2f/VRb3CECqDH1sTvIXG5yxTXPM/32U6lUXEP0/PPPz/39P/zwwyGEXC4nWVQLAJf8YV8fu4Ps3r07boEfJ7ROX5IkcdnOLKLtiSeeCCG89dZbc3zztX6KQu1yhwiglmzbtm3Pnj21PqNlLje5yrdmZnpfKRZPCGHu163WT1GoXRaXA9SM8u4g+/fvr/WBljDhJlf82d/a2jqdCon3d6a/5vn//MyrxEUz0KJaALi88u4gNT2X4sKbXHFO7pkzZ6YTIs8991yY4ZrnCkqS5IEHHggz38mXinCHCKA2lM9GrvVFK3HB8MSbXA0NDWF6y5iLxeKSJUtCCKOjo01NTQv/5me97omKMBsXoDbUx0BLeWe22d3keu2110II6XT6iiRL3ZyiULvcIQKoAcPDw/WxDesc2yvubPvYY4/N5T0Ui8Wnnnrquuuue/zxx2f0C+vjFIWa5g4RQA2oj0Url7rJNc07ROVt4uZ4j2x2m+TOeidfKsgdIoBqVzeLVuY40PLXv/41frBq1aq5vI3bb7990gtOx9NPPx03mDHQoloAuKQtW7aE2l+0MvebXOU1z3NcwLx48eKZbpJbKpW2bt0aQti9e7cZLaoFgIurm4GWKbbAz+fzuVzuH//4x9Sv8NRTT4UQfvSjH839zcQXiS84HfVxikIdMK8FoHqV51LU+oyW8lSSGZ3SPFFl1zzP6NXq5rjKOmCsBaB6lRet7Nu3r6a/kbnf5Dpy5Eio3JrnpqameCzA7373u8s+2UCLagHgMupmd5CK3OR69tlnw5zXPE90//33hxAOHDgw9dMKhUJ9HFdZH9whAqhS9bENa0VucpXXPA8NDbW0tFTkjRUKhVOnTq1cuXLqwZu4k28mkzl58qQ/k6oFgKl+2Nf67iAVaa/Z7bBSkbKpj1MU6obBLoBqtGvXrjrYHWSaN7kGBwfPnj27evXqS816OXr0aAghl8st8D2a+jhFoZ4YawGoOnWzaGWaAy3xLswU3+yNN944MjLS39+/cePGBXvzBlqqkNm4AFWnPhatVGo2cbFYjAupVq5cuZDvv7W1NYSQzWYli2oB4OJKpVJ9LFqJW+CHOZ81GBcnZzKZeTrnuVgsDg8PT3qwvO6p1tecqxYA5lGcS1HrAy3lLfC7u7vnuAAqLk6OC5UrrqenZ8mSJXHf3onq4xQF1QLAPCoUCnv27AkhPPPMMzU90FKpm1ylUmlgYCCE8IMf/GA+3uf69etDCENDQ8Visfxg3ZyioFoAmEflRSsLOe204mZ6kyve+jl9+vSFn3rjjTfiB7feeut8vNWmpqZ0Oh0+2Xs3hJAkiYEW1QLAZRQKhTmeilwlZjrQsmrVqhDCW2+9deGn+vr6Qgjt7e3zN/IU99uNe+/GrxgHWp 588 kl/JlULABdXH7uDzGIL/GXLluVyudWrV1+qWu677775e8Px3tPAwECpVJq47mmeJv8yF/ZrAaiWH/b1sTtIBbfAL1+TeT3ToHxcwPHjx8+ePVsHpyjUMWMthBBCwzS4SgsjSZKGOXMZa1HcHSSXy9X6QEsFb3IdPHgwhJDJZOY1IFKpVHt7ewjht7/9bX0cV1nH7OhPCCEYcqui/ydTKb8dn0J1s2ilsje54prnn/zkJ/P9tu+7775jx469++67Fdlghnn8N7a/HwGuuEwmMzw8PJdTkatBZW9ylY81qOA5z9P5crV+ioJqAWAeFYvFZcuW/ec//7noZyf9LV3+4VqFz1y/fv3AwEA2mz1y5EhFXnPS8xfgO0qn0+fOnavpnXLqm3ktAFfYkSNHLpUsF5r+fIsFfubg4GDcDi5ugV+prx5nnMzfd1TeDyZ66aWXJItqAeCSHnzwwXXr1sWP77rrrvgv/vFPxMeTJClv3jp+CRcdV1iwZ164M9v0X7O7uzv+2gufNmnNcwW/o0Kh0NbWtnbt2vifuVzuzJkzC3ArCtUCUMNSqdQf//jHTCYTQnj99dffeeedODN30hjAkiVLbrzxxm3btg0ODpZKpar6Fio+m7h8nOE999xT8Xcbe2X58uVxuVPslZ6eHjvhqhYAphUuAwMDcWv5O+ +88 8InHD58OIQwMjKyZ8+etWvXNjY23nbbbZ2dnRceVnxFVHwL/FdeeSWEkM1mK7sCeVKvZDIZvaJaAJixpqamoaGhdDo9MjKSyWQmHuYXQnjyySdHR0f7+/vL8zyGhoZ27tz5/PPPX/F33tPTU/Fl23FyTNzDpiJKpVJnZ+fEXjl+/PjJkyf1Sm2xhgigihSLxUwmMzIykk6nh4aGLrWpfKFQOHHixMGDB3/6059OWmO8d+/e6667bvXq1Qvz8zhJkqVLl46MjOTz+Y6Ojtm9yPDwcLxBFn8kldf1nDlzZu7fRalU2r17dzxkIPbKr371q5reyk+1AFAtyrueZLPZF198caZLWiZujpzL5R5++OGVK1fO35E6PT09c98Cv/wtxx9Jhw4d2rRpUzqdfvfddyvYK+l0evfu3fZiqWnuEAFUl+bm5uPHj4cQBgYGNmzYkCTJjH5O5/P5OG4RQujt7d20aVOcxjvpllNFTDxrsIITUOIknmmeF32pN9bT07NixYqYLOl0uru7+9y5c5Kl1hlrAahGg4ODcVHu7EZcSqXSG2 +80 dfX19fXF3epP3/+/MQXSZLko 48+ mmNqzGigJa57uujTisXitm3b4gtOPMtwFvdxkiTp6+vbvn17/K7j+MqDDz5oF5Y6MQ5AVYojLjFczp8/P+vXGR0dPX 78+ KQH4/zZbDbb1dU1NDQ0i9cfGxuLi566urou++T45X7961+Pjo5O55mxhGb6lrq7u+NbivL5/FyuG1VItQBUr66urvIP4Hl65bJsNtvd3X3ZqijL5/NxMOOyZVDum1tuuSV+rVwu193dfdFaii+bzWZnWnjl+2Lxcs0ielAtAMxJ/Ck+H+EyNDTU1dWVzWYntsukDWqnCJH4/O7u7ss+OZfLxWeeOXOmvb19Yl6EEDKZTD6f7+/vj8EUPzudl9UrqgWAT1G4ROfPnx8aGorTeC/Mhf7+/v7+/kkpMP2Blrhb/6Sxk7GxsdhMMWgmTpSJH0xnyGdoaGhir+RyuekPFFGjzMYFqAGdnZ1xOUxXV9fjjz++kF/6tttui3NNMpnM/fffv27duptvvvmGG26IIyJTr8opFotLlixJp9OnT5+eYrpuoVA4derU66+/fvPNN7e1tV12zXOhUNixY0fcLy72yq5du+wX92lg5TNADejo6Ii3crZu3To4OLiQX/ree++Ns1Librxr166NydLU1DT14uQkSeJ73r9//9QrjJqamj744IMVK1a88MILIYTHHntsil5xhNCnmuEmgJpw/vz58hyUC9cEzbczZ850d3dPvKFz8ODB6dzYam9vn86LT/zBdNHvbnR0dOJXj1vy+1PhDhEAVSpJkg0bNgwMDITZbmcyd21tbb29vV/+8pfPnj078fF4MyiXy23evHn9+vXxNKVMJvOXv/zlsnullPfGjSZtLWNLfspUC0CthktFjumZkXJeXNhMcRv+8n9ef/31n/ /85 /P5/ObNmy97nkAsnvhxNps9cuSIXkG1ANSDaZ6wOB/iQEsmkzl58uSkT8XdeI8ePfrcc8+Vd4qLqXHhky/y0+iT45PiDN8kSZ5++umtW7fGB21xi2oBEC4zUD6ZeWhoqKWlZeq399prrx0+fLivr++xxx6bdBZ0oVD497//feutt05MkHK1vPPOOy+//LIt+VEtAMJl9uIS6FwuV95VZTqSJJkUHOvXr493uLLZbGtr6+bNm5ubm2O13HTTTR9//LFeQbUA1GG4xOkg05z0Ohfl0xznPpmmXC1TyOfz27dvr+A50tQH+7UA1KqmpqZ4wuLQ0NCGDRuSJJm/r7Vly5YQQi6Xm/v83yNHjsTdeLu6uibt7h8+2ZK/o6NDsqBaAOrKmjVrYrgMDAzMX7gMDg7GCba7du2qyAumUqmWlpY77rhj4oPt7e16ham5QwRQ88q3b7LZ7IsvvljZW0VJkixdunRkZGSmM1qmUCgUWltby0uNbMnPNBlrAah5a9asiYcUDgwMVGo4pKyvry9Oj923b19FeiVuyR+TxZb8zMhnfvazn7kKALWupaVl0aJFx44dO3bs2KJFi+65556KvGySJN/97nfHxsby+fz69evn2Ctbtmz58Y9//Oabb4YQstns0aNHH3nkkWuvvdZvH9PkDhFA/SgfDZ3P5yftkjI7PT09Dz30UAhhbGxs1tNNSqXSjh079uzZE//TFrfMmjtEAPWjo6Mjnlm4c+fOvXv3zvHVkiTZvn17bKDZJUupVOrs7GxsbIzJEo88PHnypGRhdoy1ANSb8oYoczxhce/evVu3bk2n06dPn55ptUw6QiidTu/fv1+soFoA+D8qcjR0qVRqbGwMnxwMNKOv3tfXF+8rBVvcUlHuEAHUm1Qq9eKLL2az2RDC2rVrBwcHZ/Eiu3fvjs3x4IMPTr9Xenp6li5dGpMlnU53d3efO3eura1NslARxloA6tPEEZfLnnc4yUwHWuL4SvnIwxBCV1fXo 48+ KlaoLGMtAPUplUr19PSk0+kQwne +85 1isTj9XzujgZbBwcE4vhKTJW7J//jjj0sWKs5YC0A9m8XR0IVCYfny5WEaAy2Dg4Nbtmwpb3HryENUCwALGi5tbW29vb2ZTObkyZPT7JVcLrdv3z69gmoBoJLhcu7cuSnu3ZQHWi61+KhQKOzYsaO3t7fcK44QYsGY1wJQ/5qamvbv3x9CGBkZmfpo6B07doQQMpnMhclSPkIoJosjhFh4xloAPi0uezT0pQZaJo2vZDKZAwcOiBUWnrEWgE+LNWvWHD9+PIQwMDBw0RGX1tbW2DTlZIlb8pfHV8pb8ksWVAsA8x4u/f39MVziGUNlg4ODcXbtvn37woQjhOKu/I4QQrUAsNA2btwYT1jcs2dPZ2dn+fEtW7aEEHK5XFNT08ReiVvc6hWqgS2AAD51Ojo6Qgg7d+6MXdLR0VEeaFm1atWKFSvifnGOEKLamI0L8CnV2dkZqyWfz+/fv394ePhzn/vcf//7X72CagGg6sQN5SY9mM/nd+zYoVdQLQBUkXjC4v/+979isfjmm2/akh/VAkBVh0sI4f3337/66qv1CqoFAKACrHwGAFQLAIBqAQBUCwCAagEAUC0AgGoBAFAtAACqBQBQLQAAqgUAQLUAAKoFAEC1AACEkHIJqkSpVDpw4IDrMH+WLVu2Zs0a1wFAtTBXr7zyyvbt27/1rW+5FPNk9erVqgWgpjWMj4+7CtWgs7Pz4 48/ zufzLsW88gceoHYZa6kWf/7zn9va2s6cOdPc3OxqAMCFzMatFgMDA//617++9KUvuRQAoFqqV6FQCCF85jOfSaWMfgGAaqlip06dymaz7733nksBAKqlqh0+fHjVqlUrVqxwKQBAtVS1Y8eO3XTTTatXr3YpAEC1VK8kSYaGhs6fP28qLgColqr297//PYTw4YcfmooLAKqlqp04cSKbzboOAKBaqt2rr75qKi4AqJYaYCouAKiWGhCn4i5atMhUXABQLVUtTsVNksRUXABQLVXtxIkTuVzOdQAA1VJFBgcH43lDE7366qt33XXXV77yFdcHAFTLlZckybZt29auXbtp06ZJn+rr67v66qu//vWvu0oAoFquvF27dq1ateqLX/ziqVOnjh49Wn68VCqNjIx88MEHzc3NrhIAqJYrr6Oj4/Tp03/4wx9CCA899FD58bfffjuE0NjY6BIBgGqponC 588 47c7ncP//5z2effTY+ODw8nMvl3nvvPdcHAC6rYXx83FVYMIVCYfny5Y2Nje+//34qlWpra8tkMplMZuPGjS4OAEzNWMuCam5ubm9vHxsb +81 vfhNCePnll6+99lpTcQFAtVSjXbt2hRDa29sLhYKpuACgWqrX4sWL8/n82NjY9773vWAqLgColmq2ffv2G2644c033 ... src=" 58+ XYgGmsLVXewWWai1AAAqWkNDgypXbNiwIS+bE6VzuVx///d/v3XrVhF5/fXXly1bZrW55FGB6i5UWeYcqqi1AAAK/Zk7lUotWLBARILBYCAQyONxWs9s0TTt5MmT+dpx+lb5qrvYM7JQawEAVDqPx6NW2W9tbc19c6J0kzLQ/PnzVXAp3GvJS92FKgupBQBgX1u2bFFhYvPmzfl6zlAopDpaLO+///6JEyeKEAJyyS5WZBGRI0eOEFlILQAAe3G5XAcOHBCRcDgci8Vyf8JUKqXmVLe1taXf/tvf/rZoLyqL7JIeWQrRnkxqAQAgD5qbm30+n4hs3Lgx92dTU6k1Tevr61O3qPjy4osvpj/MNM14PG6T7EJkyRX7mgIAirb3r7UhczAYzMsW0LquWzeqHYhEZGxsTN0yPj6uctLx48eLc95m2Ed6fHzcarixyebS7PkMAMBMZYnu7m4R6ejoyKUt 980 331TFlfS5QnV1dZqm+Xw+a/LzjRs3ksmkiKxduzbvy9DNqe7y+uuvr1mzhipLjpj5DACY6vJQsBmwhmEsXrw4kUh0d3d3dnZm/TyxWOy+++5zu92TnnzSLenL0Pl8vhMnThRhH0dl0hxpq8pi58hi85nPpBYAQLGvXtbmRKOjo7W1tUV4OT09PV1dXSJS/JnGKrtcunQpFovZv8pCagEAkFomq6+v13Xd5/OdOnWqOK/I2lig0MvQOTQQOOIg6WsBAJTA4cOHRSQSiQwPDxfnJzY0NCSTSU3T7r///iVLlvAWODJMU2sBnMs0zXnz5s36MP6b5+sDaEHZ7W0qwmfuQCAQDoc1Tbty5UomvSbRaPTXv/71lBsCTHm0pmne+rSqBXhS70vZnNKyP0hqLYCDuVyuzKcyIsdIUZwZpxVl//79IpJIJPbt25dJRt+wYUNra2smU4FisVh9ff3TTz99611ut7skkQX5CVX8RQMAlOozt9WWm0wmZ+6QbW9v7+/v1zTt8uXLt8aOSUdrtbCMjY3NmlHUQr1FaHOh1pI7ai0AgJJpaWlRC6+phW5nCBb9/f0icuDAgUwqJQ0NDepph4aGZn5kKpVavXq11+stWnsNSC0AAEdyuVxHjhwRkXA4PN3ePaZprl69WkR8Pl9zc3OGz7x161YR+c53vjPrIxcsWCA3l6EzTZM3xc4YIQIATHV5KOJIgWrL9Xq9 58+ fv7V/Vo0NyYyjSLcebTweX7RokWQw9mSa5tNPP63WgivoMnSMEOWOWgsAoMR27twpIrquDw4OTrrLGhsKBoNzWhqutrbW6/WKyN69e2d+pMvlCoVCap+BSCRSU1NjbQgA24Uqai0AgJJ/5rbWrp3UP5tKpdRU55kXo5vyaFWrr6ZpV69ezeQYrB5eyayN1+antCwPktQCACj91cs0zZqamkQi0dbWpkov6W7dXSgThmFUV1d7vd5IJJJhnSaVSnm93q1bt+ayQRKphdQCACjzq9fw8PDatWslr5sTxePxuT5VdgmJ1EJqAQBU1tVLbU7k9XovXrzIKeUgb0U3LgDALtTyKrquh0Ih+xxVKBRSK9GB1AIAwB/U1ta2tbWJyJe//OULFy7Y4ZBisVhra6vX67VVkCK1AABQej09PS6X63//938feeQROxyPpmk+n09E1BZILENHagEA4A9+8IMfqGTwzjvvxOPxDL+rqqpqhn25Y7FYU1PTrl27sjgej8dz4sQJv98vIl1dXWvWrFG7RqMk6MYFAEydA6ToXZnWgrb33HPPb37zG5/PN/MyLRke7a5du7Zv3575wi0zPImIaJqm6/qclrwr4Skts4MktQAAbHH1Mk1z2bJlag7RP/7jPz7wwAMiMjIy0tDQkOPRplIptdmQruu57O1sLUOXXQAiteSOESIAgC0MDg7qui4iQ0NDS5cuVYMyGzZsyL2VxOPxqN6U733ve7k8T0NDQzKZ1DRN7fiIEoQqai0AgJJ/5lbr2IrIwMDAtm3bprwll6O1lrAbHx8v0OaIdjulZXmQpBYAgC2uXrFYbOPGjenbPlutJLPuCjTr0ZqmOW/ePMl4yInUYs/DY4QIAGALdXV1Fy9eTC+EbNmyRdM0Edm8eXOOT+5yudRKMN/4xjfye9imaQYCAZahI7UAACqay+VSHSThcDj3WPDss8+KyKVLl/K75sq+ffvC4TDL0JFaAACVrqGhQTXSbty4cYa0MTExMeugRl1d3cjIyNWrV/Pb1/LUU09Zy9C1t7ezDF1B0dcCAJjq8lCU/oZM9mS2FnEJBoOBQMCG58o0zY6Ojv7+fhHx+Xw//vGPp+zCoa8ld9RaAAClkUqlFi1a1NTUNPNqs7W1td3d3SLS0dFhz3VpXS7Xzp07BwYGRCQSiSxevDjzVX1BagEAOEB7e7uIXLp06fbbb5/5kTt27NA0LZFI7Nixw7YvZ9u2bSMjI+o4c28fxpQYIQIATHV5KPBIgbWASobr1YZCodbWVhEZHR2ddVCphFKplM/nO3v27K2DRIwQkVoAAM67ehmGsXjx4kQi4ff7M596U19fr9b7v3jxYi4/PRqNDg4OtrS0FHnhFlJL7hghAgAU2+bNmxOJhKZp+/fvz/y7hoaGRETX9eHh4VuvtTPs+TzJ4OBgf3//7t27eSMch9QCACiq4eHhcDgsIgcOHJh5xdtJamtr1UpxzzzzTC4TjFtaWkQkHA4Xp7c3lUrV19dHo1HeelILAMBhDh8+LCJ+v7+5uXmu39vb2ysiiURCfZGd5cuXqyV3z5w5U4TX297eruu62iwaOaKvBQAw1eWhkP0NoVBo3bp1cyq0pH+vastNJpMejye7o+3p6enq6sq9RSYThmE88cQTkUhE/bOE2zeW/H3PHbUWAECxBQKB7CKLiLS0tHi9Xrk5cTo7Tz/9tIjoup5KpQr9Yt1u94kTJ9TYloisWbOmCD+0XJFaAABO4nK59uzZIyLhcDjrZpHa2loVffbu3VucY965c6f6OhKJeL1elqEjtQAAKkJDQ4Pf7xeRDRs2ZN2WqxaCK05qSaeWoTt27BjvYxboawEATHV5yGt/g9qxOZPV5DKUSqUWLFggNzcnyuJoDcM4c+bM6tWri9Zlog4ymUx +85 vftEov5f2+k1oAAA67epmmWVNTk0gk8rv94a5du7Zv3y4iY2NjWXfJEAicdZCMEAEACqujoyORSIhIU1NTHp92y5YtagJzGWz6k8vyMxWF1AIAKKBYLNbf3y8iwWDQmqicFy6X68CBAyISDofVCJRDRaPRmpoalqHLBCNEAICpLg/5GCmwxoZ8Pt+pU6cKcZxNTU1qVk4RVl4p0ClduHChqkUNDAxs27atDN73wqHWAgAolN7eXnU9znyLxLlSOxnpup71j4jH4z09PSVcQ+Xy5cs+n09Etm/f3t7ezmgRqQUAUGzxeLyrq0sKMDaUrra2tru7W0Q6Ojqy21fooYce6urqeumll0p1otQydOpV9Pf3swwdqQUAUAKapvl8vjzOG5pSR0eHiCQSib6+viy+/fnnn5ebNZtScblcnZ2dwWBQbi5D5+hOncKhrwUAMNXlIU99LTdu3CjCtGR1tCIyOjpaW1s7p++1ln7RdT2PK8pkd0pjsdjq1asTicTIyEhDQ4ND3/fCodYCAChgCaHIK6lkMQva4/GotpKXX3655Gesrq5O1/Xjx4+XJLI4IExTawEAOO4z95RHqxw/fry5uXlO3z48PLx27Vop8IbMrDKXO2otAIAyoTYneuaZZ+Y6DWflypXqi3PnztnwdZmmmV2jcfkhtQAA8iYejzc1NZVqQ2PVUZtIJPbt2zenb3S73W1tbSKye/duG57V3t7e6upqlqETRogAAFNfHrIaKaivr9d1vfhrvllHGwqFWltbRSSZTM5punUsFovFYuvWrStcI052p9QwjMWLFxdtGTp2TwQAVERqsRJDFhN58nW01mq8fr+/cEvbFTkQGIbxxBNPRCIREfH7/YcOHarY5htGiAAAeZBKpVRkGRgYKHJkUVdZdaF1uVxHjhwRkXA4XDZDKunL0IXD4Upeho5aCwAgD5+51X5AmqZduXKlcJWADAUCgXA47PV6z 58/ X/KDyfqU3sqa66Rp2k9/+tNCpENqLQCAMhcKhdT4xcmTJ+2QEnbu3Ckiuq4PDg6W03lubm7WdV3TNBEp3CYJtg7T1FoAALl85jYMo7q6WkTa2tpUXLCDnp4etQvS2NjYnBpsU6nUqVOnCrELQb7KGGp4qECphW5cAEA5pxYRCYVCHR0ddhgbslhtuXPKUlYCK8SC+qwylztGiAAAuQoEAlevXrVPZBERl8t14MABEenv 789 8/Ri3262WqnPW0FIqlaqQ/lxqLQAApxYGZj3aLNaPiUajjY2NMvehpVKdUtM016xZE4lE8lIfotYCAEBpDA0NiYiu65mv3bJ8+XLV7nrmzBlHvMYbN25cunRJRBobG3t6esr7DSW1AACyYfMhCdM0Y7HYoUOHPvaxj4lIR0dHhpsTuVyurVu3isjf/d3fOeKNcLvdV65cUdtWd3V1BQKBuW7DRGoBAJQzwzC8Xq8NL5CpVCoUCgUCgXnz5nm93q6urnfffVdEEolEb29vhk+yfv16EdF13SnNIi6XK30ZumXLlpVrmwt9LQCAqS4PM/Y3qGXcNE27fPly4TbuyTxCqYk/mqap/XosPp9v06ZNqVTqq1/9qsxlqwHVEJPffX+K0DKSvgxddm8NM58BAGWVWqxL4/Hjx5ubm0t1hLFY7MyZM0NDQ2qBO4vX633yySdXrVq1fPlyNa3JNM1ly5bpuu7z+U6dOpXh5f/NN9/cunVrHpdFKU4giMfjDz300P3335/hKyW1AADKNrVYWxCXZHvCVCr1xhtvvPrqq/39/bfee/z48QcffHDKnBGLxbxerxRmIRa7BQLDMG6//fbsJqKTWgAA5ZNaij82ZJrm22+//fLLLx89elTX9fS7vF7v5s2bV65cqRLJzFc068hLtRoeq8yRWgAAxbt6WWuZFGFsSK2sf/DgwUkDQJqmtbS0tLS0LF26dE6xyWp/yW+3iiMCQTQaveeeezLp6SG1AADKJLWoHtXCjQ0ZhnHhwoXBwcHBwcEp+2pXrFiRy0bHu3bt2r59uxRgBTk7p5ZUKrVgwQLJbHSM1AIAKJPUYppmb29vR0dHfi/5mffV5sjanCjz4KWCVF5aYUqYWrxer0qB3d3dnZ2dpBYAQPmnlvxeSqfrq/X7/Rs3bpyurzZH1iCXrut1dXUZVinyUpspYSCwVv0XEZ/Pd+LEielSIKkFAEBq+cO1c9a+2lmTRO6ampoikYjX6z1//vysJZyFCxcmEom8tMKUPBD09PR0dXWpsx2JRKYMhaQWAEBFp5a899XmKB6PL1q0SESCwWAgEJj5waoVZk77L9o2tUgGy9CRWgAADk4t8XhcRObaA1vovtocr7Wq6pDJ/G1rkCiTESX7pxa5uQxdX1/flImN1AIAcGpqGR8fV+2rGU51LlpfbY7XWqstt62tbefOnTM/WM2cmrWP1SmpRWXK6bIaqQUA4NTU0t3drTohksnkdL2xpeqrzfFaGwqFWltbJYPNidSoSu7L07HKHKkFAFDAq5dya/+HTfpqc7zWqiLKrD0r1vJ0Oe4GYOdAsGvXrkcffbS2tpbUAgBwcGpJ33HQbn21OQYCqy131vGv9vb2j370ozlupmjbQJC+Hab6gtQCAHBkavnXf/3X//zP/yxaX22RA0F7e3t/f39xNieybWpJpVI+ny+9ZkZqAQA4hlWE+JM/+ZNf/OIX6XcVuq+2yIHAGv3JvdnWualF/u8ydCIyPj5unzeX1AIAmIk1ZGBRfbWTbpzho3l6W0wRHjkpEBT5p2f4yFsfb9vjzGRqVUl8iP+cAIBJmpubk8mkiNxxxx3f/va3x8fHQ6HQDJ0fhmFkXtsoxCMnJiYy+RBe2uPMXMmP88knn7TnbyapBQAwhfnz54vI9evX//Zv/7ampiYUCpmmOTGNWztwnfXIkZER9c+RkZGZHzk+Pp5MJrP76VPWP+xzlqyT4PP5VqxYQWoBADiG2+0eGxvr7u4WkUQi0draamWX8nuxDQ0Nfr9fRDZs2DDDC4zFYvPmzfN6veV3BqxNJWfeW7Hk6GsBAMzEMIy+vj611pyIaJrW19fX0tJi2wtbdqyV+2fYnCjHhVts241rRRZN03RdL/SSgLmg1gIAmInb7e7s7Cz7uovH4xkYGBCR1tbW6VpA3G63z+cTkcHBwbJ54Q6KLEKtBQCQufKuu1ibE/n9/lAoNPM1Pou5wTastcRiMTXg5YjIItRaAACZK++6i8vlOnDggIiEw+FYLDblY5YvX66+OHnypNNfbyqVWr16tYMiC6kFAEB2+UBzc7MaA9q4ceN0yUa96hdffNHpkcXr9SYSCQdFFmGECACQi/IbM7LWBZ6uLdcaVZlhH+ypr7i2GSFyaGQRai0AgFyUX92ltrZWvZaOjo4p23Lr6uq8Xq/f7y/E+nJEllmSH7UWAEBelE3dxTCMxYsXJxKJ/G5OZIdai6MjC6kFAEB2mUIoFGptbRWR0dHRfO1oXfLU4vTIQmoBAJBdplZfX6/rus/nO3XqVBmkljKILKQWAADZZWpW1+3x48dn2DnSEamlPCILqQUAQHaZViAQCIfDmqZduXJluqM1DOPWjQltlVrKJrIIc4gAAIXm3HlG+/fvVwe8b9++W++NxWILFy 584 okn7PwSyimyCLUWAEAxOa7uYrXl3ro6i7W6/9jYWCblluLXWsossgi1FgBAMTmu7tLS0qJpmoi0t7dPuquhoUHddfDgQRseuRVZROTkyZNlEFlILQAAsstMXC7XkSNHRCQcDkej0Un3bt26VW4OJNk2soyMjNTV1ZXHbw4jRACAUnLEmJFqy/V6vefPn 08/ sFQqtWDBAslsWZeijRBNiiwNDQ1l89tCrQUAUEqOqLvs3LlTRHRdHxwcTL/d4/Go2dGHDh2yyaGaphkIBMoysgi1FgCAfdi57tLT06MObFLv7fDw8Nq1a2eeHf2HK27hay2maa5ZsyYSiZRlZBFqLQAA+7Bz3WXHjh2q93bHjh3pt69cuVJE7r///hs3bpT2CMs+sgi1FgCAPdmw7qLKKnJLF0sqlcpkhk5Bay2VEFlILQAAssscqM2JvF7vxYsX53zFLVhqqZDIIowQAQDszG5jRkNDQyKi63ooFLLJKaqcyCLUWgAATmGTukt7e3t/f38m7beTr7gFqLVUVGQRai0AAKewSd2lt7dX07REItHb21vaE1JpkYXUAgAgu8z5APr6+kSkq6srHo9btw8PD9fX1/f09BBZSC0AANglu7S0tKjF5TZv3mzd+Ktf/UrX9b179xJZCoe+FgCAs5Wk3yUWi6ngYoUGwzCqq6tFRNf1Kff9yVdfS8VGFqHWAgBwupLUXerq6vx+v4hs2LBB/RS32+3z+UTke9/7XuFebHpkCQaDFRVZhFoLAKCcFLPuYhVXBgYGtm3bJiLRaLSxsVFExsfHb/2Judda0iNLd3d3Z2dnpb2/1FoAAOWjmHUXt9s9MDAgItu3bzcMQ0SWL1+u7jp58mTeXxqRhdQCACC7ZG/Lli1qcyLVlutyudra2kTkxRdfzPuLevrppys8spBaAABkl+y5XLZDyY4AACAASURBVK4jR46ISDgcjsViIvLss8+KSDKZzG 886 unpCYfDFR5ZhL4WAEAlKGi/S1NTUyQS8Xq9 58+ fd7lc8Xg8fW/FD6642fa19PT0qCOv8MhCagEAkF1yzS7xeHzRokUiEgwGA4HAtFfcrFILkSUdI0QAgEpRoDGj2tpa9YQdHR2qLTdfiCyTkx+1FgBABcpv3cU0zZqamkQi0dbWtnPnzqmvuHOstRBZSC0AABQku4RCodbWVhEZHR3Nva+FyDIlRogAAJUrj2NGgUBArfG/bt06EYlGo01NTdFoNIujIrKQWgAAKGx2GRoaEhFd14eHhwcHByORyO7du4ksecQIEQAAH8hxzKi9vb2/v1/TtJdeemnlypUiMjY25na7JbMRIiLLzKi1AADwgRzrLr29veq7/uVf/kUtmzs0NJThxCIiy6yotQAAMLXs6i5WW+7Xv/717373u3fffffvf//7t956a8GCBTJ9rYXIQmoBAKDY2cU0zWXLlum6/vjjj7/yyivqxnvuuec3v/nNdKnFiiw+n+/EiROF2KGa1AIAANllioQRjUYbGxunfJ6RkZGGhgYiS3boawEAYHZz6ndpaGioq6uz/vmpT33K7/errxsbG+vr64eHh9V37dq1i8iSOWotAADMjaq77N27N5FIyFR1F6t8IiJdXV3f+MY35OYcIoumaX/5l3+pMhCRhdQCAEABmaY5ODjY0dExKbv09vaqyNLc3Dw8PCw3Jz+r1DI2NpY+0kRkIbUAAFCa7FJdXT02NiYi3d3dO3bsUJsT+f3+UCiUvl7L6dOnfT6fiNx///0///nPiSwZoq8FAIDsuVyuQCBw5cqVYDCoaZqKLPPnz1+8eLGIHDhwQETC4XAsFrO+JRqNqsjy8MMPv/HGG0QWUgsAACXILocOHaqurn7//fdVr+61a9dWrVolIhs3brQii5pe5PP5Tp 48+ ZGPfISzlzlGiAAAyKdJY0YejyeVSk16DL0spBYAAGyaXYgspBYAAByQXb72ta/97ne/u379OpGF1AIAgN2zy7//+78fOnToJz/5CZGF1AIAgDPiC5GF1AIAAMofM58BAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AACASuTiFMxJNBr99a9/PevDVqxYUVtby+kSkVAolMnDOGMAivlX+t57721oaOB0OU7VxMQEZ2EO56uqKpOHBYPBQCDA6UqlUgsWLOCMASia+vp6XddnfZjf 78/ wMxVshRGiOYjH4yKybdu2WR/Z2tqaYb4pb2 +88 UaGj2xtbTUMgzMGIBeGYei6/sILL8z6yHA4zF9pUkuZO3v2rIh4PJ6JzHDGXn311VWrVg0MDGRyutxuN2cMQC4uXLggIu+//z5/pUktkGPHjn3xi19cvHgxpyJDg4ODf/Znf7Zy5UpOBYAiOH36tNfrve222zgVpBZIOBz+9Kc/vWLFCk5FJlKpVCKREJElS5ZwNgAUwdGjRx955JFVq1ZxKkgtlU41tVy/fp2pLhlSTS233Xaby8VUNQAFp5paPB7P0qVLORuklkqnmlruvPNOTkWGVFPLxz72MU4FgCJQTS0f+tCHaJIjtYCmljmjqQVAMdHUQmrBB2hqmROaWgAUmWpqeeCBBzgVpJZKR1PLXNHUAqCYaGohteADNLXMFU0tAIqJphZSCz5w8OBBmlrmhKYWAMVEUwupBX9gmmYkEqGpJXM0tQAosqNHj65atYqmFlIL5O233xaaWuaCphYAxaSaWu644w6aWkgtkDNnzghNLXNx+PBhmloAFI1qajFNk6YWUksFRfWenp5AIHDrXUNDQ1u3bqWp5dYzFggEdu3adetd4XCYphYA+WWaZigUampqMk1z0l00tZBaKksoFFq8eHFXV1c4HB4eHp70/yQSidx33300taSfk56enurq6nA4vH37djUt3GL9k6YWAHn8K11TU9Pa2hqJRPbs2TPpXtXUwvZDpBa7qMpYds9/+fLloaGh+vp6Efnyl79sGIZ1l2pqSaVSNLVM8sorr9TU1IjI2rVr0z/6qFnildbUUjUX/PLYn2EYvKFF/js8s/fee+9HP/rRk 08+ KSLt7e3pH5ZUU8vdd99NUwupxS4mMpbd83d2do6Pj7/55puapr333nvPPvusddeZM2c0TWOsNJ3L5ero6Kirqzt//ryIvPXWW/v27bPuPXbsWAU2tUzMBb9C9ud2u3lDi/x3eGbbtm27fv36kSNHfD6fiDz22GPWhyXV1PK73/2OP9SklgrS0NDgcrlOnjwpIj /84 Q+tcaKhoaH169fT1HLr3/Ta2lqPxxMMBkUkfZyIphYAhdDc3CwioVBIRC5dumR9WDp9+rTP5/vQh7ickVoqT11dXVtbm4j8xV/8hWEYVlNLU1MTJ2dKgUBAffR5/PHHTdOkqQVAQd36Yeno0aOf+9znaGohtVSovr4+TdNSqdTmzZtVU4tpmh6PhzMzHfXRJxaL7du3rzKbWgCU6sNSKpXSdf3222+nqYXUUqFcLtdPf/pTEQmHwxs3btQ0rbq6mtOS4Uefjo4OVmoBULQPS2q5CppaSC0Vrba2dmBgQER0XV+/fv19993HOcnwo08ikaCpBUDRPixFIhGfz8cnJVJLpduyZcv9998vIvfdd9+DDz7ICcnwo49CUwuAInxYUr0sn/vc5/ikRGqpdC6X65//+Z//+q//+tq1azS1ZPjRR9f1J5 988 q677qKpBUARhMPhb3/728lkkk9KpBaIx+P57ne/y/ZDmaurq/vhD3+4YMECTgWA4vyV/pu/+Zv 58+ fzSalyVLHmFQAAcARqLQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAAKgELk4BgAq0a9eus2fPzvqwFStWbNu2jdMF2AS1FgCV6IUXXrh48eLExASnAnCQKv7TAqg0qVRqwYIFzz///AsvvJDJ4/k7CdgEI0QAKs4bb7whIrfddhtxBHAWRogAVJxXX331S1/60l133cWpAEgtAGBr/f39S5cuXblyJacCILUAgH3F43ERuXHjxpIlSzgbAKkFAOzLmvDsctHYB5BaAMDGjh07RlMLQGoBAAcIh8M0tQCkFgCwO5paAFILADgDTS0AqQUAnIGmFoDUAgDOQFMLQGoBAAegqQUgtQCA7RiGceuNNLUApBYAsJF4PB4IBBYvXmya5qS7aGoBSC0AYBft7e0PPfTQa6+9lkgknnvuuUn30tQCkFoAwC5aWlq++93v+nw+Edm1a1csFrPuoqkFKAMM7gIoHw0NDZ /85 Ce//OUv//73vw+Hw6tWrfrtb3+rulhoagHKALUWAGXF4/GIyP79+zVNS6VSHR0d6naaWgBSCwDYkdvtPnDggIj09/ercSKaWgBSCwDYVHNzs9/vF5GmpiYVXGhqAUgtAGBT+/fvv/vuu9955x2v16tuoakFILUAgB253e7vf//76muaWgBSCwDYmjVORFMLQGoBALs7dOjQT37yk7feeoumFsDpGOIFUO5/5lyuxsZGwzBoagGcrmpiYoKzAAAA7I8RIgAAQGoBAAAgtQAAgEpDb9q0TNOcN2+es465JF1KVVVVpXqNRf7RjnjjCv17m8dDNQyjurqa/1kA5nDF4X+jfa7HpBZSi/3fEQcdKqkFILUAAACUBn0tAACA1AJUsKampqoMBAKB0h6naZpVmQmFQrytAEqLESKgIFFg3rx569evf/nllzN5fAn/G8ZiMWs/5FmNjo7W1tby/gIoFWotQP69/fbbIvKJT3xiIjMlPNQzZ85omtbd3Z3JcRJZAJBagHKjooDb7bb/oQ4NDT322GOf/exnedcAkFqASuSUKGCaZiQSueeeex 588 EHeNQCkFqDiOCgKqJGs999/3+Px8MYBILUAFcdBUcBBI1kAQGoBKjoK0NQCgNQCVDSaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAPQ1AIApBbAGc6dOyc0tQAAqQWwD8MwYrHYrbefPn3ablEgHo/H4/Fbb6epBQCpBShzpmmGQqHq6mqv15tKpSbde/ToUftEAcMwenp6Fi1atG7dOtM0J70KmloAkFqAMldTU3Pu3LmPf/zjIrJhw4ZJKUHXdZtEgVQqVV1dfeedd4qIrut79uxJv9dBI1kAQGoBsnT58uWPfvSj3/72t0Xk9ddfD4VC1l0XLlywTxTweDzvvPPOtWvX/uEf/kFE2tvb08eJbDiSBQCkFiDP3G53Z2fnhg0bBgYGRKS1tdUaJ7JbFFiwYEFnZ2d7e7vP5xORxx57zBonstVIFgCQWoDC2rJli9frFRG/32/zKKAKQpcuXdq3b5/YbCQLAEgtQMG5XK6hoSEROX36dCgUsnMU8Hg8wWBQRLZv3x6Px201kgUApBagGGpra61xooMHD9o5CgQCAVUTevzxxwcHB2lqAeBQVRMTE5wFIDumaX7mM59Ra7domrZ169bOzk57HqphGPfdd18ymRSRzZs3P/HEE83NzbyDAJyFWguQPZfL9corr6ivbd7f6na7VUFIRGhqAUBqASqRNU60cOFCm0eB5ubmL33pS0JTCwBSC1Cxtm3bNjY29uabb9o/CoTD4ZGRkf/4j//gXQPgRPS1APmRTCYXLFjAoQIAqQUAAFQ6RogAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAACAzLnS/1FVVcUZAQAANjQxMeG69SbOCwAAsBVVWGGECAAAOAOpBQAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABy4eIUAEUQj8dnfUxtbS0nCgBmUDUxMfHBP6r+zz8B5IVpmvPmzZv1YfzvA4Bp80pV1cTEBCNEQMG9/fbbmqZl8n+ScwUAMyC1AAV35syZlpaWgYGBidlwrgCA1AKU0tDQ0NKlS1euXMmpAABSC2BfpmlGIpEbN24sWbKEswEApBbAvlRTi2maLhdT9gCA1ALYmGpq4TwAAKkFsDuaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAMYhkFTCwCQWgB7icViPT09k268cOGCpmnJZJKmFgDIC/6YAjlJpVLt7e2vvfZaIpF44IEHHnvsMeuu06dPb9iw4a677uIsAUBeUGsBcjJ//vyvfvWrKqxs3LjRMAzrrqNHjy5ZsoSmFgAgtQC24Ha7//RP/3TPnj3BYPD69euBQEDdbhiGruvXr1+nqQUASC2AjYKLy+UKBAI+n++VV14ZHh6Wm00t//M//0NTCwCQWgDbCYVCItLa2moYBk0tAEBqAezL4/EEg8Fr165t2rSJphYAyDtq10A+BQKB73//+z/60Y9EhKYWAMgvai1AnoXDYRG56667aGoBAFILYGsej0fX9YcffvjOO+/kbABAHlVNTEx88I+q//NPAFlLJpO/+93v7r33Xk4FAOQhr1RVTUxMkFoAAIAzUgsjRAAAwBlILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAPnnmvTvqqoqTgoAALChqomJCc4CAACwP0aIAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAAyp+LUwAAKAnTNOfNm8d5KLnx8XGXyxl5gFoLAKA07r//fk6CHTz66KOmaZJaAACYWjQa/cUvfqG+1jQtmUxOoFhGRka8Xq/1Xvz0pz91yq8NqQUAUAJf+cpXrK8TiYTX602lUpyWIoTF+vr6xsZGXdetG/fu3csIEQAAUwuFQuqq2dDQICLV1dUquBiGwckpTl7x+/3PP/+8iGia1tLS4pRXQWoBABSVaZodHR0i8txzz61YsUJEPvKRj4hIIpF44oknnNJg4SDxeDwQCKTnldHR0f3797/wwgsi0tfX55RCC6kFAFBsg4ODiURCROrq6v7f//t/IvLuu+8eO3ZMRCKRyJo1awgu+c0rixYtCofDVl4JhUK1tbWbN28WEa/X66BCC6kFAFBUVqGlu7v79ttvF5E777xTREZHR0dGRgguBcorXq9X13WVV9S96vY9e/Y4qNBCagEAFJVVaFHZRUQ+/vGPi8jZs2cbGhrSgwvnKjuGYfT09KTnlZGRkYsXL9bV1VmP2bFjh7pL9RWRWgAAmOKC2traKiIDAwNut1vdeO+99+q6fujQIRFpaGjo7u5WwaWnp4czlkVeqa6u7urqSs8rk6JJeqHFca+RtXEBAEXS19cnIpqmbdmyxbrx9ttvTy8DdHZ2ikhXV5e69Kp/Yta80tfXp86YOsN9fX2BQGDKBzu30EJqAQAU78qqLquzTlohuGTONM3BwcGOjg417qbySktLy3RnOBqNqkLL4cOHnfh6GSECABSDVWjJZNJKZ2enGirq6uoKhUKcvSnzSigUqqmpaW1tTSQSmqYFg8ErV64EAoEZQqFa3M/v96fXtxykamJigvceAFBQqVRqwYIFIhIMBq2Ri2g0unv37hUrVmzbtm3Kq/KaNWsikYiIjIyMOHE4o3B5Jb2+IiLd3d07duyYdTZQNBptbGwUkdHRUTWZiNQCAMBkgUAgHA57vd7z 589 PeXE1TfPcuXNyc7VcgssMyeMrX/mKtR5/d3d3R0eH1do8s/r6el3X/X6/c8tXpBYAQGHF4/FFixbNnDxCoVBra6umaVevXp2UZgguuecVERkeHl67dq04udBCagEAFJxVaLl48eJ0j7GGkJLJpMfjmS64OPqKm6 +84 vf7d+7cOekszcw0zZqamkQi0dbWtnPnTueeCrpxAQAFlOHqIB6Px+v1isipU6cm3eVyuUKhkKZpIvLQQw9V1NbQU24hFAqF5hRZJG1xv97eXkefEFILAKCArP1uZh3cefLJJ0Xk4MGDU2YaXdc1TVNbQ1dCcJlhC6G5PlX6LgqZjyjZEyNEAIBCmXnSimEYQ0NDIqJmFcViMVVuGRsbm/LimkqlvF6vmuWr6/pc6w0Oyis7duxQYUUFvsOHD+cyUVn1DM1wYkktAADMMmnF6tK1rkRVVVUyY9et1f6iadqVK1ectfPfrCYtcev1evfs2ZNjA7JhGIsXL04kEt3d3WWwXh8jRACAgohGo6obI/Neira2NhEZHByc7gEej0ftsJhIJMppa+gMtxDKQl9fn6pOqYX8SS0AAEzBWoY 181 aMlpaWtra2mRfPnbQ1tNODy6S8opa4zUtekbnsouAUjBABAPIvk9VBbh0hypzVMePz+U6cOOHES/JctxDKQk9PT1dXVzmNplFrAQDk/3r8zDPPiEh3d3eBlldpaGg4fvy4iEQiETVBxlnnJ4sthOaq/AotpBYAQP5Zq4MUNE80NzerHRb7+/t7enqcmFdUsMt7XlFUI0uG21U6xgQAAPkzPj6uVoTr7u6e+ZFjY2PqSpRMJrP+cSq4ZPLjSm5kZERN7bYOeGxsrEA/a3R0VP2UkZGRcvrtcvGZAABQkkKL2+32+/0zlCUyKT+o2bxdXV1qNMSek3tz3EIo60JLJov7UWsBAFSosbGxDAstM9ckNE3z+XyZf4uaMi0ix48ft3N9xe/351JYqvBCy8TEBH0tAIC8ycvqIHfccUcikYhEIoZhZP5zfT6fiKxduzYajdrhVORrCyEKLemY+QwAyA/DMKqrq0UkGAyqRfqzY5rmvHnzZMZFcqf8Lmtr6Dl9YyHySvqS/H6/v7e3t2hbVVsbI5T2JBQItRYAQH709fVJPiatuFyuWRfJnfK7Tpw4oSoujY2NJam4TNry0Ov16rqe3ZaHWdu4caOKSuUXWYRaCwAgL/JVaFHUInWapl29enVO32iaZk1NjWoHTiaTRdthsRBbCGVh5u0qywC1FgBAHmzevFnmXmgJhUKhUOjW/pWVK1eKSCKRiMViczoMl8ul67rqCPZ6valUqgh5pUBbCGUhi10UnIVaCwAgV9ba/HPtpVCbPE9ZGGhqaopEIgMDA9u2bZvr8aRSKa/Xq/qCdV0vUMVlUn1FLcmfe50pa2VfaBFqLSiyhQsXVpWpEv6pAkquEJNW1q1bJyJnz57N4ns9Ho+quCQSiUJUXNQSt4sXL07f8lAtcVuqt8A0zQ0bNpR3oUWE9VpQ3IUc5Ga/Hv+hgLKRy+og6htHR0dvvWt8fDzHpWOtA/P5fOPj43l5sePj48FgUI1AWXklX0+ei2AwqA6pcOvtsl4LKsuvfvUrTdNuu+22Mv4fxbsMCi354nK5clw9tra2dmRkREQikciaNWtM08y9vlKcLYSyODa1EnF3d3dBl9xlhAgVJBaLPfzww++99x6nAigb0WhUzfI9fPhw1k/y3//93wU6vIaGhrwEl2g0umzZsvS8MjY21tnZaZO9lIuzXSWpBZXl2LFjn/ /85 z/72c9yKoCyYU1aqaury+Lb1T5Ec50oVMzgEo1G6+vrrSVurbxin5JG5RRaSC0oqtdee23+/Pmf/vSnORVAeYhGo+pa3tvba+fjbGhoUG0fkUgk80OdlFfUFkK2yitKb2+vmi1V9oUWEWHPZxSJYRiJROLdd98t5+Z2oMLkvjrIihUrROTee++d4U/H0NDQe++9l8X853SBQODy5csZbg1d2iX55/qnVb2ivr6+si+0iDDlAcWiZiEODAxwKoDyoIZdZJoZQPly/PhxEdE0LS/P1t3drY55ui2pR0dH1aCVlVcK+ury9Yo0TbPDPCbmEKF80IoLlBNrdZC2traCFiGyXiR3Sp2dneoy39XV1dPTM6m+UvIthHIptNikL7jQSC0oElpxgXJiTVopdEeL2+1WOxifOXMmL0/Y2dmpdljs6upSOyyqJfnT84pakj+7/uJiUnPOc9+uktQCTEYrLlA2ijxpRe1wtH///nw9YfrW0M8++6xNthCaq3g83t/fLyIHDhyokEILqQVFQisuUE6KvDrIo 48+ KiK6rudrYX6Xy3XixIlVq1apS77cXOLWKXlFsRb3a25urpzfPVILisFaFZdTAThdfgst0Wg0FArF4/EZHlNbW6tW0H/jjTfy9SpcLtef//mfq6+///3vl3YLoSzE43E1nrVnz56K+vUjtaAYVCsu5wEoA/ldHWT37t2tra2zbpG4detWyW353UkMw/jOd74jInffffemTZscN8JSoF0U7I/1WlAMqhXX/q1tAGa92JdkdZD169ffddddaj5RXvT19V2/ft26/DtLxRZaSC0oktdee+2RRx755Cc/yakAHE3t2V78SSt1dXV5/NhjZS8Refzxxx33Lqxbt05E/H5/pRVahBEiFOfDmWrF9Xg8nA3A0f+X8746yKc+9SkROXfuXPGzl4pfjpsi4JRdFEgtcIBQKLRw4cJJm5OpVlzVTAfAuQqxOsjixYtFJF+Tg+aUvUTEicuc5L6LAqkFEMMwAoFAR0dHIpF48cUX0+9iVVygDJTN6iDpjSyOSy0VXmghtSCfvv71rz/99NMi8s1vfjO93KJacR944AFOEeD0i33JVwcxDCOXwoyVvZSlS5c66C0wTbPCCy2kFuSN2+2+5557/uqv/qq7u/v69es/+MEPrLvUqri04gLOVbhJK/fee6/f71c7P89qeHi4urpaLWubS/a6++67RcTn8zlrk+TBwUFVaNm5c2fl/i6ybWkhlMGZHxsby+5VWN84NjZm/fP555/ntwJwLrUNstfrLfnW8el/XuZqdHRUffvHP/5xEXHWCfj1owAAIABJREFUFvTj4+OqO3C63aorBLWWkmVB+9dOsnsVbrdbban6rW99S0QuXLhAKy7gaLFYzCarg9TV1ak/JtntpKgKLZ/+9Kd/+ctfishTTz3lrEJLMXdRsC1SC/JP/ad64YUXDMP4+c9/zqq4gKNt3LhRbLM6iOqfzWKRXCt7bdq0SUQ0TXPQWgxF3q6S1ILK4na7g8GgiHzrW 986 e/bs8uXLacUFHMpuk1ZUagmHw5NWWMg8e/3sZz+Tm1sEOMW+ffsotChV9h+qgBOZpllTU6P+m+3evfuLX/wiS8wBTlRfX6/rut/vD4VCNvnbMm/ePBEZGRnJvPYTjUYbGxtF5PLly2qFmDl9e2kZhlFdXS0iwWDQWVs8FgK1FhSEy+WyVp /87 W9/S2QBnKgIhZZ4PB4KhaLRaOZ/W9QcotOnT2f+U6wJw++//766Zfny5U55F0q1iwKpBZWlpaVF07Q77riDVlzAiUzT3LBhgxR4dZCzZ8+2trbu3r0 782 957rnn5vRXJT17vfzyyyLi8/mcslBeIXZRcPZHYk4BCvW75XLpun706FHrww0AB7Emrezfv7/QP2tOC8etXr366tWrmWev9JXZjh49Kjcbch2BQssk9LWgsP7rv/7rl7 /85 Wc+8xlOBeAgVmtad3d3Z2dn4X5QPB5ftGiRiBToYhQKhVpbW0UkmUyKyIIFC9TXjhi2tk4OHS0WRohQWH/0R39EZAEcpzxWB0mfMOzxeE6dOiWOmvNs7aJAZCG1AABmv9g7enWQSdnr4MGD4pw5z4XbRYHUAgAoH2p1EE3TyqbQ4na7TdOMRCIisn79ekccv1VoccoMbVILAKDYDMPYvn27iPT19dm50BKPx9vb23t6embOXnKz0HLu3Dl1+5IlS+z/LlBomQ5ziAAAHyjypBW32622Zpyr3/zmN/39/SKyY8eOW6cEW9krGAyq7KXWd/H7/Y6YP7x 582 YR8fl8FFomYQ4RAOCDi71TlmG1FsnVdb2urm7SvT09PV1dXZqmXblyRcWUhQsXJhKJ48ePNzc32/xdsFbyHR0dLdxKOQ7FCBEA4A8ctDqItUiuWjhuUvaatDJbKpVSo0UPPvig/d+F9AVm+J0ktQAAphCPx521DKtaLG7v3r2zZi8159nr9dp/zrPdtqsktQAA7Mhxq4M0NTWJSCKRSF9aN5VK3Zq91JznJ5 980 v4vikILqQUAMAsnTlrxeDxer1dEXnrpJevG9vb2SdnLMAynzHkOhUIUWkgtAIBZlGp1EMMwQqFQKBTK7ttV+WRoaGiG7HXhwgX1hc3nPKcvMEOhZTrMfAaASlfaQovaJ6ipqSmLppOtW7euWrVq6dKlM2SvwcFBEWlra7N5s0557KJAagEAFNa6deukRKuDWAvZGYaRRWrxeDzWd02XvVRq+cIXvmDnt6BsdlEoNEaIAKCiWZNW9u/f7+gXolZmm1RoicfjqoCxcuVKOx88hRZSCwBgduUxaSUajaqWW6vHRTl27JiKMnYuYBiGoYbJBgYGKLSQWgAA017sy2PSynTZS4UYVYaxLWuBmS1btvA7OTNW9AeACmWa5rJly3Rd9/v9Wc/iycN1qKpKclu9frol8K0NCqZc9d8mHLSLgh1QawGACjU4OKgKLTt37nT0C1EX+zvvvHNS7rHmPNs2soijdlGwA+YQAUAlSp+0Utp17tWez1n3cwwPD//bv/2biFy7di2VSqW/FmvOs23fhSlX8sUMGCECgEoUCoVUB+jY2JhzO0BN06ypqUkkEnffffc777wzaZBFjT3ZeZ/nQCAQDoe9Xu/ 58+ dJLZlghAgAKk7ZrA5iTRh+9tln5eZ+Q0osFlNf2HbOc/oCM0QWUgsAYJaLvaNXB0nPXk899ZSIRCIRwzDUvWfOnBERn89n21hWql0USC0AAMewVgcJBoPlUWjp6Oiw+m2tDly1aJ5a9teGnLhdJakFAFBs5TFpxTCMSYNcqutWdeAahqGmRz366KP2PP4pV/LFrBhIA4AKYhiG3SatRKPRX//61ytWrJjTei19fX2JRELTNDXOIiJf+MIX3nrrrU 984 hNyc3hI0zR7Lvg73Uq+ILUAAP7PxV5sVmjZvXt3OBwOBoOZJ4wps1dzc7M1V+jVV18VEdsWk8pjFwVSCwAniUaju3fvnvkxO3fuLO1aIEhXNquDzJq9+vv7bZtaymYXBVILACcZHBycmJhobm7+8Ic/PN1j5s+fz4myj/b2dhHxer1O72iZOXtZc56XLl1qw+On0EJqAVCa1PL1r3/96aefnvlhjl7ErJyUzeogqpFlhkLLyy+/LHad8zw8PEyhhdQCoNhSqVQikfjwhz/M+trOutg7fdJKPB5Xoz9HjhyZLnsdPXpUbDnn2TTNZ555RkS6u7sptGSHmc8AsvHGG2/4fL4PfYi/IY652JfH6iCzZq/XX39dFTPUunO2Uh6L+5FaADjP4cOHV61a9cADD3AqHKE8VgfJJHtdunRJffHHf/zHtjr4stlFgdQCwHnC4fAdd9xhz25HTGLz1UFWrFjh9/vvvffeWR+ZySDXT37yE/XFuXPnbPUyKbSQWgCU7COv+uzIR0ZHsPmklW3btoVCoVmLQLFYbNZCi2maP/zhD62UYJ/XeOtKviC1ACiSs2fP0tTiFGWzOsjGjRtV9poh37z99tvW17ZKLbeu5AtSC4AiOXbsGE0tTlEeq4NkmL3UnOeHH35YRBKJhLVwS2nZcBcFUguACkJTi1OEQqHyKLRkmL3UnOdnn33W5/PJzd2ISq48tqsktQBwJJpanCJ90kolFFpSqZR6WFNTk1qsxQ7dxxRaSC0ASommFqdwyqSVeDweCoWi0eh02SvDQsupU6dERNM0j8ezadOmZDKpbiktNeecQgupBUBp0NTiCA5aHeTs2bOtra3T7cQ5ODioKij79++f+XkOHjwoIlu3bhURt9tth207rQVmZljJF6QWAHkQjUbr6+uHh4cn3U5TiyOUx+ogmWcv0zTVmjTr16+3z/GXxy4KtkL0AzCFpqYmj8ej6/pTTz2VSCSsCwZNLY5gGEZra6uIDAwMOPqdyjx7WWvKLVmyxCYHXza7KNgKtRYAU/jxj3/8qU996rnnnhsbGwsEAtbtNLU4gjVpZcuWLc59FXMa5Dp9+rSI+P1++wzEUGgpBGotAKbgdrs7OztN0zx9+vQrr7wyPDzc3NwsNLU4QdlMWtm3b1/mg1x79+6VmyvRpZ+KM2fOXLt2LT15F0c0GlWFlsOHD/M7mUd8YAIw/ccal0v1CrS2thqGITS1OEF5rA5iGMb27dtFJBgMzlpoSaVSKt 88+ OCD6befOXNm7dq1JensseY91dXV8TtJagFQJB6PJxgMXrt2bdOmTTS1OOJiXx6Fljllr5deeklEvF7vpHlDK1euFJFEIqF+dYumbHZRILUAcJ5A4P+3d/+xUdeH48dfZWe2SeOMsXi6McqGmS7r+SMSEmDqxjHHj61ZdCZX/WdxS5RJieE//ii7JmN/sURKpgkxJlvabh3GMCkOKRE3SmJ0ibSG+QeRY2za9RJ/bL1shvfs94/X10s/BUp/XMvd+Xj8Va/H9foG6ZPX+/Wjbd26db///e9bW1tNaqlycXeQTCZTQwMty5Yty+Vyq1evnnV7xd3k7r///kmPL168OJPJhBAOHjy4kN9RfZyiUJ0axsfHXQVgasViccmSJSGEX/ziF9 /85 jfNLqxOhUJh+fLlIYTjx4/X9O9RZ2fnzp070+n0uXPnLlstpVKpsbExhDA0NHTh7Zi9e/du3bo1k8mcPHlyYd 784 ODg2rVrQwhnzpxRLRXn30zA5cX7RCGExsZGk1qqVn0sWikWizMaaHnjjTfiBxdd87x 58+ YYNHFi1nxLkuSBBx4IIbS3t0sW1QJcMW1tbWNjY3/6059MaqlOdbM7yLZt22J7TXPhT19fX6yEiyZOc3NzOp0OC3WSYnmDGTNaVAtwhS1evHjv3r2uQ3Wqj4GWWbRXrJb77rvvUk+Ie/wvwArkGjpFoXbZrwWYgTi7hWpTN7uDzLS9CoVCHNuIy4UuKu7xv27duvl +8/ VxioJqAWB+1fTuIKVSKS4CWr169UwHWuLioEwmM8XYRktLywJcFgMtqgWAy6v13UGKxWI8NSmbzYYZ3uSKuRPXe19Zu3btGhkZSafTBlrmlZXPALXttttuGxoayuVyPT09tfj+ywu2o+kvGJ56zfNCKr+T7u7uhT894FPFbFyAGnbo0KF62oZ1RjuzlZcFXfH7YvVxioJqAWAeJUnyyCOPhDraHWRG7XX48OH4vU//chWLxYq/57o5RUG1ADCP6mx3kJlugb9nz54w5ZrniQYHB6+66qo4daay4ronAy2qBYCpRg7qY9FKnFE70/YaHh6OH0yx5nmia665JszDJrmFQiHG0zPPPGOgRbUAcHH1sTtIkiQ///nP48czGmiJk1qy2ew0i62lpWU+NsktbzCzceNGfyZVCwAXUSqV6mOgpa+vL841+eEPfzijX7hv374QQmtr6/R/SbyDU8GN+OrmFIUaYuUzQO2Z0anIVStJkqVLl46MjOTz+Y6OjhlFW1xpPKNzlcunMZ8/f74iF62tra23t3chD5RGtQDUmLrZHaSnpyfuLzc2NjajEaNDhw5t2rQpnU6/++67M4qkq666KlRof5fh4eFMJhNCOH78eE2f/VRb3CECqDH1sTvIXG5yxTXPM/32U6lUXEP0/PPPz/39P/zwwyGEXC4nWVQLAJf8YV8fu4Ps3r07boEfJ7ROX5IkcdnOLKLtiSeeCCG89dZbc3zztX6KQu1yhwiglmzbtm3Pnj21PqNlLje5yrdmZnpfKRZPCGHu163WT1GoXRaXA9SM8u4g+/fvr/WBljDhJlf82d/a2jqdCon3d6a/5vn//MyrxEUz0KJaALi88u4gNT2X4sKbXHFO7pkzZ6YTIs8991yY4ZrnCkqS5IEHHggz38mXinCHCKA2lM9GrvVFK3HB8MSbXA0NDWF6y5iLxeKSJUtCCKOjo01NTQv/5me97omKMBsXoDbUx0BLeWe22d3keu2110II6XT6iiRL3ZyiULvcIQKoAcPDw/WxDesc2yvubPvYY4/N5T0Ui8Wnnnrquuuue/zxx2f0C+vjFIWa5g4RQA2oj0Url7rJNc07ROVt4uZ4j2x2m+TOeidfKsgdIoBqVzeLVuY40PLXv/41frBq1aq5vI3bb7990gtOx9NPPx03mDHQoloAuKQtW7aE2l+0MvebXOU1z3NcwLx48eKZbpJbKpW2bt0aQti9e7cZLaoFgIurm4GWKbbAz+fzuVzuH//4x9Sv8NRTT4UQfvSjH839zcQXiS84HfVxikIdMK8FoHqV51LU+oyW8lSSGZ3SPFFl1zzP6NXq5rjKOmCsBaB6lRet7Nu3r6a/kbnf5Dpy5Eio3JrnpqameCzA7373u8s+2UCLagHgMupmd5CK3OR69tlnw5zXPE90//33hxAOHDgw9dMKhUJ9HFdZH9whAqhS9bENa0VucpXXPA8NDbW0tFTkjRUKhVOnTq1cuXLqwZu4k28mkzl58qQ/k6oFgKl+2Nf67iAVaa/Z7bBSkbKpj1MU6obBLoBqtGvXrjrYHWSaN7kGBwfPnj27evXqS816OXr0aAghl8st8D2a+jhFoZ4YawGoOnWzaGWaAy3xLswU3+yNN944MjLS39+/cePGBXvzBlqqkNm4AFWnPhatVGo2cbFYjAupVq5cuZDvv7W1NYSQzWYli2oB4OJKpVJ9LFqJW+CHOZ81GBcnZzKZeTrnuVgsDg8PT3qwvO6p1tecqxYA5lGcS1HrAy3lLfC7u7vnuAAqLk6OC5UrrqenZ8mSJXHf3onq4xQF1QLAPCoUCnv27AkhPPPMMzU90FKpm1ylUmlgYCCE8IMf/GA+3uf69etDCENDQ8Visfxg3ZyioFoAmEflRSsLOe204mZ6kyve+jl9+vSFn3rjjTfiB7feeut8vNWmpqZ0Oh0+2Xs3hJAkiYEW1QLAZRQKhTmeilwlZjrQsmrVqhDCW2+9deGn+vr6Qgjt7e3zN/IU99uNe+/GrxgHWp 588 kl/JlULABdXH7uDzGIL/GXLluVyudWrV1+qWu677775e8Px3tPAwECpVJq47mmeJv8yF/ZrAaiWH/b1sTtIBbfAL1+TeT3ToHxcwPHjx8+ePVsHpyjUMWMthBBCwzS4SgsjSZKGOXMZa1HcHSSXy9X6QEsFb3IdPHgwhJDJZOY1IFKpVHt7ewjht7/9bX0cV1nH7OhPCCEYcqui/ydTKb8dn0J1s2ilsje54prnn/zkJ/P9tu+7775jx469++67Fdlghnn8N7a/HwGuuEwmMzw8PJdTkatBZW9ylY81qOA5z9P5crV+ioJqAWAeFYvFZcuW/ec//7noZyf9LV3+4VqFz1y/fv3AwEA2mz1y5EhFXnPS8xfgO0qn0+fOnavpnXLqm3ktAFfYkSNHLpUsF5r+fIsFfubg4GDcDi5ugV+prx5nnMzfd1TeDyZ66aWXJItqAeCSHnzwwXXr1sWP77rrrvgv/vFPxMeTJClv3jp+CRcdV1iwZ164M9v0X7O7uzv+2gufNmnNcwW/o0Kh0NbWtnbt2vifuVzuzJkzC3ArCtUCUMNSqdQf//jHTCYTQnj99dffeeedODN30hjAkiVLbrzxxm3btg0ODpZKpar6Fio+m7h8nOE999xT8Xcbe2X58uVxuVPslZ6eHjvhqhYAphUuAwMDcWv5O+ +88 8InHD58OIQwMjKyZ8+etWvXNjY23nbbbZ2dnRceVnxFVHwL/FdeeSWEkM1mK7sCeVKvZDIZvaJaAJixpqamoaGhdDo9MjKSyWQmHuYXQnjyySdHR0f7+/vL8zyGhoZ27tz5/PPPX/F33tPTU/Fl23FyTNzDpiJKpVJnZ+fEXjl+/PjJkyf1Sm2xhgigihSLxUwmMzIykk6nh4aGLrWpfKFQOHHixMGDB3/6059OWmO8d+/e6667bvXq1Qvz8zhJkqVLl46MjOTz+Y6Ojtm9yPDwcLxBFn8kldf1nDlzZu7fRalU2r17dzxkIPbKr371q5reyk+1AFAtyrueZLPZF198caZLWiZujpzL5R5++OGVK1fO35E6PT09c98Cv/wtxx9Jhw4d2rRpUzqdfvfddyvYK+l0evfu3fZiqWnuEAFUl+bm5uPHj4cQBgYGNmzYkCTJjH5O5/P5OG4RQujt7d20aVOcxjvpllNFTDxrsIITUOIknmmeF32pN9bT07NixYqYLOl0uru7+9y5c5Kl1hlrAahGg4ODcVHu7EZcSqXSG2 +80 dfX19fXF3epP3/+/MQXSZLko 48+ mmNqzGigJa57uujTisXitm3b4gtOPMtwFvdxkiTp6+vbvn17/K7j+MqDDz5oF5Y6MQ5AVYojLjFczp8/P+vXGR0dPX 78+ KQH4/zZbDbb1dU1NDQ0i9cfGxuLi566urou++T45X7961+Pjo5O55mxhGb6lrq7u+NbivL5/FyuG1VItQBUr66urvIP4Hl65bJsNtvd3X3ZqijL5/NxMOOyZVDum1tuuSV+rVwu193dfdFaii+bzWZnWnjl+2Lxcs0ielAtAMxJ/Ck+H+EyNDTU1dWVzWYntsukDWqnCJH4/O7u7ss+OZfLxWeeOXOmvb19Yl6EEDKZTD6f7+/vj8EUPzudl9UrqgWAT1G4ROfPnx8aGorTeC/Mhf7+/v7+/kkpMP2Blrhb/6Sxk7GxsdhMMWgmTpSJH0xnyGdoaGhir+RyuekPFFGjzMYFqAGdnZ1xOUxXV9fjjz++kF/6tttui3NNMpnM/fffv27duptvvvmGG26IIyJTr8opFotLlixJp9OnT5+eYrpuoVA4derU66+/fvPNN7e1tV12zXOhUNixY0fcLy72yq5du+wX92lg5TNADejo6Ii3crZu3To4OLiQX/ree++Ns1Librxr166NydLU1DT14uQkSeJ73r9//9QrjJqamj744IMVK1a88MILIYTHHntsil5xhNCnmuEmgJpw/vz58hyUC9cEzbczZ850d3dPvKFz8ODB6dzYam9vn86LT/zBdNHvbnR0dOJXj1vy+1PhDhEAVSpJkg0bNgwMDITZbmcyd21tbb29vV/+8pfPnj078fF4MyiXy23evHn9+vXxNKVMJvOXv/zlsnullPfGjSZtLWNLfspUC0CthktFjumZkXJeXNhMcRv+8n9ef/31n/ /85 /P5/ObNmy97nkAsnvhxNps9cuSIXkG1ANSDaZ6wOB/iQEsmkzl58uSkT8XdeI8ePfrcc8+Vd4qLqXHhky/y0+iT45PiDN8kSZ5++umtW7fGB21xi2oBEC4zUD6ZeWhoqKWlZeq399prrx0+fLivr++xxx6bdBZ0oVD497//feutt05MkHK1vPPOOy+//LIt+VEtAMJl9uIS6FwuV95VZTqSJJkUHOvXr493uLLZbGtr6+bNm5ubm2O13HTTTR9//LFeQbUA1GG4xOkg05z0Ohfl0xznPpmmXC1TyOfz27dvr+A50tQH+7UA1KqmpqZ4wuLQ0NCGDRuSJJm/r7Vly5YQQi6Xm/v83yNHjsTdeLu6uibt7h8+2ZK/o6NDsqBaAOrKmjVrYrgMDAzMX7gMDg7GCba7du2qyAumUqmWlpY77rhj4oPt7e16ham5QwRQ88q3b7LZ7IsvvljZW0VJkixdunRkZGSmM1qmUCgUWltby0uNbMnPNBlrAah5a9asiYcUDgwMVGo4pKyvry9Oj923b19FeiVuyR+TxZb8zMhnfvazn7kKALWupaVl0aJFx44dO3bs2KJFi+65556KvGySJN/97nfHxsby+fz69evn2Ctbtmz58Y9//Oabb4YQstns0aNHH3nkkWuvvdZvH9PkDhFA/SgfDZ3P5yftkjI7PT09Dz30UAhhbGxs1tNNSqXSjh079uzZE//TFrfMmjtEAPWjo6Mjnlm4c+fOvXv3zvHVkiTZvn17bKDZJUupVOrs7GxsbIzJEo88PHnypGRhdoy1ANSb8oYoczxhce/evVu3bk2n06dPn55ptUw6QiidTu/fv1+soFoA+D8qcjR0qVRqbGwMnxwMNKOv3tfXF+8rBVvcUlHuEAHUm1Qq9eKLL2az2RDC2rVrBwcHZ/Eiu3fvjs3x4IMPTr9Xenp6li5dGpMlnU53d3efO3eura1NslARxloA6tPEEZfLnnc4yUwHWuL4SvnIwxBCV1fXo 48+ KlaoLGMtAPUplUr19PSk0+kQwne +85 1isTj9XzujgZbBwcE4vhKTJW7J//jjj0sWKs5YC0A9m8XR0IVCYfny5WEaAy2Dg4Nbtmwpb3HryENUCwALGi5tbW29vb2ZTObkyZPT7JVcLrdv3z69gmoBoJLhcu7cuSnu3ZQHWi61+KhQKOzYsaO3t7fcK44QYsGY1wJQ/5qamvbv3x9CGBkZmfpo6B07doQQMpnMhclSPkIoJosjhFh4xloAPi0uezT0pQZaJo2vZDKZAwcOiBUWnrEWgE+LNWvWHD9+PIQwMDBw0RGX1tbW2DTlZIlb8pfHV8pb8ksWVAsA8x4u/f39MVziGUNlg4ODcXbtvn37woQjhOKu/I4QQrUAsNA2btwYT1jcs2dPZ2dn+fEtW7aEEHK5XFNT08ReiVvc6hWqgS2AAD51Ojo6Qgg7d+6MXdLR0VEeaFm1atWKFSvifnGOEKLamI0L8CnV2dkZqyWfz+/fv394ePhzn/vcf//7X72CagGg6sQN5SY9mM/nd+zYoVdQLQBUkXjC4v/+979isfjmm2/akh/VAkBVh0sI4f3337/66qv1CqoFAKACrHwGAFQLAIBqAQBUCwCAagEAUC0AgGoBAFAtAACqBQBQLQAAqgUAQLUAAKoFAEC1AACEkHIJqkSpVDpw4IDrMH+WLVu2Zs0a1wFAtTBXr7zyyvbt27/1rW+5FPNk9erVqgWgpjWMj4+7CtWgs7Pz4 48/ zufzLsW88gceoHYZa6kWf/7zn9va2s6cOdPc3OxqAMCFzMatFgMDA//617++9KUvuRQAoFqqV6FQCCF85jOfSaWMfgGAaqlip06dymaz7733nksBAKqlqh0+fHjVqlUrVqxwKQBAtVS1Y8eO3XTTTatXr3YpAEC1VK8kSYaGhs6fP28qLgColqr297//PYTw4YcfmooLAKqlqp04cSKbzboOAKBaqt2rr75qKi4AqJYaYCouAKiWGhCn4i5atMhUXABQLVUtTsVNksRUXABQLVXtxIkTuVzOdQAA1VJFBgcH43lDE7366qt33XXXV77yFdcHAFTLlZckybZt29auXbtp06ZJn+rr67v66qu//vWvu0oAoFquvF27dq1ateqLX/ziqVOnjh49Wn68VCqNjIx88MEHzc3NrhIAqJYrr6Oj4/Tp03/4wx9CCA899FD58bfffjuE0NjY6BIBgGqponC 588 47c7ncP//5z2effTY+ODw8nMvl3nvvPdcHAC6rYXx83FVYMIVCYfny5Y2Nje+//34qlWpra8tkMplMZuPGjS4OAEzNWMuCam5ubm9vHxsb +81 vfhNCePnll6+99lpTcQFAtVSjXbt2hRDa29sLhYKpuACgWqrX4sWL8/n82NjY9773vWAqLgColmq2ffv2G2644c033...

Ngày tải lên: 02/06/2014, 20:02

28 1,4K 1
Tổng hợp kiến thức và các chuyên đề toán 12

Tổng hợp kiến thức và các chuyên đề toán 12

... 1x m m x m y xm luôn có cực đại cực tiểu. Bài 3. Cho hàm số 32 2 ± 12 13y x x . Tìm a để hàm số có cực đại, cực tiểu các điểm cực tiểu của đồ thị cách đều trục tung. Bài 4. Hàm số 32 2( ... 1x m m x m y xm luôn có cực đại cực tiểu. Bài 13. Cho hàm số 32 2 ± 12 13y x x . Tìm a để hàm số có cực đại, cực tiểu các điểm cực tiểu của đồ thị cách đều trục tung. Bài 14. Hàm số ... khảo sát vẽ hàm bậc ba Dạng 1: Khảo sát vẽ hàm số 32 (a 0)y ax bx cx d Ph-ơng pháp 1. Tìm tập xác định. 2. Xét sự biến thiên của hàm số a. Tìm các giới hạn tại vô cực các giới...

Ngày tải lên: 18/10/2014, 11:30

36 596 4

Bạn có muốn tìm thêm với từ khóa:

w