toán nâng cao và các chuyên đề hình học 7

Tài liệu Các chuyên đề Hình học 12 – Chương trình Nâng cao ppt

Tài liệu Các chuyên đề Hình học 12 – Chương trình Nâng cao ppt

... Các chuyên đề Hình học 12 – Chương trình Nâng cao Trang 7 Giáo viên: HUỲNH VĂN KHÁNH Mob: 0985.804. 279 Bài 56. (ĐH – Khối B – 2008) Cho hình chóp S.ABCD có đáy ABCD là hình vuông ... chóp A.BCNM.  Các chuyên đề Hình học 12 – Chương trình Nâng cao Trang 3 Giáo viên: HUỲNH VĂN KHÁNH Mob: 0985.804. 279 a. Tính . O ABC V đường cao OH theo a, b c. b. Tính diện ... tích bằng nhau. Các chuyên đề Hình học 12 – Chương trình Nâng cao Trang 2 Giáo viên: HUỲNH VĂN KHÁNH Mob: 0985.804. 279 Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a,  0 120 ABC  ....

Ngày tải lên: 23/02/2014, 08:20

7 879 6
Tài liệu TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌC TRÊN TẠP CHÍ TOÁN HỌC - TUỔI TRẺ docx

Tài liệu TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌC TRÊN TẠP CHÍ TOÁN HỌC - TUỔI TRẺ docx

... VNMATH.COM VNMATH.COM 22 VNMATH.COM VNMATH.COM 20 VNMATH.COM VNMATH.COM 47 VNMATH.COM VNMATH.COM 40 VNMATH.COM VNMATH.COM 24 VNMATH.COM VNMATH.COM ... VNMATH.COM VNMATH.COM 12 VNMATH.COM VNMATH.COM 48 VNMATH.COM VNMATH.COM 17 VNMATH.COM VNMATH.COM 16 VNMATH.COM VNMATH.COM 41 VNMATH.COM VNMATH.COM ... VNMATH.COM VNMATH.COM 19 VNMATH.COM VNMATH.COM 10 VNMATH.COM VNMATH.COM 37 VNMATH.COM VNMATH.COM 28 VNMATH.COM VNMATH.COM 43 VNMATH.COM VNMATH.COM...

Ngày tải lên: 20/01/2014, 15:20

82 915 5
Các chuyên đề hình học giải tích 12

Các chuyên đề hình học giải tích 12

... với BD tính theo a khoảng cách giữa hai đường thẳng MN AC. (Đề chính thức khối A năm 20 07) . 16.Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều nằm ... tích các điểm cách đều ( ) α và ( ) γ c)Tính khoảng cách giữa hai mp ( ) α và ( ) γ d)Tìm quỹ tích các điểm cách ( ) β một khoảng bằng 1 e)Viết phương trình mặt cầu có tâm thuộc trục Ox ... năm 20 07) . Vấn đề 7: VỊ TRÍ TƯƠNG ĐỐI CỦA CÁC ĐƯỜNG THẲNG CÁC MẶT PHẲNG -GÓC KHOẢNG CÁCH 1.Xét vị trí tương đối giữa hai đường thẳng a) (d) 1 7 3 2 1 4 x y z− − − = = (d’) 6 1 2 3...

Ngày tải lên: 13/05/2014, 17:22

14 707 0
Các chuyên đề Hình học giải tích

Các chuyên đề Hình học giải tích

... tọa độ của A B là: A 243 , 77 ⎛⎞ ⎜⎟ ⎜⎟ ⎝⎠ B 243 , 77 ⎛⎞ − ⎜⎟ ⎜⎟ ⎝⎠ hoặc A 243 , 77 ⎛⎞ − ⎜⎟ ⎜⎟ ⎝⎠ B 243 , 77 ⎛⎞ ⎜⎟ ⎜⎟ ⎝⎠ CHUYÊN ĐỀ 6 HYPEBOL Để giải các bài toán có liên ... y M ) là : CHUYÊN ĐỀ 8 VECTƠ TRONG KHÔNG GIAN Các định nghóa phép toán của vectơ trong không gian cũng giống như trong mặt phẳng, ta cần lưu ý đến các vấn đề cơ bản thông dụng ... là x = 1, 5x – 2y – 13 = 0. Vấn đề 3 HÌNH CHIẾU Bài toán 1 : Tìm hình chiếu vuông góc H của điểm A trên đường thẳng (d) ắ Phửụng phaựp : - Cách 1 :...

Ngày tải lên: 25/05/2014, 03:09

48 440 0
TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌCTRÊN TẠP CHÍ TOÁN HỌC VÀ TUỔI TRẺ ppsx

TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌCTRÊN TẠP CHÍ TOÁN HỌC VÀ TUỔI TRẺ ppsx

... VNMATH.COM 1 www.vnmath.com TUYỂN TẬP CÁC CHUYÊN ĐỀ HÌNH HỌC TRÊN TẠP CHÍ TOÁN HỌC TUỔI TRẺ VNMATH.COM VNMATH.COM 21 ... VNMATH.COM VNMATH.COM 7 VNMATH.COM VNMATH.COM 6 VNMATH.COM VNMATH.COM 41 VNMATH.COM VNMATH.COM 26 VNMATH.COM VNMATH.COM 27 VNMATH.COM VNMATH.COM ... VNMATH.COM VNMATH.COM 32 VNMATH.COM VNMATH.COM 10 VNMATH.COM VNMATH.COM 47 VNMATH.COM VNMATH.COM 33 VNMATH.COM VNMATH.COM 36 VNMATH.COM VNMATH.COM...

Ngày tải lên: 05/07/2014, 01:21

82 576 4
(Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích_Bài tập và hướng dẫn giải

(Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích_Bài tập và hướng dẫn giải

... phẳng (P) mặt phẳng (Q) chứa (d) có VTCP là ( )P n r ( ) ( ) ( ). ( ) ó : (1; 4;2) à M(-2;0;-1) (d) (6; 1; 5) ( ) :6( 2) 5( 1) 0 6 5 7 0 6 5 7 0 ình hình chiê u ( ) : 7 0 d Q d P Ta ... nên: 2 2 2 2 2 2 5 ( ) : 5a b c I S x y z+ + = ⇒ ∈ + + = Mặt khác: Mặt phẳng song song cách đều (P) (Q) có PT: (α): ( 2 4) ( 2 6) 2 1 0 2 x y x y x y + − + + + = + + = Page 8 of 11 TRUNG ... (P) qua G vuông góc với OG b) Mặt phẳng (P) ở câu (1) cắt các trục Ox,Oy,Oz lần lượt tại A,B,C. CMR: ABC là tam giác đều. Bài 2: Trong không gian tọa độ Oxyz cho 2 điểm I( 0;0;1) K( 3;0;0) ...

Ngày tải lên: 06/11/2013, 20:15

11 799 5
Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích phẳng_Bài tập và hướng dẫn giải pptx

Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích phẳng_Bài tập và hướng dẫn giải pptx

... HDG CÁC BÀI TẬP VỀ NHÀ Các bài toán về hình học giải tích phẳng thực sự cũng không khó khăn gì đâu các bạn ah!, Để học tốt phần này các bạn cần chuẩn bị cho mình những kiến thức từ trung học ... 1 0 1 2 2 1 1 2 2 0 2 2 : 2 0 3 4 47 4 3 45 : 7 7 92 0 3 4 4 3 2 0 * 1: à : 2;4 5x 3y 22 0 à 5 ( ) : 2 4 5 7 7 92 0 61 153 * 2 : à : ; 5x 3y 22 0 7 7 20 à 7 x y x y x y x y x y TH O d l ng cua ... thẳng: d 1 :3x+4y- 47= 0 d 2 :4x+3y-45=0 Lập phương trình đường tròn có tâm nằm trên đường thẳng d: 5x+3y-22=0 Và tiếp xúc với cả d 1 d 2 . Giải: Các phương trình đường phân giác tạo bởi d 1 d 2 ...

Ngày tải lên: 13/12/2013, 17:15

12 3,1K 17
Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học không gian_Bài tập và hướng dẫn giải ppt

Tài liệu (Luyện thi cấp tốc Toán) Chuyên đề hình học không gian_Bài tập và hướng dẫn giải ppt

... Nội, ngày 10 tháng 06 năm 2010 BÀI TẬP VỀ NHÀ (Hình học không gian) Thể tích khối đa diện. (Các em tự vẽ hình vào các bài tập) Bài 1: Cho hình chóp S.ABC, trong đó SA vuông góc với mặt phẳng ... S.BCMN Bài 3: Cho hình chóp tứ giác đều S.ABCD có cạnh bằng a , SH là đường cao của hình chóp. Khoảng cách từ trung điểm I của SH đến mặt bên (SDC) bằng b . Tìm thể tích hình chóp S.ABCD Bài ... 10 3 . . . 9 9 3 27 S BCMN SMBC SMNC S ABCD ABCD V V V V SA S a = + = = = Bài 3: Cho hình chóp tứ giác đều S.ABCD có cạnh bằng a , SH là đường cao của hình chóp. Khoảng cách từ trung điểm...

Ngày tải lên: 13/12/2013, 17:15

8 960 31
Chuyên đề Hình học giải tích trong không gian OXYZ

Chuyên đề Hình học giải tích trong không gian OXYZ

... từ các ĐTQG Toán học – 263 + d 1 a d 2 a không cùng phương: d 1 d 2 chéo nhau.  Cách 2:  Tìm vectơ chỉ phương d 1 a , d 2 a của d 1 d 2  Tìm điểm A  d 1 ... dẫn giải CDBT từ các ĐTQG Toán học – 274 điểm B C sao cho BC = 8. Giaûi  qua M (2; 2; 3) có vectơ chỉ phương a (2; 3; 2) ; AM ( 2; 2; 1)    a, AM ( 7; 2; 10)    ... từ các ĐTQG Toán học – 277 1/ Viết phương trình mặt phẳng (Q) chứa trục Ox cắt (S) theo một đường tròn có bán kính bằng 3 2/ Tìm tọa độ điểm M thuộc mặt cầu (S) sao cho khoảng cách...

Ngày tải lên: 02/06/2014, 20:02

51 7,3K 9
Chuyên đề hình học không gian (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

Chuyên đề hình học không gian (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

... src=" 679 m/J0CAACOwAgRAAAgtQAAAJBaAAAAqQUAAFQi0zRjsZidj5A5RACAqWU4+wxlZmRkpKGhwaa/k8whAgAQWZDOttmAESIAwGSGYUy65WMf+9iZM2cmKoyu6yLS1tY2Pj5exi9zfHzc5/M54jeT1AIAmOz9999XX/z93//9Jz/5SRF59913V65cWVdXF41GK+QkmKa5evVqEXnrrbdcLlcZv8w1a9ZEIhERCQaDpBYAgMN4PB71xde+9rWf/exn3d3d6p+XLl1qbGysr6+vhOzS0dGRSCREJBQKVUJk6e7uDgQCpBYAgINt3ry5s7NzZGTEijK6rpd9donFYv39/SISDAatF17ekaWzs9P+x0w3LgBgqstDWjeurut1dXWpVMrr9T7yyCM3btwIh8PqLq/Xu2fPHttOOcn6cr5s2TJd130+36lTp8r1LW5qaro1sqj3nW5cAIDzqCbNjRs3iojH47ly5cr+/ftDodDo6Kjf75cyrbvs27dP9eGW8dhQT0+Ps6osfzABAMAt1DVidHRUfREMBm99jJVdrLrLyMiI01/42NiYpmkiMjAwUK5vrtWo1N3dPeX7btsjZ4QIADAFa6Sgp6enq6tL07TLly +73 e5JD4tGo1evXv2nf/qnchozMgyjr69vx44dZTl1SL2h01VZGCECADhYR0eHpmmJRKKvr2/SXfF4vLGx8Ytf/OKKFSvKaczI7XZ3dnZWYGRxAKqgAIDpRojU19YyHqOjo5MGU6zVydRSbGU5ZlQJA0NOGSEitQAAZr96eb1eEfH5fJMeNj4+3tbWph7s8/mSyeREmfa7VEJkIbUAAMohtVhtucePH7/1wVYxRtM0qx7jrOyi67qKXJUcWUgtAIBySC0TExMqgmiaNuWmPCMjI2rqjYiMjY2lxx37Z5dkMjnlEFilRRZSCwCgTFLL2NiYunG6KcHJZNLr9U5ZjLF5dlHdOV6vt/x2SZxTZCG1AADKJLVMpI0EZTeYYs/sYr0oXdcrPLLYP7Uw8xkAkKmWlhY1DNTe3p7Ft9fW1tptXd1UKtXa2qrmQNXV1THJmZnPAIAyqbVMTEyMjIyouzIsk3R3d0/5SJvUXdTY0HTNOhVVZXFErYXUAgCY29VLpY1MukAGBgZmboUpbXYp17EhK7LcOlPd6amFESIAwNzs3LlTXekHBwdnfuSmTZtUMWP79u2BQMA0TRuOGZXZ2JA1MOTz+U6cOFFuv3x8ngAAzPUzt/VpPn2S85TGx8fTP/rP0MZbkrrL6OhoOY0NpZ/q7F6XzbMBuycCAKYw8y56pmnW1NQkEom2tjZVeplZKBRSTa+app08eXKG2kY8Ht+xY0c57cVYNNZJVlWW7PZRsvnuiaQWAEA2V6/h4eG1a9eKyOjoaG1t7axPGIvFVq9enUgkvF7vxYsXZ34w2WWuotFoY2NjjpFF2PMZAFCWmpubVc/KunXrMnl8XV2drus+ny8Sicz6YBvOka6EyOKAME2tBQCQ3WfueDy+aNEiEQkGg4FAoEBHkt+6y/Dw8KuvvtrX11c2l/b8RhZGiAAA5ZlaRKS9vb2/v1/TtCtXrhQ0B+QluxiGsXjx4szbcSotsggjRACAMtbb26tpWiKR6O3tzeLbTdNcuHBhJuM+eRkz2rx5cyKR0DQtu6Mt+8jiAMzuAwDkMgPWWqstiw2T29ra1PdOtwxdHudIHz9+XD1+yv0dHcdapDjrSc5OnPlMagEA5HT1Gh8f93q9ktVKrOPj46qlV0T8fv+crr5zyi7j4+NqByW/309kIbUAACo0tUxMTOi6rh6fxbpw6cvQeb3eue4mnWF2UUUdTdNmXRavkiMLqQUAUP6pZeLm5kRZb0NoDd9ompbFrkAzZxcrVJXB2FBBI8sE+xABACrB/v37RSSRSOzbty+Lb29ubtZ1XTX2fu 973 5vrt8/cq3vffff5/X6fz9fc3Ez7raMx8xkAMNXlYe4zYHft2rV9+3YRGRsbc7vdWfzQVCq1d+/eHTt25HI9nm6OtGmajr7MFyeysF4LAKAiUou1OZHf7w+FQqU9/jLbE6BoVRZSCwCgIlJL+sVV1/UZtkick1xqJOWRXayzqmna5cuXs6tjlUdqoa8FAJA3DQ0Naibzxo0bTdPM/Qnj8fi8efOy237IMIwy2M8oPbLoul7QyGJ/pBYAQD6ptlxd1wcHB3N/NrU1Y2NjY09Pz1zjTnV1tRqocm52mRRZPB5Phf92kVoAAPlUW1ur1l/p6OgwDCPHZzt//rwq3nR1dQUCgQzrN6Zpqrhz8ODB9ANzVnaJx+NElslYkwAAkN91O6yFaNva2vJyMHNdhm5gYEA9froHZ7cnQDElk0l1DjVNm+vKe2W8XgupBQCQ/6tXLpsTTSl9GbqZE8bo6Kh65Kx7G9k2u5QqskywyhwAoAIFAgG1OZEaqcldc3Pz6OioWoYuk7Ehr9e7ZcuWWQezbDhmlEqlvF6v2puagaFJSC0AgIIYGhpSUWB4eDgvT1hbW6vrejAYnGHq8r59+9T6/UNDQxnOl7ZVdiGyzIz1WgAAU10e8rFuR3t7e39/v6ZpV65cKcK6tIZhVFdXi8jAwMC2bduyeIbSru9ih8jCei0AgArV29srIolEQn1RuIu9+sLtdieTye7u7lnHhqZTwroLVZaMQhW1FgBA4T5zh0Kh1tZWEUkmk4W4EqvNj0ZGRvJeESlm3cU+kYVaCwCgcrW0tKi23Pb29rw/uWmaL7zwgmS1DN2silZ3ocoyh1BFrQUAUNDP3NYCr4WoiJimuWbNmkgkIiKf//znT58+XYgGmsLVXewWWai1AAAqWkNDgypXbNiwIS+bE6VzuVx///d/v3XrVhF5/fXXly1bZrW55FGB6i5UWeYcqqi1AAAK/Zk7lUotWLBARILBYCAQyONxWs9s0TTt5MmT+dpx+lb5qrvYM7JQawEAVDqPx6NW2W9tbc19c6J0kzLQ/PnzVXAp3GvJS92FKgupBQBgX1u2bFFhYvPmzfl6zlAopDpaLO+///6JEyeKEAJyyS5WZBGRI0eOEFlILQAAe3G5XAcOHBCRcDgci8Vyf8JUKqXmVLe1taXf/tvf/rZoLyqL7JIeWQrRnkxqAQAgD5qbm30+n4hs3Lgx92dTU6k1Tevr61O3qPjy4osvpj/MNM14PG6T7EJkyRX7mgIAirb3r7UhczAYzMsW0LquWzeqHYhEZGxsTN0yPj6uctLx48eLc95m2Ed6fHzcarixyebS7PkMAMBMZYnu7m4R6ejoyKUt980331TFlfS5QnV1dZqm+Xw+a/LzjRs3ksmkiKxduzbvy9DNqe7y+uuvr1mzhipLjpj5DACY6vJQsBmwhmEsXrw4kUh0d3d3dnZm/TyxWOy+++5zu92TnnzSLenL0Pl8vhMnThRhH0dl0hxpq8pi58hi85nPpBYAQLGvXtbmRKOjo7W1tUV4OT09PV1dXSJS/JnGKrtcunQpFovZv8pCagEAkFomq6+v13Xd5/OdOnWqOK/I2lig0MvQOTQQOOIg6WsBAJTA4cOHRSQSiQwPDxfnJzY0NCSTSU3T7r///iVLlvAWODJMU2sBnMs0zXnz5s36MP6b5+sDaEHZ7W0qwmfuQCAQDoc1Tbty5UomvSbRaPTXv /71 lBsCTHm0pmne+rSqBXhS70vZnNKyP0hqLYCDuVyuzKcyIsdIUZwZpxVl/ /79 IpJIJPbt25dJRt+wYUNra2smU4FisVh9ff3TTz99611ut7skkQX5CVX8RQMAlOozt9WWm0wmZ+6QbW9v7+/v1zTt8uXLt8aOSUdrtbCMjY3NmlHUQr1FaHOh1pI7ai0AgJJpaWlRC6+phW5nCBb9/f0icuDAgUwqJQ0NDepph4aGZn5kKpVavXq11+stWnsNSC0AAEdyuVxHjhwRkXA4PN3ePaZprl69WkR8Pl9zc3OGz7x161YR+c53vjPrIxcsWCA3l6EzTZM3xc4YIQIATHV5KOJIgWrL9Xq958+fv7V/Vo0NyYyjSLcebTweX7RokWQw9mSa5tNPP63WgivoMnSMEOWOWgsAoMR27twpIrquDw4OTrrLGhsKBoNzWhqutrbW6/WKyN69e2d+pMvlCoVCap+BSCRSU1NjbQgA24Uqai0AgJJ/5rbWrp3UP5tKpdRU55kXo5vyaFWrr6ZpV69ezeQYrB5eyayN1+antCwPktQCACj91cs0zZqamkQi0dbWpkov6W7dXSgThmFUV1d7vd5IJJJhnSaVSnm93q1bt+ayQRKphdQCACjzq9fw8PDatWslr5sTxePxuT5VdgmJ1EJqAQBU1tVLbU7k9XovXrzIKeUgb0U3LgDALtTyKrquh0Ih+xxVKBRSK9GB1AIAwB/U1ta2tbWJyJe//OULFy7Y4ZBisVhra6vX67VVkCK1AABQej09PS6X63//938feeQROxyPpmk+n09E1BZILENHagEA4A9+8IMfqGTwzjvvxOPxDL+rqqpqhn25Y7FYU1PTrl27sjgej8dz4sQJv98vIl1dXWvWrFG7RqMk6MYFAEydA6ToXZnWgrb33HPPb37zG5/PN/MyLRke7a5du7Zv3 575 wi0zPImIaJqm6/qclrwr4Skts4MktQAAbHH1Mk1z2bJlag7RP/7jPz7wwAMiMjIy0tDQkOPRplIptdmQruu57O1sLUOXXQAiteSOESIAgC0MDg7qui4iQ0NDS5cuVYMyGzZsyL2VxOPxqN6U733ve7k8T0NDQzKZ1DRN7fiIEoQqai0AgJJ/5lbr2IrIwMDAtm3bprwll6O1lrAbHx8v0OaIdjulZXmQpBYAgC2uXrFYbOPGjenbPlutJLPuCjTr0ZqmOW/ePMl4yInUYs/DY4QIAGALdXV1Fy9eTC+EbNmyRdM0Edm8eXOOT+5yudRKMN/4xjfye9imaQYCAZahI7UAACqay+VSHSThcDj3WPDss8+KyKVLl/K75sq+ffvC4TDL0JFaAACVrqGhQTXSbty4cYa0MTExMeugRl1d3cjIyNWrV/Pb1/LUU09Zy9C1t7ezDF1B0dcCAJjq8lCU/oZM9mS2FnEJBoOBQMCG58o0zY6Ojv7+fhHx+Xw//vGPp+zCoa8ld9RaAAClkUqlFi1a1NTUNPNqs7W1td3d3SLS0dFhz3VpXS7Xzp07BwYGRCQSiSxevDjzVX1BagEAOEB7e7uIXLp06fbbb5/5kTt27NA0LZFI7Nixw7YvZ9u2bSMjI+o4c28fxpQYIQIATHV5KPBIgbWASobr1YZCodbWVhEZHR2ddVCphFKplM/nO3v27K2DRIwQkVoAAM67ehmGsXjx4kQi4ff7M596U19fr9b7v3jxYi4/PRqNDg4OtrS0FHnhFlJL7hghAgAU2+bNmxOJhKZp+/fvz/y7hoaGRETX9eHh4VuvtTPs+TzJ4OBgf3//7t27eSMch9QCACiq4eHhcDgsIgcOHJh5xdtJamtr1UpxzzzzTC4TjFtaWkQkHA4Xp7c3lUrV19dHo1HeelILAMBhDh8+LCJ+v7+5uXmu39vb2ysiiURCfZGd5cuXqyV3z5w5U4TX297eruu62iwaOaKvBQAw1eWhkP0NoVBo3bp1cyq0pH+vastNJpMejye7o+3p6enq6sq9RSYThmE88cQTkUhE/bOE2zeW/H3PHbUWAECxBQKB7CKLiLS0tHi9Xrk5cTo7Tz/9tIjoup5KpQr9Yt1u94kTJ9TYloisWbOmCD+0XJFaAABO4nK59uzZIyLhcDjrZpHa2loVffbu3VucY965c6f6OhKJeL1elqEjtQAAKkJDQ4Pf7xeRDRs2ZN2WqxaCK05qSaeWoTt27BjvYxboawEATHV5yGt/g9qxOZPV5DKUSqUWLFggNzcnyuJoDcM4c+bM6tWri9Zlog4ymUx+85vftEov5f2+k1oAAA67epmmWVNTk0gk8rv94a5du7Zv3y4iY2NjWXfJEAicdZCMEAEACqujoyORSIhIU1NTHp92y5YtagJzGWz6k8vyMxWF1AIAKKBYLNbf3y8iwWDQmqicFy6X68CBAyISDofVCJRDRaPRmpoalqHLBCNEAICpLg/5GCmwxoZ8Pt+pU6cKcZxNTU1qVk4RVl4p0ClduHChqkUNDAxs27atDN73wqHWAgAolN7eXnU9znyLxLlSOxnpup71j4jH4z09PSVcQ+Xy5cs+n09Etm/f3t7ezmgRqQUAUGzxeLyrq0sKMDaUrra2tru7W0Q6Ojqy21fooYce6urqeumll0p1otQydOpV9Pf3swwdqQUAUAKapvl8vjzOG5pSR0eHiCQSib6+viy+/fnnn5ebNZtScblcnZ2dwWBQbi5D5+hOncKhrwUAMNXlIU99LTdu3CjCtGR1tCIyOjpaW1s7p++1ln7RdT2PK8pkd0pjsdjq1asTicTIyEhDQ4ND3/fCodYCAChgCaHIK6lkMQva4/GotpKXX3655Gesrq5O1/Xjx4+XJLI4IExTawEAOO4z95RHqxw/fry5uXlO3z48PLx27Vop8IbMrDKXO2otAIAyoTYneuaZZ+Y6DWflypXqi3PnztnwdZmmmV2jcfkhtQAA8iYejzc1NZVqQ2PVUZtIJPbt2zenb3S73W1tbSKye/duG57V3t7e6upqlqETRogAAFNfHrIaKaivr9d1vfhrvllHGwqFWltbRSSZTM5punUsFovFYuvWrStcI052p9QwjMWLFxdtGTp2TwQAVERqsRJDFhN58nW01mq8fr+/cEvbFTkQGIbxxBNPRCIREfH7/YcOHarY5htGiAAAeZBKpVRkGRgYKHJkUVdZdaF1uVxHjhwRkXA4XDZDKunL0IXD4Upeho5aCwAgD5+51X5AmqZduXKlcJWADAUCgXA47PV6z58/X/KDyfqU3sqa66Rp2k9/+tNCpENqLQCAMhcKhdT4xcmTJ+2QEnbu3Ckiuq4PDg6W03lubm7WdV3TNBEp3CYJtg7T1FoAALl85jYMo7q6WkTa2tpUXLCDnp4etQvS2NjYnBpsU6nUqVOnCrELQb7KGGp4qECphW5cAEA5pxYRCYVCHR0ddhgbslhtuXPKUlYCK8SC+qwylztGiAAAuQoEAlevXrVPZBERl8t14MABEenv7898/Ri3262WqnPW0FIqlaqQ/lxqLQAApxYGZj3aLNaPiUajjY2NMvehpVKdUtM016xZE4lE8lIfotYCAEBpDA0NiYiu65mv3bJ8+XLV7nrmzBlHvMYbN25cunRJRBobG3t6esr7DSW1AACyYfMhCdM0Y7HYoUOHPvaxj4lIR0dHhpsTuVyurVu3isjf/d3fOeKNcLvdV65cUdtWd3V1BQKBuW7DRGoBAJQzwzC8Xq8NL5CpVCoUCgUCgXnz5nm93q6urnfffVdEEolEb29vhk+yfv16EdF13SnNIi6XK30ZumXLlpVrmwt9LQCAqS4PM/Y3qGXcNE27fPly4TbuyTxCqYk/mqap/XosPp9v06ZNqVTqq1/9qsxlqwHVEJPffX+K0DKSvgxddm8NM58BAGWVWqxL4/Hjx5ubm0t1hLFY7MyZM0NDQ2qBO4vX633yySdXrVq1fPlyNa3JNM1ly5bpuu7z+U6dOpXh5f/NN9/cunVrHpdFKU4giMfjDz300P3335/hKyW1AADKNrVYWxCXZHvCVCr1xhtvvPrqq/39/bfee/z48QcffHDKnBGLxbxerxRmIRa7BQLDMG6//fbsJqKTWgAA5ZNaij82ZJrm22+//fLLLx89elTX9fS7vF7v5s2bV65cqRLJzFc068hLtRoeq8yRWgAAxbt6WWuZFGFsSK2sf/DgwUkDQJqmtbS0tLS0LF26dE6xyWp/yW+3iiMCQTQaveeeezLp6SG1AADKJLWoHtXCjQ0ZhnHhwoXBwcHBwcEp+2pXrFiRy0bHu3bt2r59uxRgBTk7p5ZUKrVgwQLJbHSM1AIAKJPUYppmb29vR0dHfi/5mffV5sjanCjz4KWCVF5aYUqYWrxer0qB3d3dnZ2dpBYAQPmnlvxeSqfrq/X7/Rs3bpyurzZH1iCXrut1dXUZVinyUpspYSCwVv0XEZ/Pd+LEielSIKkFAEBq+cO1c9a+2lmTRO6ampoikYjX6z1//vysJZyFCxcmEom8tMKUPBD09PR0dXWpsx2JRKYMhaQWAEBFp5a899XmKB6PL1q0SESCwWAgEJj5waoVZk77L9o2tUgGy9CRWgAADk4t8XhcRObaA1vovtocr7Wq6pDJ/G1rkCiTESX7pxa5uQxdX1/flImN1AIAcGpqGR8fV+2rGU51LlpfbY7XWqstt62tbefOnTM/WM2cmrWP1SmpRWXK6bIaqQUA4NTU0t3drTohksnkdL2xpeqrzfFaGwqFWltbJYPNidSoSu7L07HKHKkFAFDAq5dya/+HTfpqc7zWqiLKrD0r1vJ0Oe4GYOdAsGvXrkcffbS2tpbUAgBwcGpJ33HQbn21OQYCqy131vGv9vb2j 370 ozlupmjbQJC+Hab6gtQCAHBkavnXf/3X//zP/yxaX22RA0F7e3t/f39xNieybWpJpVI+ny+9ZkZqAQA4hlWE+JM/+ZNf/OIX6XcVuq+2yIHAGv3JvdnWualF/u8ydCIyPj5unzeX1AIAmIk1ZGBRfbWTbpzho3l6W0wRHjkpEBT5p2f4yFsfb9vjzGRqVUl8iP+cAIBJmpubk8mkiNxxxx3f/va3x8fHQ6HQDJ0fhmFkXtsoxCMnJiYy+RBe2uPMXMmP88knn7TnbyapBQAwhfnz54vI9evX//Zv/7ampiYUCpmmOTGNWztwnfXIkZER9c+RkZGZHzk+Pp5MJrP76VPWP+xzlqyT4PP5VqxYQWoBADiG2+0eGxvr7u4WkUQi0draamWX8nuxDQ0Nfr9fRDZs2DDDC4zFYvPmzfN6veV3BqxNJWfeW7Hk6GsBAMzEMIy+vj611pyIaJrW19fX0tJi2wtbdqyV+2fYnCjHhVts241rRRZN03RdL/SSgLmg1gIAmInb7e7s7Cz7uovH4xkYGBCR1tbW6VpA3G63z+cTkcHBwbJ54Q6KLEKtBQCQufKuu1ibE/n9/lAoNPM1Pou5wTastcRiMTXg5YjIItRaAACZK++6i8vlOnDggIiEw+FYLDblY5YvX66+OHnypNNfbyqVWr16tYMiC6kFAEB2+UBzc7MaA9q4ceN0yUa96hdffNHpkcXr9SYSCQdFFmGECACQi/IbM7LWBZ6uLdcaVZlhH+ypr7i2GSFyaGQRai0AgFyUX92ltrZWvZaOjo4p23Lr6uq8Xq/f7y/E+nJEllmSH7UWAEBelE3dxTCMxYsXJxKJ/G5OZIdai6MjC6kFAEB2mUIoFGptbRWR0dHRfO1oXfLU4vTIQmoBAJBdplZfX6/rus/nO3XqVBmkljKILKQWAADZZWpW1+3x48dn2DnSEamlPCILqQUAQHaZViAQCIfDmqZduXJluqM1DOPWjQltlVrKJrIIc4gAAIXm3HlG+/fvVwe8b9++W++NxWILFy584okn7PwSyimyCLUWAEAxOa7uYrXl3ro6i7W6/9jYWCblluLXWsossgi1FgBAMTmu7tLS0qJpmoi0t7dPuquhoUHddfDgQRseuRVZROTkyZNlEFlILQAAsstMXC7XkSNHRCQcDkej0Un3bt26VW4OJNk2soyMjNTV1ZXHbw4jRACAUnLEmJFqy/V6vefPn08/sFQqtWDBAslsWZeijRBNiiwNDQ1l89tCrQUAUEqOqLvs3LlTRHRdHxwcTL/d4/Go2dGHDh2yyaGaphkIBMoysgi1FgCAfdi57tLT06MObFLv7fDw8Nq1a2eeHf2HK27hay2maa5ZsyYSiZRlZBFqLQAA+7Bz3WXHjh2q93bHjh3pt69cuVJE7r///hs3bpT2CMs+sgi1FgCAPdmw7qLKKnJLF0sqlcpkhk5Bay2VEFlILQAAssscqM2JvF7vxYsX53zFLVhqqZDIIowQAQDszG5jRkNDQyKi63ooFLLJKaqcyCLUWgAATmGTukt7e3t/f38m7beTr7gFqLVUVGQRai0AAKewSd2lt7dX07REItHb21vaE1JpkYXUAgAgu8z5APr6+kSkq6srHo9btw8PD9fX1/f09BBZSC0AANglu7S0tKjF5TZv3mzd+Ktf/UrX9b 179 xJZCoe+FgCAs5Wk3yUWi6ngYoUGwzCqq6tFRNf1Kff9yVdfS8VGFqHWAgBwupLUXerq6vx+v4hs2LBB/RS32+3z+UTke9/7XuFebHpkCQaDFRVZhFoLAKCcFLPuYhVXBgYGtm3bJiLRaLSxsVFExsfHb/2Judda0iNLd3d3Z2dnpb2/1FoAAOWjmHUXt9s9MDAgItu3bzcMQ0SWL1+u7jp58mTeXxqRhdQCACC7ZG/Lli1qcyLVlutyudra2kTkxRdfzPuLevrppys8spBaAABkl+y5XLZDyY4AACAASURBVK4jR46ISDgcjsViIvLss8+KSDKZzG886unpCYfDFR5ZhL4WAEAlKGi/S1NTUyQS8Xq958+fd7lc8Xg8fW/FD6642fa19PT0qCOv8MhCagEAkF1yzS7xeHzRokUiEgwGA4HAtFfcrFILkSUdI0QAgEpRoDGj2tpa9YQdHR2qLTdfiCyTkx+1FgBABcpv3cU0zZqamkQi0dbWtnPnzqmvuHOstRBZSC0AABQku4RCodbWVhEZHR3Nva+FyDIlRogAAJUrj2NGgUBArfG/bt06EYlGo01NTdFoNIujIrKQWgAAKGx2GRoaEhFd14eHhwcHByORyO7du4ksecQIEQAAH8hxzKi9vb2/v1/TtJdeemnlypUiMjY25na7JbMRIiLLzKi1AADwgRzrLr29veq7/uVf/kUtmzs0NJThxCIiy6yotQAAMLXs6i5WW+7Xv /71 7 373 u3fffffvf//7t956a8GCBTJ9rYXIQmoBAKDY2cU0zWXLlum6/vjjj7/yyivqxnvuuec3v/nNdKnFiiw+n+/EiROF2KGa1AIAANllioQRjUYbGxunfJ6RkZGGhgYiS3boawEAYHZz6ndpaGioq6uz/vmpT33K7/errxsbG+vr64eHh9V37dq1i8iSOWotAADMjaq77N27N5FIyFR1F6t8IiJdXV3f+MY35OYcIoumaX/5l3+pMhCRhdQCAEABmaY5ODjY0dExKbv09vaqyNLc3Dw8PCw3Jz+r1DI2NpY+0kRkIbUAAFCa7FJdXT02NiYi3d3dO3bsUJsT+f3+UCiUvl7L6dOnfT6fiNx///0///nPiSwZoq8FAIDsuVyuQCBw5cqVYDCoaZqKLPPnz1+8eLGIHDhwQETC4XAsFrO+JRqNqsjy8MMPv/HGG0QWUgsAACXILocOHaqurn7//fdVr+61a9dWrVolIhs3brQii5pe5PP5Tp48+ZGPfISzlzlGiAAAyKdJY0YejyeVSk16DL0spBYAAGyaXYgspBYAAByQXb72ta/97ne/u 379 OpGF1AIAgN2zy7// +78 fOnToJz/5CZGF1AIAgDPiC5GF1AIAAMofM58BAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AACASuTiFMxJNBr99a9/PevDVqxYUVtby+kSkVAolMnDOGMAivlX+t 577 21oaOB0OU7VxMQEZ2EO56uqKpOHBYPBQCDA6UqlUgsWLOCMASia+vp6XddnfZjf78/wMxVshRGiOYjH4yKybdu2WR/Z2tqaYb4pb2+88UaGj2xtbTUMgzMGIBeGYei6/sILL8z6yHA4zF9pUkuZO3v2rIh4PJ6JzHDGXn311VWrVg0MDGRyutxuN2cMQC4uXLggIu+//z5/pUktkGPHjn3xi19cvHgxpyJDg4ODf/Znf7Zy5UpOBYAiOH36tNfrve222zgVpBZIOBz+9Kc/vWLFCk5FJlKpVCKREJElS5ZwNgAUwdGjRx955JFVq1ZxKkgtlU41tVy/fp2pLhlSTS233Xaby8VUNQAFp5paPB7P0qVLORuklkqnmlruvPNOTkWGVFPLxz72MU4FgCJQTS0f+tCHaJIjtYCmljmjqQVAMdHUQmrBB2hqmROaWgAUmWpqeeCBBzgVpJZKR1PLXNHUAqCYaGohteADNLXMFU0tAIqJphZSCz5w8OBBmlrmhKYWAMVEUwupBX9gmmYkEqGpJXM0tQAosqNHj65atYqmFlIL5O233xaaWuaCphYAxaSaWu644w6aWkgtkDNnzghNLXNx+PBhmloAFI1qajFNk6YWUksFRfWenp5AIHDrXUNDQ1u3bqWp5dYzFggEdu3adetd4XCYphYA+WWaZigUampqMk1z0l00tZBaKksoFFq8eHFXV1c4HB4eHp70/yQSidx33300taSfk56enurq6nA4vH37djUt3GL9k6YWAHn8K11TU9Pa2hqJRPbs2TPpXtXUwvZDpBa7qMpYds9/+fLloaGh+vp6Efnyl79sGIZ1l2pqSaVSNLVM8sorr9TU1IjI2rVr0z/6qFnildbUUjUX/PLYn2EYvKFF/js8s/fee+9HP/rRk08+KSLt7e3pH5ZUU8vdd99NUwupxS4mMpbd83d2do6Pj7/55puapr333nvPPvusddeZM2c0TWOsNJ3L5ero6Kirqzt//ryIvPXWW/v27bPuPXbsWAU2tUzMBb9C9ud2u3lDi/x3eGbbtm27fv36kSNHfD6fiDz22GPWhyXV1PK73/2OP9SklgrS0NDgcrlOnjwpIj/84Q+tcaKhoaH169fT1HLr3/Ta2lqPxxMMBkUkfZyIphYAhdDc3CwioVBIRC5dumR9WDp9+rTP5/vQh7ickVoqT11dXVtbm4j8xV/8hWEYVlNLU1MTJ2dKgUBAffR5/PHHTdOkqQVAQd36Yeno0aOf+9znaGohtVSovr4+TdNSqdTmzZtVU4tpmh6PhzMzHfXRJxaL7du3rzKbWgCU6sNSKpXSdf3222+nqYXUUqFcLtdPf/pTEQmHwxs3btQ0rbq6mtOS4Uefjo4OVmoBULQPS2q5CppaSC0Vrba2dmBgQER0XV+/fv19993HOcnwo08ikaCpBUDRPixFIhGfz8cnJVJLpduyZcv9998vIvfdd9+DDz7ICcnwo49CUwuAInxYUr0sn/vc5/ikRGqpdC6X65//+Z//+q//+tq1azS1ZPjRR9f1J5988q 677 qKpBUARhMPhb3 /72 8lkkk9KpBaIx+P57ne/y/ZDmaurq/vhD3+4YMECTgWA4vyV/pu/+Zv58+fzSalyVLHmFQAAcARqLQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAAKgELk4BgAq0a9eus2fPzvqwFStWbNu2jdMF2AS1FgCV6IUXXrh48eLExASnAnCQKv7TAqg0qVRqwYIFzz///AsvvJDJ4/k7CdgEI0QAKs4bb7whIrfddhtxBHAWRogAVJxXX331S1/60l133cWpAEgtAGBr/f39S5cuXblyJacCILUAgH3F43ERuXHjxpIlSzgbAKkFAOzLmvDsctHYB5BaAMDGjh07RlMLQGoBAAcIh8M0tQCkFgCwO5paAFILADgDTS0AqQUAnIGmFoDUAgDOQFMLQGoBAAegqQUgtQCA7RiGceuNNLUApBYAsJF4PB4IBBYvXmya5qS7aGoBSC0AYBft7e0PPfTQa6+9lkgknnvuuUn30tQCkFoAwC5aWlq++93v+nw+Edm1a1csFrPuoqkFKAMM7gIoHw0NDZ/85Ce//OUv/ /73 vw+Hw6tWrfrtb3+rulhoagHKALUWAGXF4/GIyP79+zVNS6VSHR0d6naaWgBSCwDYkdvtPnDggIj09/ercSKaWgBSCwDYVHNzs9/vF5GmpiYVXGhqAUgtAGBT+/fvv/vuu9955x2v16tuoakFILUAgB253e7vf/ /76 muaWgBSCwDYmjVORFMLQGoBALs7dOjQT37yk7feeoumFsDpGOIFUO5/5lyuxsZGwzBoagGcrmpiYoKzAAAA7I8RIgAAQGoBAAAgtQAAgEpDb9q0TNOcN2+es465JF1KVVVVpXqNRf7RjnjjCv17m8dDNQyjurqa/1kA5nDF4X+jfa7HpBZSi/3fEQcdKqkFILUAAACUBn0tAACA1AJUsKampqoMBAKB0h6naZpVmQmFQrytAEqLESKgIFFg3rx569evf/nllzN5fAn/G8ZiMWs/5FmNjo7W1tby/gIoFWotQP69/fbbIvKJT3xiIjMlPNQzZ85omtbd3Z3JcRJZAJBagHKjooDb7bb/oQ4NDT322GOf/exnedcAkFqASuSUKGCaZiQSueeeex588EHeNQCkFqDiOCgKqJGs999/3+Px8MYBILUAFcdBUcBBI1kAQGoBKjoK0NQCgNQCVDSaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAPQ1AIApBbAGc6dOyc0tQAAqQWwD8MwYrHYrbefPn3ablEgHo/H4/Fbb6epBQCpBShzpmmGQqHq6mqv15tKpSbde/ToUftEAcMwenp6Fi1atG7dOtM0J70KmloAkFqAMldTU3Pu3LmPf/zjIrJhw4ZJKUHXdZtEgVQqVV1dfeedd4qIrut79uxJv9dBI1kAQGoBsnT58uWPfvSj3 /72 t0Xk9ddfD4VC1l0XLlywTxTweDzvvPPOtWvX/uEf/kFE2tvb08eJbDiSBQCkFiDP3G53Z2fnhg0bBgYGRKS1tdUaJ7JbFFiwYEFnZ2d7e7vP5xORxx57zBonstVIFgCQWoDC2rJli9frFRG/32/zKKAKQpcuXdq3b5/YbCQLAEgtQMG5XK6hoSEROX36dCgUsnMU8Hg8wWBQRLZv3x6Px201kgUApBagGGpra61xooMHD9o5CgQCAVUTevzxxwcHB2lqAeBQVRMTE5wFIDumaX7mM59Ra7domrZ169bOzk57HqphGPfdd18ymRSRzZs3P/HEE83NzbyDAJyFWguQPZfL9corr6ivbd7f6na7VUFIRGhqAUBqASqRNU60cOFCm0eB5ubmL33pS0JTCwBSC1Cxtm3bNjY29uabb9o/CoTD4ZGRkf/4j//gXQPgRPS1APmRTCYXLFjAoQIAqQUAAFQ6RogAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAACAzLnS/1FVVcUZAQAANjQxMeG69SbOCwAAsBVVWGGECAAAOAOpBQAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABy4eIUAEUQj8dnfUxtbS0nCgBmUDUxMfHBP6r+zz8B5IVpmvPmzZv1YfzvA4Bp80pV1cTEBCNEQMG9/fbbmqZl8n+ScwUAMyC1AAV35syZlpaWgYGBidlwrgCA1AKU0tDQ0NKlS1euXMmpAABSC2BfpmlGIpEbN24sWbKEswEApBbAvlRTi2maLhdT9gCA1ALYmGpq4TwAAKkFsDuaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAMYhkFTCwCQWgB7icViPT09k268cOGCpmnJZJKmFgDIC/6YAjlJpVLt7e2vvfZaIpF44IEHHnvsMeuu06dPb9iw4a 677 uIsAUBeUGsBcjJ//vyvfvWrKqxs3LjRMAzrrqNHjy5ZsoSmFgAgtQC24Ha7//RP/3TPnj3BYPD69euBQEDdbhiGruvXr1+nqQUASC2AjYKLy+UKBAI+n++VV14ZHh6Wm00t//M//0NTCwCQWgDbCYVCItLa2moYBk0tAEBqAezL4/EEg8Fr165t2rSJphYAyDtq10A+BQKB73//+z/60Y9EhKYWAMgvai1AnoXDYRG56667aGoBAFILYGsej0fX9YcffvjOO+/kbABAHlVNTEx88I+q//NPAFlLJpO/+93v7r33Xk4FAOQhr1RVTUxMkFoAAIAzUgsjRAAAwBlILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAPnnmvTvqqoqTgoAALChqomJCc4CAACwP0aIAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAAyp+LUwAAKAnTNOfNm8d5KLnx8XGXyxl5gFoLAKA07r//fk6CHTz66KOmaZJaAACYWjQa/cUvfqG+1jQtmUxOoFhGRka8Xq/1Xvz0pz91yq8NqQUAUAJf+cpXrK8TiYTX602lUpyWIoTF+vr6xsZGXdetG/fu3csIEQAAUwuFQuqq2dDQICLV1dUquBiGwckpTl7x+/3PP/+8iGia1tLS4pRXQWoBABSVaZodHR0i8txzz61YsUJEPvKRj4hIIpF44oknnNJg4SDxeDwQCKTnldHR0f 379 7/wwgsi0tfX55RCC6kFAFBsg4ODiURCROrq6v7f//t/IvLuu+8eO3ZMRCKRyJo1awgu+c0rixYtCofDVl4JhUK1tbWbN28WEa/X66BCC6kFAFBUVqGlu7v79ttvF5E 777 xTREZHR0dGRgguBcorXq9X13WVV9S96vY9e/Y4qNBCagEAFJVVaFHZRUQ+/vGPi8jZs2cbGhrSgwvnKjuGYfT09KTnlZGRkYsXL9bV1VmP2bFjh7pL9RWRWgAAmOKC2traKiIDAwNut1vdeO+99+q6fujQIRFpaGjo7u5WwaWnp4czlkVeqa6u7urqSs8rk6JJeqHFca+RtXEBAEXS19cnIpqmbdmyxbrx9ttvTy8DdHZ2ikhXV5e69Kp/Yta80tfXp86YOsN9fX2BQGDKBzu30EJqAQAU78qqLquzTlohuGTONM3BwcGOjg417qbySktLy3RnOBqNqkLL4cOHnfh6GSECABSDVWjJZNJKZ2enGirq6uoKhUKcvSnzSigUqqmpaW1tTSQSmqYFg8ErV64EAoEZQqFa3M/v96fXtxykamJigvceAFBQqVRqwYIFIhIMBq2Ri2g0unv37hUrVmzbtm3Kq/KaNWsikYiIjIyMOHE4o3B5Jb2+IiLd3d07duyYdTZQNBptbGwUkdHRUTWZiNQCAMBkgUAgHA57vd7z589PeXE1TfPcuXNyc7VcgssMyeMrX/mKtR5/d3d3R0eH1do8s/r6el3X/X6/c8tXpBYAQGHF4/FFixbNnDxCoVBra6umaVevXp2UZgguuecVERkeHl67dq04udBCagEAFJxVaLl48eJ0j7GGkJLJpMfjmS64OPqKm6+84vf7d+7cOekszcw0zZqamkQi0dbWtnPnTueeCrpxAQAFlOHqIB6Px+v1isipU6cm3eVyuUKhkKZpIvLQQw9V1NbQU24hFAqF5hRZJG1xv97eXkefEFILAKCArP1uZh3cefLJJ0Xk4MGDU2YaXdc1TVNbQ1dCcJlhC6G5PlX6LgqZjyjZEyNEAIBCmXnSimEYQ0NDIqJmFcViMVVuGRsbm/LimkqlvF6vmuWr6/pc6w0Oyis7duxQYUUFvsOHD+cyUVn1DM1wYkktAADMMmnF6tK1rkRVVVUyY9et1f6iadqVK1ectfPfrCYtcev1evfs2ZNjA7JhGIsXL04kEt3d3WWwXh8jRACAgohGo6obI/Neira2NhEZHByc7gEej0ftsJhIJMppa+gMtxDKQl9fn6pOqYX8SS0AAEzBWoY181aMlpaWtra2mRfPnbQ1tNODy6S8opa4zUtekbnsouAUjBABAPIvk9VBbh0hypzVMePz+U6cOOHES/JctxDKQk9PT1dXVzmNplFrAQDk/3r8zDPPiEh3d3eBlldpaGg4fvy4iEQiETVBxlnnJ4sthOaq/AotpBYAQP5Zq4MUNE80NzerHRb7+/t7enqcmFdUsMt7XlFUI0uG21U6xgQAAPkzPj6uVoTr7u6e+ZFjY2PqSpRMJrP+cSq4ZPLjSm5kZERN7bYOeGxsrEA/a3R0VP2UkZGRcvrtcvGZAABQkkKL2+32+/0zlCUyKT+o2bxdXV1qNMSek3tz3EIo60JLJov7UWsBAFSosbGxDAstM9ckNE3z+XyZf4uaMi0ix48ft3N9xe/351JYqvBCy8TEBH0tAIC8ycvqIHfccUcikYhEIoZhZP5zfT6fiKxduzYajdrhVORrCyEKLemY+QwAyA/DMKqrq0UkGAyqRfqzY5rmvHnzZMZFcqf8Lmtr6Dl9YyHySvqS/H6/v7e3t2hbVVsbI5T2JBQItRYAQH709fVJPiatuFyuWRfJnfK7Tpw4oSoujY2NJam4TNry0Ov16rqe3ZaHWdu4caOKSuUXWYRaCwAgL/JVaFHUInWapl29enVO32iaZk1NjWoHTiaTRdthsRBbCGVh5u0qywC1FgBAHmzevFnmXmgJhUKhUOjW/pWVK1eKSCKRiMViczoMl8ul67rqCPZ6valUqgh5pUBbCGUhi10UnIVaCwAgV9ba/HPtpVCbPE9ZGGhqaopEIgMDA9u2bZvr8aRSKa/Xq/qCdV0vUMVlUn1FLcmfe50pa2VfaBFqLSiyhQsXVpWpEv6pAkquEJNW1q1bJyJnz57N4ns9Ho+quCQSiUJUXNQSt4sXL07f8lAtcVuqt8A0zQ0bNpR3oUWE9VpQ3IUc5Ga/Hv+hgLKRy+og6htHR0dvvWt8fDzHpWOtA/P5fOPj43l5sePj48FgUI1AWXklX0+ei2AwqA6pcOvtsl4LKsuvfvUrTdNuu+22Mv4fxbsMCi354nK5clw9tra2dmRkREQikciaNWtM08y9vlKcLYSyODa1EnF3d3dBl9xlhAgVJBaLPfzww++99x6nAigb0WhUzfI9fPhw1k/y3//93wU6vIaGhrwEl2g0umzZsvS8MjY21tnZaZO9lIuzXSWpBZXl2LFjn//85z /72 c9yKoCyYU1aqaury+Lb1T5Ec50oVMzgEo1G6+vrrSVurbxin5JG5RRaSC0oqtdee23+/Pmf/vSnORVAeYhGo+pa3tvba+fjbGhoUG0fkUgk80OdlFfUFkK2yitKb2+vmi1V9oUWEWHPZxSJYRiJROLdd98t5+Z2oMLkvjrIihUrROTee++d4U/H0NDQe++9l8X853SBQODy5csZbg1d2iX55/qnVb2ivr6+si+0iDDlAcWiZiEODAxwKoDyoIZdZJoZQPly/PhxEdE0LS/P1t3drY55ui2pR0dH1aCVlVcK+ury9Yo0TbPDPCbmEKF80IoLlBNrdZC2traCFiGyXiR3Sp2dneoy39XV1dPTM6m+UvIthHIptNikL7jQSC0oElpxgXJiTVopdEeL2+1WOxifOXMmL0/Y2dmpdljs6upSOyyqJfnT84pakj +7/ uJiUnPOc9+uktQCTEYrLlA2ijxpRe1wtH///nw9YfrW0M8++6xNthCaq3g83t/fLyIHDhyokEILqQVFQisuUE6KvDrIo48+KiK6rudrYX6Xy3XixIlVq1apS77cXOLWKXlFsRb3a25urpzfPVILisFaFZdTAThdfgst0Wg0FArF4/EZHlNbW6tW0H/jjTfy9SpcLtef//mfq6+///3vl3YLoSzE43E1nrVnz56K+vUjtaAYVCsu5wEoA/ldHWT37t2tra2zbpG4detWyW353UkMw/jOd74jInffffemTZscN8JSoF0U7I/1WlAMqhXX/q1tAGa92JdkdZD169ffddddaj5RXvT19V2/ft26/DtLxRZaSC0oktdee+2RRx755Cc/yakAHE3t2V78SSt1dXV5/NhjZS8Refzxxx33Lqxbt05E/H5/pRVahBEiFOfDmWrF9Xg8nA3A0f+X 874 6yKc+9SkROXfuXPGzl4pfjpsi4JRdFEgtcIBQKLRw4cJJm5OpVlzVTAfAuQqxOsjixYtFJF+Tg+aUvUTEicuc5L6LAqkFEMMwAoFAR0dHIpF48cUX0+9iVVygDJTN6iDpjSyOSy0VXmghtSCfvv71rz/99NMi8s1vfjO93KJacR944AFOEeD0i33JVwcxDCOXwoyVvZSlS5c66C0wTbPCCy2kFuSN2+2+55 57/ uqv/qq7u/v69es/+MEPrLvUqri04gLOVbhJK/fee6/f71c7P89qeHi4urpaLWubS/a6++67RcTn8zlrk+TBwUFVaNm5c2fl/i6ybWkhlMGZHxsby+5VWN84NjZm/fP555/ntwJwLrUNstfrLfnW8el/XuZqdHRUffvHP/5xEXHWCfj1owAAIABJREFUFvTj4+OqO3C63aorBLWWkmVB+9dOsnsVbrdbban6rW99S0QuXLhAKy7gaLFYzCarg9TV1ak/JtntpKgKLZ/+9Kd/+ctfishTTz3lrEJLMXdRsC1SC/JP/ad64YUXDMP4+c9/zqq4gKNt3LhRbLM6iOqfzWKRXCt7bdq0SUQ0TXPQWgxF3q6S1ILK4na7g8GgiHzrW986e/bs8uXLacUFHMpuk1ZUagmHw5NWWMg8e/3sZz+Tm1sEOMW+ffsotChV9h+qgBOZpllTU6P+m+3evfuLX/wiS8wBTlRfX6/rut/vD4VCNvnbMm/ePBEZGRnJvPYTjUYbGxtF5PLly2qFmDl9e2kZhlFdXS0iwWDQWVs8FgK1FhSEy+WyVp/87W9/S2QBnKgIhZZ4PB4KhaLRaOZ/W9QcotOnT2f+U6wJw++/ /76 6Zfny5U55F0q1iwKpBZWlpaVF07Q77riDVlzAiUzT3LBhgxR4dZCzZ8+2trbu3r 078 2957rnn5vRXJT17vfzyyyLi8/mcslBeIXZRcPZHYk4BCvW75XLpun706FHrww0AB7Emrezfv7/QP2tOC8etXr366tWrmWev9JXZjh49Kjcbch2BQssk9LWgsP7rv/7rl7/85Wc+8xlOBeAgVmtad3d3Z2dn4X5QPB5ftGiRiBToYhQKhVpbW0UkmUyKyIIFC9TXjhi2tk4OHS0WRohQWH/0R39EZAEcpzxWB0mfMOzxeE6dOiWOmvNs7aJAZCG1AABmv9g7enWQSdnr4MGD4pw5z4XbRYHUAgAoH2p1EE3TyqbQ4na7TdOMRCIisn79ekccv1VoccoMbVILAKDYDMPYvn27iPT19dm50BKPx9vb23t6embOXnKz0HLu3Dl1+5IlS+z/LlBomQ5ziAAAHyjypBW32622Zpyr3/zmN/39/SKyY8eOW6cEW9krGAyq7KXWd/H7/Y6YP7x582YR8fl8FFomYQ4RAOCDi71TlmG1FsnVdb2urm7SvT09PV1dXZqmXblyRcWUhQsXJhKJ48ePNzc32/xdsFbyHR0dLdxKOQ7FCBEA4A8ctDqItUiuWjhuUvaatDJbKpVSo0UPPvig/d+F9AVm+J0ktQAAphCPx521DKtaLG7v3r2zZi8159nr9dp/zrPdtqsktQAA7Mhxq4M0NTWJSCKRSF9aN5VK3Zq91JznJ5980v4vikILqQUAMAsnTlrxeDxer1dEXnrpJevG9vb2SdnLMAynzHkOhUIUWkgtAIBZlGp1EMMwQqFQKBTK7ttV+WRoaGiG7HXhwgX1hc3nPKcvMEOhZTrMfAaASlfaQovaJ6ipqSmLppOtW7euWrVq6dKlM2SvwcFBEWlra7N5s0557KJAagEAFNa6deukRKuDWAvZGYaRRWrxeDzWd02XvVRq+cIXvmDnt6BsdlEoNEaIAKCiWZNW9u/f7+gXolZmm1RoicfjqoCxcuVKOx88hRZSCwBgduUxaSUajaqWW6vHRTl27JiKMnYuYBiGoYbJBgYGKLSQWgAA017sy2PSynTZS4UYVYaxLWuBmS1btvA7OTNW9AeACmWa5rJly3Rd9/v9Wc/iycN1qKpKclu9frol8K0NCqZc9d8mHLSLgh1QawGACjU4OKgKLTt37nT0C1EX+zvvvHNS7rHmPNs2soijdlGwA+YQAUAlSp+0Utp17tWez1n3cwwPD//bv/2biFy7di2VSqW/FmvOs23fhSlX8sUMGCECgEoUCoVUB+jY2JhzO0BN06ypqUkkEnffffc 777 wzaZBFjT3ZeZ/nQCAQDoe9Xu/58+dJLZlghAgAKk7ZrA5iTRh+9tln5eZ+Q0osFlNf2HbOc/oCM0QWUgsAYJaLvaNXB0nPXk899ZSIRCIRwzDUvWfOnBERn89n21hWql0USC0AAMewVgcJBoPlUWjp6Oiw+m2tDly1aJ5a9teGnLhdJakFAFBs5TFpxTCMSYNcqutWdeAahqGmRz366KP2PP4pV/LFrBhIA4AKYhiG3SatRKPRX//61ytWrJjTei19fX2JRELTNDXOIiJf+MIX3nrrrU984hNyc3hI0zR7Lvg73Uq+ILUAAP7PxV5sVmjZvXt3OBwOBoOZJ4wps1dzc7M1V+jVV18VEdsWk8pjFwVSCwAniUaju3fvnvkxO3fuLO1aIEhXNquDzJq9+vv7bZtaymYXBVILACcZHBycmJhobm7+8Ic/PN1j5s+fz4myj/b2dhHxer1O72iZOXtZc56XLl1qw+On0EJqAVCa1PL1r3/96aefnvlhjl7ErJyUzeogqpFlhkLLyy+/LHad8zw8PEyhhdQCoNhSqVQikfjwhz/M+trOutg7fdJKPB5Xoz9HjhyZLnsdPXpUbDnn2TTNZ555RkS6u7sptGSHmc8AsvHGG2/4fL4PfYi/IY652JfH6iCzZq/XX39dFTPUunO2Uh6L+5FaADjP4cOHV61a9cADD3AqHKE8VgfJJHtdunRJffHHf/zHtjr4stlFgdQCwHnC4fAdd9xhz25HTGLz1UFWrFjh9/vvvffeWR+ZySDXT37yE/XFuXPnbPUyKbSQWgCU7COv+uzIR0ZHsPmklW3btoVCoVmLQLFYbNZCi2maP/zhD62UYJ/XeOtKviC1ACiSs2fP0tTiFGWzOsjGjRtV9poh37z99tvW17ZKLbeu5AtSC4AiOXbsGE0tTlEeq4NkmL3UnOeHH35YRBKJhLVwS2nZcBcFUguACkJTi1OEQqHyKLRkmL3UnOdnn33W5/PJzd2ISq48tqsktQBwJJpanCJ90kolFFpSqZR6WFNTk1qsxQ7dxxRaSC0ASommFqdwyqSVeDweCoWi0eh02SvDQsupU6dERNM0j8ezadOmZDKpbiktNeecQgupBUBp0NTiCA5aHeTs2bOtra3T7cQ5ODioKij79++f+XkOHjwoIlu3bhURt9tth207rQVmZljJF6QWAHkQjUbr6+uHh4cn3U5TiyOUx+ogmWcv0zTVmjTr16+3z/GXxy4KtkL0AzCFpqYmj8ej6/pTTz2VSCSsCwZNLY5gGEZra6uIDAwMOPqdyjx7WWvKLVmyxCYHXza7KNgKtRYAU/jxj3/8qU996rnnnhsbGwsEAtbtNLU4gjVpZcuWLc59FXMa5Dp9+rSI+P1++wzEUGgpBGotAKbgdrs7OztN0zx9+vQrr7wyPDzc3NwsNLU4QdlMWtm3b1/mg1x79+6VmyvRpZ+KM2fOXLt2LT15F0c0GlWFlsOHD/M7mUd8YAIw/ccal0v1CrS2thqGITS1OEF5rA5iGMb27dtFJBgMzlpoSaVSKt88+OCD6befOXNm7dq1JensseY91dXV8TtJagFQJB6PJxgMXrt2bdOmTTS1OOJiXx6Fljllr5deeklEvF7vpHlDK1euFJFEIqF+dYumbHZRILUAcJ5A4P+3d/+xUdeH48dfZWe2SeOMsXi6McqGmS7r+SMSEmDqxjHHj61ZdCZX/WdxS5RJieE//ii7JmN/sURKpgkxJlvabh3GMCkOKRE3SmJ0ibSG+QeRY2za9RJ/bL1shvfs94/X10s/BUp/XMvd+Xj8Va/H9foG6ZPX+/Wjbd26db///e9bW1tNaqlycXeQTCZTQwMty5Yty+Vyq1evnnV7xd3k7r///kmPL168OJPJhBAOHjy4kN9RfZyiUJ0axsfHXQVgasViccmSJSGEX/ziF9/85jfNLqxOhUJh+fLlIYTjx4/X9O9RZ2fnzp 070 +n0uXPnLlstpVKpsbExhDA0NHTh7Zi9e/du3bo1k8mcPHlyYd784ODg2rVrQwhnzpxRLRXn30zA5cX7RCGExsZGk1qqVn0sWikWizMaaHnjjTfiBxdd87x58+YYNHFi1nxLkuSBBx4IIbS3t0sW1QJcMW1tbWNjY3/6059MaqlOdbM7yLZt22J7TXPhT19fX6yEiyZOc3NzOp0OC3WSYnmDGTNaVAtwhS1evHjv3r2uQ3Wqj4GWWbRXrJb77rvvUk+Ie/wvwArkGjpFoXbZrwWYgTi7hWpTN7uDzLS9CoVCHNuIy4UuKu7xv27duvl+8/VxioJqAWB+1fTuIKVSKS4CWr169UwHWuLioEwmM8XYRktLywJcFgMtqgWAy6v13UGKxWI8NSmbzYYZ3uSKuRPXe19Zu3btGhkZSafTBlrmlZXPALXttttuGxoayuVyPT09tfj+ywu2o+kvGJ56zfNCKr+T7u7uhT894FPFbFyAGnbo0KF62oZ1RjuzlZcFXfH7YvVxioJqAWAeJUnyyCOPhDraHWRG7XX48OH4vU//chWLxYq/57o5RUG1ADCP6mx3kJlugb9nz54w5ZrniQYHB6+66qo4daay4ronAy2qBYCpRg7qY9FKnFE70/YaHh6OH0yx5nmia665JszDJrmFQiHG0zPPPGOgRbUAcHH1sTtIkiQ///nP48czGmiJk1qy2ew0i62lpWU+NsktbzCzceNGfyZVCwAXUSqV6mOgpa+vL841+eEPfzijX7hv 374 QQmtr6/R/SbyDU8GN+OrmFIUaYuUzQO2Z0anIVStJkqVLl46MjOTz+Y6OjhlFW1xpPKNzlcunMZ8/f74iF62tra23t3chD5RGtQDUmLrZHaSnpyfuLzc2NjajEaNDhw5t2rQpnU6/++67M4qkq666KlRof5fh4eFMJhNCOH78eE2f/VRb3CECqDH1sTvIXG5yxTXPM/32U6lUXEP0/PPPz/39P/zwwyGEXC4nWVQLAJf8YV8fu4Ps3r07boEfJ7ROX5IkcdnOLKLtiSeeCCG89dZbc3zztX6KQu1yhwiglmzbtm3Pnj21PqNlLje5yrdmZnpfKRZPCGHu163WT1GoXRaXA9SM8u4g+/fvr/WBljDhJlf82d/a2jqdCon3d6a/5vn//MyrxEUz0KJaALi88u4gNT2X4sKbXHFO7pkzZ6YTIs8991yY4ZrnCkqS5IEHHggz38mXinCHCKA2lM9GrvVFK3HB8MSbXA0NDWF6y5iLxeKSJUtCCKOjo01NTQv/5me97omKMBsXoDbUx0BLeWe22d3keu2110II6XT6iiRL3ZyiULvcIQKoAcPDw/WxDesc2yvubPvYY4/N5T0Ui8Wnnnrquuuue/zxx2f0C+vjFIWa5g4RQA2oj0Url7rJNc07ROVt4uZ4j2x2m+TOeidfKsgdIoBqVzeLVuY40PLXv/41frBq1aq5vI3bb7990gtOx9NPPx03mDHQoloAuKQtW7aE2l+0MvebXOU1z3NcwLx48eKZbpJbKpW2bt0aQti9e7cZLaoFgIurm4GWKbbAz+fzuVzuH//4x9Sv8NRTT4UQfvSjH839zcQXiS84HfVxikIdMK8FoHqV51LU+oyW8lSSGZ3SPFFl1zzP6NXq5rjKOmCsBaB6lRet7Nu3r6a/kbnf5Dpy5Eio3JrnpqameCzA7 373 u8s+2UCLagHgMupmd5CK3OR69tlnw5zXPE90//33hxAOHDgw9dMKhUJ9HFdZH9whAqhS9bENa0VucpXXPA8NDbW0tFTkjRUKhVOnTq1cuXLqwZu4k28mkzl58qQ/k6oFgKl+2Nf67iAVaa/Z7bBSkbKpj1MU6obBLoBqtGvXrjrYHWSaN7kGBwfPnj27evXqS816OXr0aAghl8st8D2a+jhFoZ4YawGoOnWzaGWaAy3xLswU3+yNN944MjLS39+/cePGBXvzBlqqkNm4AFWnPhatVGo2cbFYjAupVq5cuZDvv7W1NYSQzWYli2oB4OJKpVJ9LFqJW+CHOZ81GBcnZzKZeTrnuVgsDg8PT3qwvO6p1tecqxYA5lGcS1HrAy3lLfC7u7vnuAAqLk6OC5UrrqenZ8mSJXHf3onq4xQF1QLAPCoUCnv27AkhPPPMMzU90FKpm1ylUmlgYCCE8IMf/GA+3uf69etDCENDQ8Visfxg3ZyioFoAmEflRSsLOe204mZ6kyve+jl9+vSFn3rjjTfiB7feeut8vNWmpqZ0Oh0+2Xs3hJAkiYEW1QLAZRQKhTmeilwlZjrQsmrVqhDCW2+9deGn+vr6Qgjt7e3zN/IU99uNe+/GrxgHWp588kl/JlULABdXH7uDzGIL/GXLluVyudWrV1+qWu 677 775 e8Px3tPAwECpVJq47mmeJv8yF/ZrAaiWH/b1sTtIBbfAL1+TeT3ToHxcwPHjx8+ePVsHpyjUMWMthBBCwzS4SgsjSZKGOXMZa1HcHSSXy9X6QEsFb3IdPHgwhJDJZOY1IFKpVHt7ewjht7/9bX0cV1nH7OhPCCEYcqui/ydTKb8dn0J1s2ilsje54prnn/zkJ/P9tu +77 75jx469++67Fdlghnn8N7a/HwGuuEwmMzw8PJdTkatBZW9ylY81qOA5z9P5crV+ioJqAWAeFYvFZcuW/ec//7noZyf9LV3+4VqFz1y/fv3AwEA2mz1y5EhFXnPS8xfgO0qn0+fOnavpnXLqm3ktAFfYkSNHLpUsF5r+fIsFfubg4GDcDi5ugV+prx5nnMzfd1TeDyZ66aWXJItqAeCSHnzwwXXr1sWP77rrrvgv/vFPxMeTJClv3jp+CRcdV1iwZ164M9v0X7O7uzv+2gufNmnNcwW/o0Kh0NbWtnbt2vifuVzuzJkzC3ArCtUCUMNSqdQf//jHTCYTQnj99dffeeedODN30hjAkiVLbrzxxm3btg0ODpZKpar6Fio+m7h8nOE999xT8Xcbe2X58uVxuVPslZ6eHjvhqhYAphUuAwMDcWv5O++888InHD58OIQwMjKyZ8+etWvXNjY23nbbbZ2dnRceVnxFVHwL/FdeeSWEkM1mK7sCeVKvZDIZvaJaAJixpqamoaGhdDo9MjKSyWQmHuYXQnjyySdHR0f7+/vL8zyGhoZ27tz5/PPPX/F33tPTU/Fl23FyTNzDpiJKpVJnZ+fEXjl+/PjJkyf1Sm2xhgigihSLxUwmMzIykk6nh4aGLrWpfKFQOHHixMGDB3/6059OWmO8d+/e6667bvXq1Qvz8zhJkqVLl46MjOTz+Y6Ojtm9yPDwcLxBFn8kldf1nDlzZu7fRalU2r17dzxkIPbKr 371 q5reyk+1AFAtyrueZLPZF198caZLWiZujpzL5R5++OGVK1fO35E6PT09c98Cv/wtxx9Jhw4d2rRpUzqdfvfddyvYK+l0evfu3fZiqWnuEAFUl+bm5uPHj4cQBgYGNmzYkCTJjH5O5/P5OG4RQujt7d20aVOcxjvpllNFTDxrsIITUOIknmmeF32pN9bT07NixYqYLOl0uru7+9y5c5Kl1hlrAahGg4ODcVHu7EZcSqXSG2+80dfX19fXF3epP3/+/MQXSZLko48+mmNqzGigJa57uujTisXitm3b4gtOPMtwFvdxkiTp6+vbvn 17/ K7j+MqDDz5oF5Y6MQ5AVYojLjFczp8/P+vXGR0dPX78+KQH4/zZbDbb1dU1NDQ0i9cfGxuLi566urou++T45X7961+Pjo5O55mxhGb6lrq7u+NbivL5/FyuG1VItQBUr66urvIP4Hl65bJsNtvd3X3ZqijL5/NxMOOyZVDum1tuuSV+rVwu193dfdFaii+bzWZnWnjl+2Lxcs0ielAtAMxJ/Ck+H+EyNDTU1dWVzWYntsukDWqnCJH4/O7u7ss+OZfLxWeeOXOmvb19Yl6EEDKZTD6f7+/vj8EUPzudl9UrqgWAT1G4ROfPnx8aGorTeC/Mhf7+/v7+/kkpMP2Blrhb/6Sxk7GxsdhMMWgmTpSJH0xnyGdoaGhir+RyuekPFFGjzMYFqAGdnZ1xOUxXV9fjjz++kF/6tttui3NNMpnM/fffv27duptvvvmGG26IIyJTr8opFotLlixJp9OnT5+eYrpuoVA4derU66+/fvPNN7e1tV12zXOhUNixY0fcLy72yq5du+wX92lg5TNADejo6Ii3crZu3To4OLiQX/ree++Ns1Librxr166NydLU1DT14uQkSeJ73r9//9QrjJqamj744IMVK1a88MILIYTHHntsil5xhNCnmuEmgJpw/vz58hyUC9cEzbczZ850d3dPvKFz8ODB6dzYam9vn86LT/zBdNHvbnR0dOJXj1vy+1PhDhEAVSpJkg0bNgwMDITZbmcyd21tbb29vV/+8pfPnj 078 fF4MyiXy23evHn9+vXxNKVMJvOXv/zlsnullPfGjSZtLWNLfspUC0CthktFjumZkXJeXNhMcRv+8n9ef/31n//85/P5/ObNmy97nkAsnvhxNps9cuSIXkG1ANSDaZ6wOB/iQEsmkzl58uSkT8XdeI8ePfrcc8+Vd4qLqXHhky/y0+iT45PiDN8kSZ5++umtW7fGB21xi2oBEC4zUD6ZeWhoqKWlZeq399prrx0+fLivr++xxx6bdBZ0oVD4 97/ /feutt05MkHK1vPPOOy+//LIt+VEtAMJl9uIS6FwuV95VZTqSJJkUHOvXr493uLLZbGtr6+bNm5ubm2O13HTTTR9//LFeQbUA1GG4xOkg05z0Ohfl0xznPpmmXC1TyOfz27dvr+A50tQH+7UA1KqmpqZ4wuLQ0NCGDRuSJJm/r7Vly5YQQi6Xm/v83yNHjsTdeLu6uibt7h8+2ZK/o6NDsqBaAOrKmjVrYrgMDAzMX7gMDg7GCba7du2qyAumUqmWlpY77rhj4oPt7e16ham5QwRQ88q3b7LZ7IsvvljZW0VJkixdunRkZGSmM1qmUCgUWltby0uNbMnPNBlrAah5a9asiYcUDgwMVGo4pKyvry9Oj923b19FeiVuyR+TxZb8zMhnfvazn7kKALWupaVl0aJFx44dO3bs2KJFi+65556KvGySJN/97nfHxsby+fz69evn2Ctbtmz58Y9//Oabb4YQstns0aNHH3nkkWuvvdZvH9PkDhFA/SgfDZ3P5yftkjI7PT09Dz30UAhhbGxs1tNNSqXSjh 079 uzZE//TFrfMmjtEAPWjo6Mjnlm4c+fOvXv3zvHVkiTZvn17bKDZJUupVOrs7GxsbIzJEo88PHnypGRhdoy1ANSb8oYoczxhce/evVu3bk2n06dPn55ptUw6QiidTu/fv1+soFoA+D8qcjR0qVRqbGwMnxwMNKOv3tfXF+8rBVvcUlHuEAHUm1Qq9eKLL2az2RDC2rVrBwcHZ/Eiu3fvjs3x4IMPTr9Xenp6li5dGpMlnU53d3efO3eura1NslARxloA6tPEEZfLnnc4yUwHWuL4SvnIwxBCV1fXo48+KlaoLGMtAPUplUr19PSk0+kQwne+851isTj9XzujgZbBwcE4vhKTJW7J//jjj0sWKs5YC0A9m8XR0IVCYfny5WEaAy2Dg4Nbtmwpb3HryENUCwALGi5tbW29vb2ZTObkyZPT7JVcLrdv3z69gmoBoJLhcu7cuSnu3ZQHWi61+KhQKOzYsaO3t7fcK44QYsGY1wJQ/5qamvbv3x9CGBkZmfpo6B07doQQMpnMhclSPkIoJosjhFh4xloAPi0uezT0pQZaJo2vZDKZAwcOiBUWnrEWgE+LNWvWHD9+PIQwMDBw0RGX1tbW2DTlZIlb8pfHV8pb8ksWVAsA8x4u/f39MVziGUNlg4ODcXbtvn37woQjhOKu/I4QQrUAsNA2btwYT1jcs2dPZ2dn+fEtW7aEEHK5XFNT08ReiVvc6hWqgS2AAD51Ojo6Qgg7d+6MXdLR0VEeaFm1atWKFSvifnGOEKLamI0L8CnV2dkZqyWfz+/fv394ePhzn/vcf//7X72CagGg6sQN5SY9mM/nd+zYoVdQLQBUkXjC4v/+ 979 isfjmm2/akh/VAkBVh0sI4f33 37/ 66qv1CqoFAKACrHwGAFQLAIBqAQBUCwCAagEAUC0AgGoBAFAtAACqBQBQLQAAqgUAQLUAAKoFAEC1AACEkHIJqkSpVDpw4IDrMH+WLVu2Zs0a1wFAtTBXr7zyyvbt 27/ 1rW+5FPNk9erVqgWgpjWMj4+7CtWgs7Pz448/zufzLsW88gceoHYZa6kWf/7zn9va2s6cOdPc3OxqAMCFzMatFgMDA//6 17+ +9KUvuRQAoFqqV6FQCCF85jOfSaWMfgGAaqlip06dymaz 773 3nksBAKqlqh0+fHjVqlUrVqxwKQBAtVS1Y8eO3XTTTatXr3YpAEC1VK8kSYaGhs6fP28qLgColqr2 97/ /PYTw4YcfmooLAKqlqp04cSKbzboOAKBaqt2rr75qKi4AqJYaYCouAKiWGhCn4i5atMhUXABQLVUtTsVNksRUXABQLVXtxIkTuVzOdQAA1VJFBgcH43lDE7366qt33XXXV77yFdcHAFTLlZckybZt29auXbtp06ZJn+rr67v66qu//vWvu0oAoFquvF27dq1ateqLX/ziqVOnjh49Wn68VCqNjIx88MEHzc3NrhIAqJYrr6Oj4/Tp03/4wx9CCA899FD58bfffjuE0NjY6BIBgGqponC58847c7ncP//5z2effTY+ODw8nMvl3nvvPdcHAC6rYXx83FVYMIVCYfny5Y2Nje+//34qlWpra8tkMplMZuPGjS4OAEzNWMuCam5ubm9vHxsb+81vfhNCePnll6+99lpTcQFAtVSjXbt2hRDa29sLhYKpuACgWqrX4sWL8/n82NjY 977 3vWAqLgColmq2ffv2G2644c033 ... src=" 679 m/J0CAACOwAgRAAAgtQAAAJBaAAAAqQUAAFQi0zRjsZidj5A5RACAqWU4+wxlZmRkpKGhwaa/k8whAgAQWZDOttmAESIAwGSGYUy65WMf+9iZM2cmKoyu6yLS1tY2Pj5exi9zfHzc5/M54jeT1AIAmOz9999XX/z93//9Jz/5SRF59913V65cWVdXF41GK+QkmKa5evVqEXnrrbdcLlcZv8w1a9ZEIhERCQaDpBYAgMN4PB71xde+9rWf/exn3d3d6p+XLl1qbGysr6+vhOzS0dGRSCREJBQKVUJk6e7uDgQCpBYAgINt3ry5s7NzZGTEijK6rpd9donFYv39/SISDAatF17ekaWzs9P+x0w3LgBgqstDWjeurut1dXWpVMrr9T7yyCM3btwIh8PqLq/Xu2fPHttOOcn6cr5s2TJd130+36lTp8r1LW5qaro1sqj3nW5cAIDzqCbNjRs3iojH47ly5cr+/ftDodDo6Kjf75cyrbvs27dP9eGW8dhQT0+Ps6osfzABAMAt1DVidHRUfREMBm99jJVdrLrLyMiI01/42NiYpmkiMjAwUK5vrtWo1N3dPeX7btsjZ4QIADAFa6Sgp6enq6tL07TLly +73 e5JD4tGo1evXv2nf/qnchozMgyjr69vx44dZTl1SL2h01VZGCECADhYR0eHpmmJRKKvr2/SXfF4vLGx8Ytf/OKKFSvKaczI7XZ3dnZWYGRxAKqgAIDpRojU19YyHqOjo5MGU6zVydRSbGU5ZlQJA0NOGSEitQAAZr96eb1eEfH5fJMeNj4+3tbWph7s8/mSyeREmfa7VEJkIbUAAMohtVhtucePH7/1wVYxRtM0qx7jrOyi67qKXJUcWUgtAIBySC0TExMqgmiaNuWmPCMjI2rqjYiMjY2lxx37Z5dkMjnlEFilRRZSCwCgTFLL2NiYunG6KcHJZNLr9U5ZjLF5dlHdOV6vt/x2SZxTZCG1AADKJLVMpI0EZTeYYs/sYr0oXdcrPLLYP7Uw8xkAkKmWlhY1DNTe3p7Ft9fW1tptXd1UKtXa2qrmQNXV1THJmZnPAIAyqbVMTEyMjIyouzIsk3R3d0/5SJvUXdTY0HTNOhVVZXFErYXUAgCY29VLpY1MukAGBgZmboUpbXYp17EhK7LcOlPd6amFESIAwNzs3LlTXekHBwdnfuSmTZtUMWP79u2BQMA0TRuOGZXZ2JA1MOTz+U6cOFFuv3x8ngAAzPUzt/VpPn2S85TGx8fTP/rP0MZbkrrL6OhoOY0NpZ/q7F6XzbMBuycCAKYw8y56pmnW1NQkEom2tjZVeplZKBRSTa+app08eXKG2kY8Ht+xY0c57cVYNNZJVlWW7PZRsvnuiaQWAEA2V6/h4eG1a9eKyOjoaG1t7axPGIvFVq9enUgkvF7vxYsXZ34w2WWuotFoY2NjjpFF2PMZAFCWmpubVc/KunXrMnl8XV2drus+ny8Sicz6YBvOka6EyOKAME2tBQCQ3WfueDy+aNEiEQkGg4FAoEBHkt+6y/Dw8KuvvtrX11c2l/b8RhZGiAAA5ZlaRKS9vb2/v1/TtCtXrhQ0B+QluxiGsXjx4szbcSotsggjRACAMtbb26tpWiKR6O3tzeLbTdNcuHBhJuM+eRkz2rx5cyKR0DQtu6Mt+8jiAMzuAwDkMgPWWqstiw2T29ra1PdOtwxdHudIHz9+XD1+yv0dHcdapDjrSc5OnPlMagEA5HT1Gh8f93q9ktVKrOPj46qlV0T8fv+crr5zyi7j4+NqByW/309kIbUAACo0tUxMTOi6rh6fxbpw6cvQeb3eue4mnWF2UUUdTdNmXRavkiMLqQUAUP6pZeLm5kRZb0NoDd9ompbFrkAzZxcrVJXB2FBBI8sE+xABACrB/v37RSSRSOzbty+Lb29ubtZ1XTX2fu 973 5vrt8/cq3vffff5/X6fz9fc3Ez7raMx8xkAMNXlYe4zYHft2rV9+3YRGRsbc7vdWfzQVCq1d+/eHTt25HI9nm6OtGmajr7MFyeysF4LAKAiUou1OZHf7w+FQqU9/jLbE6BoVRZSCwCgIlJL+sVV1/UZtkick1xqJOWRXayzqmna5cuXs6tjlUdqoa8FAJA3DQ0Naibzxo0bTdPM/Qnj8fi8efOy237IMIwy2M8oPbLoul7QyGJ/pBYAQD6ptlxd1wcHB3N/NrU1Y2NjY09Pz1zjTnV1tRqocm52mRRZPB5Phf92kVoAAPlUW1ur1l/p6OgwDCPHZzt//rwq3nR1dQUCgQzrN6Zpqrhz8ODB9ANzVnaJx+NElslYkwAAkN91O6yFaNva2vJyMHNdhm5gYEA9froHZ7cnQDElk0l1DjVNm+vKe2W8XgupBQCQ/6tXLpsTTSl9GbqZE8bo6Kh65Kx7G9k2u5QqskywyhwAoAIFAgG1OZEaqcldc3Pz6OioWoYuk7Ehr9e7ZcuWWQezbDhmlEqlvF6v2puagaFJSC0AgIIYGhpSUWB4eDgvT1hbW6vrejAYnGHq8r59+9T6/UNDQxnOl7ZVdiGyzIz1WgAAU10e8rFuR3t7e39/v6ZpV65cKcK6tIZhVFdXi8jAwMC2bduyeIbSru9ih8jCei0AgArV29srIolEQn1RuIu9+sLtdieTye7u7lnHhqZTwroLVZaMQhW1FgBA4T5zh0Kh1tZWEUkmk4W4EqvNj0ZGRvJeESlm3cU+kYVaCwCgcrW0tKi23Pb29rw/uWmaL7zwgmS1DN2silZ3ocoyh1BFrQUAUNDP3NYCr4WoiJimuWbNmkgkIiKf//znT58+XYgGmsLVXewWWai1AAAqWkNDgypXbNiwIS+bE6VzuVx///d/v3XrVhF5/fXXly1bZrW55FGB6i5UWeYcqqi1AAAK/Zk7lUotWLBARILBYCAQyONxWs9s0TTt5MmT+dpx+lb5qrvYM7JQawEAVDqPx6NW2W9tbc19c6J0kzLQ/PnzVXAp3GvJS92FKgupBQBgX1u2bFFhYvPmzfl6zlAopDpaLO+///6JEyeKEAJyyS5WZBGRI0eOEFlILQAAe3G5XAcOHBCRcDgci8Vyf8JUKqXmVLe1taXf/tvf/rZoLyqL7JIeWQrRnkxqAQAgD5qbm30+n4hs3Lgx92dTU6k1Tevr61O3qPjy4osvpj/MNM14PG6T7EJkyRX7mgIAirb3r7UhczAYzMsW0LquWzeqHYhEZGxsTN0yPj6uctLx48eLc95m2Ed6fHzcarixyebS7PkMAMBMZYnu7m4R6ejoyKUt980331TFlfS5QnV1dZqm+Xw+a/LzjRs3ksmkiKxduzbvy9DNqe7y+uuvr1mzhipLjpj5DACY6vJQsBmwhmEsXrw4kUh0d3d3dnZm/TyxWOy+++5zu92TnnzSLenL0Pl8vhMnThRhH0dl0hxpq8pi58hi85nPpBYAQLGvXtbmRKOjo7W1tUV4OT09PV1dXSJS/JnGKrtcunQpFovZv8pCagEAkFomq6+v13Xd5/OdOnWqOK/I2lig0MvQOTQQOOIg6WsBAJTA4cOHRSQSiQwPDxfnJzY0NCSTSU3T7r///iVLlvAWODJMU2sBnMs0zXnz5s36MP6b5+sDaEHZ7W0qwmfuQCAQDoc1Tbty5UomvSbRaPTXv /71 lBsCTHm0pmne+rSqBXhS70vZnNKyP0hqLYCDuVyuzKcyIsdIUZwZpxVl/ /79 IpJIJPbt25dJRt+wYUNra2smU4FisVh9ff3TTz99611ut7skkQX5CVX8RQMAlOozt9WWm0wmZ+6QbW9v7+/v1zTt8uXLt8aOSUdrtbCMjY3NmlHUQr1FaHOh1pI7ai0AgJJpaWlRC6+phW5nCBb9/f0icuDAgUwqJQ0NDepph4aGZn5kKpVavXq11+stWnsNSC0AAEdyuVxHjhwRkXA4PN3ePaZprl69WkR8Pl9zc3OGz7x161YR+c53vjPrIxcsWCA3l6EzTZM3xc4YIQIATHV5KOJIgWrL9Xq958+fv7V/Vo0NyYyjSLcebTweX7RokWQw9mSa5tNPP63WgivoMnSMEOWOWgsAoMR27twpIrquDw4OTrrLGhsKBoNzWhqutrbW6/WKyN69e2d+pMvlCoVCap+BSCRSU1NjbQgA24Uqai0AgJJ/5rbWrp3UP5tKpdRU55kXo5vyaFWrr6ZpV69ezeQYrB5eyayN1+antCwPktQCACj91cs0zZqamkQi0dbWpkov6W7dXSgThmFUV1d7vd5IJJJhnSaVSnm93q1bt+ayQRKphdQCACjzq9fw8PDatWslr5sTxePxuT5VdgmJ1EJqAQBU1tVLbU7k9XovXrzIKeUgb0U3LgDALtTyKrquh0Ih+xxVKBRSK9GB1AIAwB/U1ta2tbWJyJe//OULFy7Y4ZBisVhra6vX67VVkCK1AABQej09PS6X63//938feeQROxyPpmk+n09E1BZILENHagEA4A9+8IMfqGTwzjvvxOPxDL+rqqpqhn25Y7FYU1PTrl27sjgej8dz4sQJv98vIl1dXWvWrFG7RqMk6MYFAEydA6ToXZnWgrb33HPPb37zG5/PN/MyLRke7a5du7Zv3 575 wi0zPImIaJqm6/qclrwr4Skts4MktQAAbHH1Mk1z2bJlag7RP/7jPz7wwAMiMjIy0tDQkOPRplIptdmQruu57O1sLUOXXQAiteSOESIAgC0MDg7qui4iQ0NDS5cuVYMyGzZsyL2VxOPxqN6U733ve7k8T0NDQzKZ1DRN7fiIEoQqai0AgJJ/5lbr2IrIwMDAtm3bprwll6O1lrAbHx8v0OaIdjulZXmQpBYAgC2uXrFYbOPGjenbPlutJLPuCjTr0ZqmOW/ePMl4yInUYs/DY4QIAGALdXV1Fy9eTC+EbNmyRdM0Edm8eXOOT+5yudRKMN/4xjfye9imaQYCAZahI7UAACqay+VSHSThcDj3WPDss8+KyKVLl/K75sq+ffvC4TDL0JFaAACVrqGhQTXSbty4cYa0MTExMeugRl1d3cjIyNWrV/Pb1/LUU09Zy9C1t7ezDF1B0dcCAJjq8lCU/oZM9mS2FnEJBoOBQMCG58o0zY6Ojv7+fhHx+Xw//vGPp+zCoa8ld9RaAAClkUqlFi1a1NTUNPNqs7W1td3d3SLS0dFhz3VpXS7Xzp07BwYGRCQSiSxevDjzVX1BagEAOEB7e7uIXLp06fbbb5/5kTt27NA0LZFI7Nixw7YvZ9u2bSMjI+o4c28fxpQYIQIATHV5KPBIgbWASobr1YZCodbWVhEZHR2ddVCphFKplM/nO3v27K2DRIwQkVoAAM67ehmGsXjx4kQi4ff7M596U19fr9b7v3jxYi4/PRqNDg4OtrS0FHnhFlJL7hghAgAU2+bNmxOJhKZp+/fvz/y7hoaGRETX9eHh4VuvtTPs+TzJ4OBgf3//7t27eSMch9QCACiq4eHhcDgsIgcOHJh5xdtJamtr1UpxzzzzTC4TjFtaWkQkHA4Xp7c3lUrV19dHo1HeelILAMBhDh8+LCJ+v7+5uXmu39vb2ysiiURCfZGd5cuXqyV3z5w5U4TX297eruu62iwaOaKvBQAw1eWhkP0NoVBo3bp1cyq0pH+vastNJpMejye7o+3p6enq6sq9RSYThmE88cQTkUhE/bOE2zeW/H3PHbUWAECxBQKB7CKLiLS0tHi9Xrk5cTo7Tz/9tIjoup5KpQr9Yt1u94kTJ9TYloisWbOmCD+0XJFaAABO4nK59uzZIyLhcDjrZpHa2loVffbu3VucY965c6f6OhKJeL1elqEjtQAAKkJDQ4Pf7xeRDRs2ZN2WqxaCK05qSaeWoTt27BjvYxboawEATHV5yGt/g9qxOZPV5DKUSqUWLFggNzcnyuJoDcM4c+bM6tWri9Zlog4ymUx+85vftEov5f2+k1oAAA67epmmWVNTk0gk8rv94a5du7Zv3y4iY2NjWXfJEAicdZCMEAEACqujoyORSIhIU1NTHp92y5YtagJzGWz6k8vyMxWF1AIAKKBYLNbf3y8iwWDQmqicFy6X68CBAyISDofVCJRDRaPRmpoalqHLBCNEAICpLg/5GCmwxoZ8Pt+pU6cKcZxNTU1qVk4RVl4p0ClduHChqkUNDAxs27atDN73wqHWAgAolN7eXnU9znyLxLlSOxnpup71j4jH4z09PSVcQ+Xy5cs+n09Etm/f3t7ezmgRqQUAUGzxeLyrq0sKMDaUrra2tru7W0Q6Ojqy21fooYce6urqeumll0p1otQydOpV9Pf3swwdqQUAUAKapvl8vjzOG5pSR0eHiCQSib6+viy+/fnnn5ebNZtScblcnZ2dwWBQbi5D5+hOncKhrwUAMNXlIU99LTdu3CjCtGR1tCIyOjpaW1s7p++1ln7RdT2PK8pkd0pjsdjq1asTicTIyEhDQ4ND3/fCodYCAChgCaHIK6lkMQva4/GotpKXX3655Gesrq5O1/Xjx4+XJLI4IExTawEAOO4z95RHqxw/fry5uXlO3z48PLx27Vop8IbMrDKXO2otAIAyoTYneuaZZ+Y6DWflypXqi3PnztnwdZmmmV2jcfkhtQAA8iYejzc1NZVqQ2PVUZtIJPbt2zenb3S73W1tbSKye/duG57V3t7e6upqlqETRogAAFNfHrIaKaivr9d1vfhrvllHGwqFWltbRSSZTM5punUsFovFYuvWrStcI052p9QwjMWLFxdtGTp2TwQAVERqsRJDFhN58nW01mq8fr+/cEvbFTkQGIbxxBNPRCIREfH7/YcOHarY5htGiAAAeZBKpVRkGRgYKHJkUVdZdaF1uVxHjhwRkXA4XDZDKunL0IXD4Upeho5aCwAgD5+51X5AmqZduXKlcJWADAUCgXA47PV6z58/X/KDyfqU3sqa66Rp2k9/+tNCpENqLQCAMhcKhdT4xcmTJ+2QEnbu3Ckiuq4PDg6W03lubm7WdV3TNBEp3CYJtg7T1FoAALl85jYMo7q6WkTa2tpUXLCDnp4etQvS2NjYnBpsU6nUqVOnCrELQb7KGGp4qECphW5cAEA5pxYRCYVCHR0ddhgbslhtuXPKUlYCK8SC+qwylztGiAAAuQoEAlevXrVPZBERl8t14MABEenv7898/Ri3262WqnPW0FIqlaqQ/lxqLQAApxYGZj3aLNaPiUajjY2NMvehpVKdUtM016xZE4lE8lIfotYCAEBpDA0NiYiu65mv3bJ8+XLV7nrmzBlHvMYbN25cunRJRBobG3t6esr7DSW1AACyYfMhCdM0Y7HYoUOHPvaxj4lIR0dHhpsTuVyurVu3isjf/d3fOeKNcLvdV65cUdtWd3V1BQKBuW7DRGoBAJQzwzC8Xq8NL5CpVCoUCgUCgXnz5nm93q6urnfffVdEEolEb29vhk+yfv16EdF13SnNIi6XK30ZumXLlpVrmwt9LQCAqS4PM/Y3qGXcNE27fPly4TbuyTxCqYk/mqap/XosPp9v06ZNqVTqq1/9qsxlqwHVEJPffX+K0DKSvgxddm8NM58BAGWVWqxL4/Hjx5ubm0t1hLFY7MyZM0NDQ2qBO4vX633yySdXrVq1fPlyNa3JNM1ly5bpuu7z+U6dOpXh5f/NN9/cunVrHpdFKU4giMfjDz300P3335/hKyW1AADKNrVYWxCXZHvCVCr1xhtvvPrqq/39/bfee/z48QcffHDKnBGLxbxerxRmIRa7BQLDMG6//fbsJqKTWgAA5ZNaij82ZJrm22+//fLLLx89elTX9fS7vF7v5s2bV65cqRLJzFc068hLtRoeq8yRWgAAxbt6WWuZFGFsSK2sf/DgwUkDQJqmtbS0tLS0LF26dE6xyWp/yW+3iiMCQTQaveeeezLp6SG1AADKJLWoHtXCjQ0ZhnHhwoXBwcHBwcEp+2pXrFiRy0bHu3bt2r59uxRgBTk7p5ZUKrVgwQLJbHSM1AIAKJPUYppmb29vR0dHfi/5mffV5sjanCjz4KWCVF5aYUqYWrxer0qB3d3dnZ2dpBYAQPmnlvxeSqfrq/X7/Rs3bpyurzZH1iCXrut1dXUZVinyUpspYSCwVv0XEZ/Pd+LEielSIKkFAEBq+cO1c9a+2lmTRO6ampoikYjX6z1//vysJZyFCxcmEom8tMKUPBD09PR0dXWpsx2JRKYMhaQWAEBFp5a899XmKB6PL1q0SESCwWAgEJj5waoVZk77L9o2tUgGy9CRWgAADk4t8XhcRObaA1vovtocr7Wq6pDJ/G1rkCiTESX7pxa5uQxdX1/flImN1AIAcGpqGR8fV+2rGU51LlpfbY7XWqstt62tbefOnTM/WM2cmrWP1SmpRWXK6bIaqQUA4NTU0t3drTohksnkdL2xpeqrzfFaGwqFWltbJYPNidSoSu7L07HKHKkFAFDAq5dya/+HTfpqc7zWqiLKrD0r1vJ0Oe4GYOdAsGvXrkcffbS2tpbUAgBwcGpJ33HQbn21OQYCqy131vGv9vb2j 370 ozlupmjbQJC+Hab6gtQCAHBkavnXf/3X//zP/yxaX22RA0F7e3t/f39xNieybWpJpVI+ny+9ZkZqAQA4hlWE+JM/+ZNf/OIX6XcVuq+2yIHAGv3JvdnWualF/u8ydCIyPj5unzeX1AIAmIk1ZGBRfbWTbpzho3l6W0wRHjkpEBT5p2f4yFsfb9vjzGRqVUl8iP+cAIBJmpubk8mkiNxxxx3f/va3x8fHQ6HQDJ0fhmFkXtsoxCMnJiYy+RBe2uPMXMmP88knn7TnbyapBQAwhfnz54vI9evX//Zv/7ampiYUCpmmOTGNWztwnfXIkZER9c+RkZGZHzk+Pp5MJrP76VPWP+xzlqyT4PP5VqxYQWoBADiG2+0eGxvr7u4WkUQi0draamWX8nuxDQ0Nfr9fRDZs2DDDC4zFYvPmzfN6veV3BqxNJWfeW7Hk6GsBAMzEMIy+vj611pyIaJrW19fX0tJi2wtbdqyV+2fYnCjHhVts241rRRZN03RdL/SSgLmg1gIAmInb7e7s7Cz7uovH4xkYGBCR1tbW6VpA3G63z+cTkcHBwbJ54Q6KLEKtBQCQufKuu1ibE/n9/lAoNPM1Pou5wTastcRiMTXg5YjIItRaAACZK++6i8vlOnDggIiEw+FYLDblY5YvX66+OHnypNNfbyqVWr16tYMiC6kFAEB2+UBzc7MaA9q4ceN0yUa96hdffNHpkcXr9SYSCQdFFmGECACQi/IbM7LWBZ6uLdcaVZlhH+ypr7i2GSFyaGQRai0AgFyUX92ltrZWvZaOjo4p23Lr6uq8Xq/f7y/E+nJEllmSH7UWAEBelE3dxTCMxYsXJxKJ/G5OZIdai6MjC6kFAEB2mUIoFGptbRWR0dHRfO1oXfLU4vTIQmoBAJBdplZfX6/rus/nO3XqVBmkljKILKQWAADZZWpW1+3x48dn2DnSEamlPCILqQUAQHaZViAQCIfDmqZduXJluqM1DOPWjQltlVrKJrIIc4gAAIXm3HlG+/fvVwe8b9++W++NxWILFy584okn7PwSyimyCLUWAEAxOa7uYrXl3ro6i7W6/9jYWCblluLXWsossgi1FgBAMTmu7tLS0qJpmoi0t7dPuquhoUHddfDgQRseuRVZROTkyZNlEFlILQAAsstMXC7XkSNHRCQcDkej0Un3bt26VW4OJNk2soyMjNTV1ZXHbw4jRACAUnLEmJFqy/V6vefPn08/sFQqtWDBAslsWZeijRBNiiwNDQ1l89tCrQUAUEqOqLvs3LlTRHRdHxwcTL/d4/Go2dGHDh2yyaGaphkIBMoysgi1FgCAfdi57tLT06MObFLv7fDw8Nq1a2eeHf2HK27hay2maa5ZsyYSiZRlZBFqLQAA+7Bz3WXHjh2q93bHjh3pt69cuVJE7r///hs3bpT2CMs+sgi1FgCAPdmw7qLKKnJLF0sqlcpkhk5Bay2VEFlILQAAssscqM2JvF7vxYsX53zFLVhqqZDIIowQAQDszG5jRkNDQyKi63ooFLLJKaqcyCLUWgAATmGTukt7e3t/f38m7beTr7gFqLVUVGQRai0AAKewSd2lt7dX07REItHb21vaE1JpkYXUAgAgu8z5APr6+kSkq6srHo9btw8PD9fX1/f09BBZSC0AANglu7S0tKjF5TZv3mzd+Ktf/UrX9b 179 xJZCoe+FgCAs5Wk3yUWi6ngYoUGwzCqq6tFRNf1Kff9yVdfS8VGFqHWAgBwupLUXerq6vx+v4hs2LBB/RS32+3z+UTke9/7XuFebHpkCQaDFRVZhFoLAKCcFLPuYhVXBgYGtm3bJiLRaLSxsVFExsfHb/2Judda0iNLd3d3Z2dnpb2/1FoAAOWjmHUXt9s9MDAgItu3bzcMQ0SWL1+u7jp58mTeXxqRhdQCACC7ZG/Lli1qcyLVlutyudra2kTkxRdfzPuLevrppys8spBaAABkl+y5XLZDyY4AACAASURBVK4jR46ISDgcjsViIvLss8+KSDKZzG886unpCYfDFR5ZhL4WAEAlKGi/S1NTUyQS8Xq958+fd7lc8Xg8fW/FD6642fa19PT0qCOv8MhCagEAkF1yzS7xeHzRokUiEgwGA4HAtFfcrFILkSUdI0QAgEpRoDGj2tpa9YQdHR2qLTdfiCyTkx+1FgBABcpv3cU0zZqamkQi0dbWtnPnzqmvuHOstRBZSC0AABQku4RCodbWVhEZHR3Nva+FyDIlRogAAJUrj2NGgUBArfG/bt06EYlGo01NTdFoNIujIrKQWgAAKGx2GRoaEhFd14eHhwcHByORyO7du4ksecQIEQAAH8hxzKi9vb2/v1/TtJdeemnlypUiMjY25na7JbMRIiLLzKi1AADwgRzrLr29veq7/uVf/kUtmzs0NJThxCIiy6yotQAAMLXs6i5WW+7Xv /71 7 373 u3fffffvf//7t956a8GCBTJ9rYXIQmoBAKDY2cU0zWXLlum6/vjjj7/yyivqxnvuuec3v/nNdKnFiiw+n+/EiROF2KGa1AIAANllioQRjUYbGxunfJ6RkZGGhgYiS3boawEAYHZz6ndpaGioq6uz/vmpT33K7/errxsbG+vr64eHh9V37dq1i8iSOWotAADMjaq77N27N5FIyFR1F6t8IiJdXV3f+MY35OYcIoumaX/5l3+pMhCRhdQCAEABmaY5ODjY0dExKbv09vaqyNLc3Dw8PCw3Jz+r1DI2NpY+0kRkIbUAAFCa7FJdXT02NiYi3d3dO3bsUJsT+f3+UCiUvl7L6dOnfT6fiNx///0///nPiSwZoq8FAIDsuVyuQCBw5cqVYDCoaZqKLPPnz1+8eLGIHDhwQETC4XAsFrO+JRqNqsjy8MMPv/HGG0QWUgsAACXILocOHaqurn7//fdVr+61a9dWrVolIhs3brQii5pe5PP5Tp48+ZGPfISzlzlGiAAAyKdJY0YejyeVSk16DL0spBYAAGyaXYgspBYAAByQXb72ta/97ne/u 379 OpGF1AIAgN2zy7// +78 fOnToJz/5CZGF1AIAgDPiC5GF1AIAAMofM58BAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AACASuTiFMxJNBr99a9/PevDVqxYUVtby+kSkVAolMnDOGMAivlX+t 577 21oaOB0OU7VxMQEZ2EO56uqKpOHBYPBQCDA6UqlUgsWLOCMASia+vp6XddnfZjf78/wMxVshRGiOYjH4yKybdu2WR/Z2tqaYb4pb2+88UaGj2xtbTUMgzMGIBeGYei6/sILL8z6yHA4zF9pUkuZO3v2rIh4PJ6JzHDGXn311VWrVg0MDGRyutxuN2cMQC4uXLggIu+//z5/pUktkGPHjn3xi19cvHgxpyJDg4ODf/Znf7Zy5UpOBYAiOH36tNfrve222zgVpBZIOBz+9Kc/vWLFCk5FJlKpVCKREJElS5ZwNgAUwdGjRx955JFVq1ZxKkgtlU41tVy/fp2pLhlSTS233Xaby8VUNQAFp5paPB7P0qVLORuklkqnmlruvPNOTkWGVFPLxz72MU4FgCJQTS0f+tCHaJIjtYCmljmjqQVAMdHUQmrBB2hqmROaWgAUmWpqeeCBBzgVpJZKR1PLXNHUAqCYaGohteADNLXMFU0tAIqJphZSCz5w8OBBmlrmhKYWAMVEUwupBX9gmmYkEqGpJXM0tQAosqNHj65atYqmFlIL5O233xaaWuaCphYAxaSaWu644w6aWkgtkDNnzghNLXNx+PBhmloAFI1qajFNk6YWUksFRfWenp5AIHDrXUNDQ1u3bqWp5dYzFggEdu3adetd4XCYphYA+WWaZigUampqMk1z0l00tZBaKksoFFq8eHFXV1c4HB4eHp70/yQSidx33300taSfk56enurq6nA4vH37djUt3GL9k6YWAHn8K11TU9Pa2hqJRPbs2TPpXtXUwvZDpBa7qMpYds9/+fLloaGh+vp6Efnyl79sGIZ1l2pqSaVSNLVM8sorr9TU1IjI2rVr0z/6qFnildbUUjUX/PLYn2EYvKFF/js8s/fee+9HP/rRk08+KSLt7e3pH5ZUU8vdd99NUwupxS4mMpbd83d2do6Pj7/55puapr333nvPPvusddeZM2c0TWOsNJ3L5ero6Kirqzt//ryIvPXWW/v27bPuPXbsWAU2tUzMBb9C9ud2u3lDi/x3eGbbtm27fv36kSNHfD6fiDz22GPWhyXV1PK73/2OP9SklgrS0NDgcrlOnjwpIj/84Q+tcaKhoaH169fT1HLr3/Ta2lqPxxMMBkUkfZyIphYAhdDc3CwioVBIRC5dumR9WDp9+rTP5/vQh7ickVoqT11dXVtbm4j8xV/8hWEYVlNLU1MTJ2dKgUBAffR5/PHHTdOkqQVAQd36Yeno0aOf+9znaGohtVSovr4+TdNSqdTmzZtVU4tpmh6PhzMzHfXRJxaL7du3rzKbWgCU6sNSKpXSdf3222+nqYXUUqFcLtdPf/pTEQmHwxs3btQ0rbq6mtOS4Uefjo4OVmoBULQPS2q5CppaSC0Vrba2dmBgQER0XV+/fv19993HOcnwo08ikaCpBUDRPixFIhGfz8cnJVJLpduyZcv9998vIvfdd9+DDz7ICcnwo49CUwuAInxYUr0sn/vc5/ikRGqpdC6X65//+Z//+q//+tq1azS1ZPjRR9f1J5988q 677 qKpBUARhMPhb3 /72 8lkkk9KpBaIx+P57ne/y/ZDmaurq/vhD3+4YMECTgWA4vyV/pu/+Zv58+fzSalyVLHmFQAAcARqLQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAAKgELk4BgAq0a9eus2fPzvqwFStWbNu2jdMF2AS1FgCV6IUXXrh48eLExASnAnCQKv7TAqg0qVRqwYIFzz///AsvvJDJ4/k7CdgEI0QAKs4bb7whIrfddhtxBHAWRogAVJxXX331S1/60l133cWpAEgtAGBr/f39S5cuXblyJacCILUAgH3F43ERuXHjxpIlSzgbAKkFAOzLmvDsctHYB5BaAMDGjh07RlMLQGoBAAcIh8M0tQCkFgCwO5paAFILADgDTS0AqQUAnIGmFoDUAgDOQFMLQGoBAAegqQUgtQCA7RiGceuNNLUApBYAsJF4PB4IBBYvXmya5qS7aGoBSC0AYBft7e0PPfTQa6+9lkgknnvuuUn30tQCkFoAwC5aWlq++93v+nw+Edm1a1csFrPuoqkFKAMM7gIoHw0NDZ/85Ce//OUv/ /73 vw+Hw6tWrfrtb3+rulhoagHKALUWAGXF4/GIyP79+zVNS6VSHR0d6naaWgBSCwDYkdvtPnDggIj09/ercSKaWgBSCwDYVHNzs9/vF5GmpiYVXGhqAUgtAGBT+/fvv/vuu9955x2v16tuoakFILUAgB253e7vf/ /76 muaWgBSCwDYmjVORFMLQGoBALs7dOjQT37yk7feeoumFsDpGOIFUO5/5lyuxsZGwzBoagGcrmpiYoKzAAAA7I8RIgAAQGoBAAAgtQAAgEpDb9q0TNOcN2+es465JF1KVVVVpXqNRf7RjnjjCv17m8dDNQyjurqa/1kA5nDF4X+jfa7HpBZSi/3fEQcdKqkFILUAAACUBn0tAACA1AJUsKampqoMBAKB0h6naZpVmQmFQrytAEqLESKgIFFg3rx569evf/nllzN5fAn/G8ZiMWs/5FmNjo7W1tby/gIoFWotQP69/fbbIvKJT3xiIjMlPNQzZ85omtbd3Z3JcRJZAJBagHKjooDb7bb/oQ4NDT322GOf/exnedcAkFqASuSUKGCaZiQSueeeex588EHeNQCkFqDiOCgKqJGs999/3+Px8MYBILUAFcdBUcBBI1kAQGoBKjoK0NQCgNQCVDSaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAPQ1AIApBbAGc6dOyc0tQAAqQWwD8MwYrHYrbefPn3ablEgHo/H4/Fbb6epBQCpBShzpmmGQqHq6mqv15tKpSbde/ToUftEAcMwenp6Fi1atG7dOtM0J70KmloAkFqAMldTU3Pu3LmPf/zjIrJhw4ZJKUHXdZtEgVQqVV1dfeedd4qIrut79uxJv9dBI1kAQGoBsnT58uWPfvSj3 /72 t0Xk9ddfD4VC1l0XLlywTxTweDzvvPPOtWvX/uEf/kFE2tvb08eJbDiSBQCkFiDP3G53Z2fnhg0bBgYGRKS1tdUaJ7JbFFiwYEFnZ2d7e7vP5xORxx57zBonstVIFgCQWoDC2rJli9frFRG/32/zKKAKQpcuXdq3b5/YbCQLAEgtQMG5XK6hoSEROX36dCgUsnMU8Hg8wWBQRLZv3x6Px201kgUApBagGGpra61xooMHD9o5CgQCAVUTevzxxwcHB2lqAeBQVRMTE5wFIDumaX7mM59Ra7domrZ169bOzk57HqphGPfdd18ymRSRzZs3P/HEE83NzbyDAJyFWguQPZfL9corr6ivbd7f6na7VUFIRGhqAUBqASqRNU60cOFCm0eB5ubmL33pS0JTCwBSC1Cxtm3bNjY29uabb9o/CoTD4ZGRkf/4j//gXQPgRPS1APmRTCYXLFjAoQIAqQUAAFQ6RogAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAACAzLnS/1FVVcUZAQAANjQxMeG69SbOCwAAsBVVWGGECAAAOAOpBQAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABy4eIUAEUQj8dnfUxtbS0nCgBmUDUxMfHBP6r+zz8B5IVpmvPmzZv1YfzvA4Bp80pV1cTEBCNEQMG9/fbbmqZl8n+ScwUAMyC1AAV35syZlpaWgYGBidlwrgCA1AKU0tDQ0NKlS1euXMmpAABSC2BfpmlGIpEbN24sWbKEswEApBbAvlRTi2maLhdT9gCA1ALYmGpq4TwAAKkFsDuaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAMYhkFTCwCQWgB7icViPT09k268cOGCpmnJZJKmFgDIC/6YAjlJpVLt7e2vvfZaIpF44IEHHnvsMeuu06dPb9iw4a 677 uIsAUBeUGsBcjJ//vyvfvWrKqxs3LjRMAzrrqNHjy5ZsoSmFgAgtQC24Ha7//RP/3TPnj3BYPD69euBQEDdbhiGruvXr1+nqQUASC2AjYKLy+UKBAI+n++VV14ZHh6Wm00t//M//0NTCwCQWgDbCYVCItLa2moYBk0tAEBqAezL4/EEg8Fr165t2rSJphYAyDtq10A+BQKB73//+z/60Y9EhKYWAMgvai1AnoXDYRG56667aGoBAFILYGsej0fX9YcffvjOO+/kbABAHlVNTEx88I+q//NPAFlLJpO/+93v7r33Xk4FAOQhr1RVTUxMkFoAAIAzUgsjRAAAwBlILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAPnnmvTvqqoqTgoAALChqomJCc4CAACwP0aIAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAAyp+LUwAAKAnTNOfNm8d5KLnx8XGXyxl5gFoLAKA07r//fk6CHTz66KOmaZJaAACYWjQa/cUvfqG+1jQtmUxOoFhGRka8Xq/1Xvz0pz91yq8NqQUAUAJf+cpXrK8TiYTX602lUpyWIoTF+vr6xsZGXdetG/fu3csIEQAAUwuFQuqq2dDQICLV1dUquBiGwckpTl7x+/3PP/+8iGia1tLS4pRXQWoBABSVaZodHR0i8txzz61YsUJEPvKRj4hIIpF44oknnNJg4SDxeDwQCKTnldHR0f 379 7/wwgsi0tfX55RCC6kFAFBsg4ODiURCROrq6v7f//t/IvLuu+8eO3ZMRCKRyJo1awgu+c0rixYtCofDVl4JhUK1tbWbN28WEa/X66BCC6kFAFBUVqGlu7v79ttvF5E 777 xTREZHR0dGRgguBcorXq9X13WVV9S96vY9e/Y4qNBCagEAFJVVaFHZRUQ+/vGPi8jZs2cbGhrSgwvnKjuGYfT09KTnlZGRkYsXL9bV1VmP2bFjh7pL9RWRWgAAmOKC2traKiIDAwNut1vdeO+99+q6fujQIRFpaGjo7u5WwaWnp4czlkVeqa6u7urqSs8rk6JJeqHFca+RtXEBAEXS19cnIpqmbdmyxbrx9ttvTy8DdHZ2ikhXV5e69Kp/Yta80tfXp86YOsN9fX2BQGDKBzu30EJqAQAU78qqLquzTlohuGTONM3BwcGOjg417qbySktLy3RnOBqNqkLL4cOHnfh6GSECABSDVWjJZNJKZ2enGirq6uoKhUKcvSnzSigUqqmpaW1tTSQSmqYFg8ErV64EAoEZQqFa3M/v96fXtxykamJigvceAFBQqVRqwYIFIhIMBq2Ri2g0unv37hUrVmzbtm3Kq/KaNWsikYiIjIyMOHE4o3B5Jb2+IiLd3d07duyYdTZQNBptbGwUkdHRUTWZiNQCAMBkgUAgHA57vd7z589PeXE1TfPcuXNyc7VcgssMyeMrX/mKtR5/d3d3R0eH1do8s/r6el3X/X6/c8tXpBYAQGHF4/FFixbNnDxCoVBra6umaVevXp2UZgguuecVERkeHl67dq04udBCagEAFJxVaLl48eJ0j7GGkJLJpMfjmS64OPqKm6+84vf7d+7cOekszcw0zZqamkQi0dbWtnPnTueeCrpxAQAFlOHqIB6Px+v1isipU6cm3eVyuUKhkKZpIvLQQw9V1NbQU24hFAqF5hRZJG1xv97eXkefEFILAKCArP1uZh3cefLJJ0Xk4MGDU2YaXdc1TVNbQ1dCcJlhC6G5PlX6LgqZjyjZEyNEAIBCmXnSimEYQ0NDIqJmFcViMVVuGRsbm/LimkqlvF6vmuWr6/pc6w0Oyis7duxQYUUFvsOHD+cyUVn1DM1wYkktAADMMmnF6tK1rkRVVVUyY9et1f6iadqVK1ectfPfrCYtcev1evfs2ZNjA7JhGIsXL04kEt3d3WWwXh8jRACAgohGo6obI/Neira2NhEZHByc7gEej0ftsJhIJMppa+gMtxDKQl9fn6pOqYX8SS0AAEzBWoY181aMlpaWtra2mRfPnbQ1tNODy6S8opa4zUtekbnsouAUjBABAPIvk9VBbh0hypzVMePz+U6cOOHES/JctxDKQk9PT1dXVzmNplFrAQDk/3r8zDPPiEh3d3eBlldpaGg4fvy4iEQiETVBxlnnJ4sthOaq/AotpBYAQP5Zq4MUNE80NzerHRb7+/t7enqcmFdUsMt7XlFUI0uG21U6xgQAAPkzPj6uVoTr7u6e+ZFjY2PqSpRMJrP+cSq4ZPLjSm5kZERN7bYOeGxsrEA/a3R0VP2UkZGRcvrtcvGZAABQkkKL2+32+/0zlCUyKT+o2bxdXV1qNMSek3tz3EIo60JLJov7UWsBAFSosbGxDAstM9ckNE3z+XyZf4uaMi0ix48ft3N9xe/351JYqvBCy8TEBH0tAIC8ycvqIHfccUcikYhEIoZhZP5zfT6fiKxduzYajdrhVORrCyEKLemY+QwAyA/DMKqrq0UkGAyqRfqzY5rmvHnzZMZFcqf8Lmtr6Dl9YyHySvqS/H6/v7e3t2hbVVsbI5T2JBQItRYAQH709fVJPiatuFyuWRfJnfK7Tpw4oSoujY2NJam4TNry0Ov16rqe3ZaHWdu4caOKSuUXWYRaCwAgL/JVaFHUInWapl29enVO32iaZk1NjWoHTiaTRdthsRBbCGVh5u0qywC1FgBAHmzevFnmXmgJhUKhUOjW/pWVK1eKSCKRiMViczoMl8ul67rqCPZ6valUqgh5pUBbCGUhi10UnIVaCwAgV9ba/HPtpVCbPE9ZGGhqaopEIgMDA9u2bZvr8aRSKa/Xq/qCdV0vUMVlUn1FLcmfe50pa2VfaBFqLSiyhQsXVpWpEv6pAkquEJNW1q1bJyJnz57N4ns9Ho+quCQSiUJUXNQSt4sXL07f8lAtcVuqt8A0zQ0bNpR3oUWE9VpQ3IUc5Ga/Hv+hgLKRy+og6htHR0dvvWt8fDzHpWOtA/P5fOPj43l5sePj48FgUI1AWXklX0+ei2AwqA6pcOvtsl4LKsuvfvUrTdNuu+22Mv4fxbsMCi354nK5clw9tra2dmRkREQikciaNWtM08y9vlKcLYSyODa1EnF3d3dBl9xlhAgVJBaLPfzww++99x6nAigb0WhUzfI9fPhw1k/y3//93wU6vIaGhrwEl2g0umzZsvS8MjY21tnZaZO9lIuzXSWpBZXl2LFjn//85z /72 c9yKoCyYU1aqaury+Lb1T5Ec50oVMzgEo1G6+vrrSVurbxin5JG5RRaSC0oqtdee23+/Pmf/vSnORVAeYhGo+pa3tvba+fjbGhoUG0fkUgk80OdlFfUFkK2yitKb2+vmi1V9oUWEWHPZxSJYRiJROLdd98t5+Z2oMLkvjrIihUrROTee++d4U/H0NDQe++9l8X853SBQODy5csZbg1d2iX55/qnVb2ivr6+si+0iDDlAcWiZiEODAxwKoDyoIZdZJoZQPly/PhxEdE0LS/P1t3drY55ui2pR0dH1aCVlVcK+ury9Yo0TbPDPCbmEKF80IoLlBNrdZC2traCFiGyXiR3Sp2dneoy39XV1dPTM6m+UvIthHIptNikL7jQSC0oElpxgXJiTVopdEeL2+1WOxifOXMmL0/Y2dmpdljs6upSOyyqJfnT84pakj +7/ uJiUnPOc9+uktQCTEYrLlA2ijxpRe1wtH///nw9YfrW0M8++6xNthCaq3g83t/fLyIHDhyokEILqQVFQisuUE6KvDrIo48+KiK6rudrYX6Xy3XixIlVq1apS77cXOLWKXlFsRb3a25urpzfPVILisFaFZdTAThdfgst0Wg0FArF4/EZHlNbW6tW0H/jjTfy9SpcLtef//mfq6+///3vl3YLoSzE43E1nrVnz56K+vUjtaAYVCsu5wEoA/ldHWT37t2tra2zbpG4detWyW353UkMw/jOd74jInffffemTZscN8JSoF0U7I/1WlAMqhXX/q1tAGa92JdkdZD169ffddddaj5RXvT19V2/ft26/DtLxRZaSC0oktdee+2RRx755Cc/yakAHE3t2V78SSt1dXV5/NhjZS8Refzxxx33Lqxbt05E/H5/pRVahBEiFOfDmWrF9Xg8nA3A0f+X 874 6yKc+9SkROXfuXPGzl4pfjpsi4JRdFEgtcIBQKLRw4cJJm5OpVlzVTAfAuQqxOsjixYtFJF+Tg+aUvUTEicuc5L6LAqkFEMMwAoFAR0dHIpF48cUX0+9iVVygDJTN6iDpjSyOSy0VXmghtSCfvv71rz/99NMi8s1vfjO93KJacR944AFOEeD0i33JVwcxDCOXwoyVvZSlS5c66C0wTbPCCy2kFuSN2+2+55 57/ uqv/qq7u/v69es/+MEPrLvUqri04gLOVbhJK/fee6/f71c7P89qeHi4urpaLWubS/a6++67RcTn8zlrk+TBwUFVaNm5c2fl/i6ybWkhlMGZHxsby+5VWN84NjZm/fP555/ntwJwLrUNstfrLfnW8el/XuZqdHRUffvHP/5xEXHWCfj1owAAIABJREFUFvTj4+OqO3C63aorBLWWkmVB+9dOsnsVbrdbban6rW99S0QuXLhAKy7gaLFYzCarg9TV1ak/JtntpKgKLZ/+9Kd/+ctfishTTz3lrEJLMXdRsC1SC/JP/ad64YUXDMP4+c9/zqq4gKNt3LhRbLM6iOqfzWKRXCt7bdq0SUQ0TXPQWgxF3q6S1ILK4na7g8GgiHzrW986e/bs8uXLacUFHMpuk1ZUagmHw5NWWMg8e/3sZz+Tm1sEOMW+ffsotChV9h+qgBOZpllTU6P+m+3evfuLX/wiS8wBTlRfX6/rut/vD4VCNvnbMm/ePBEZGRnJvPYTjUYbGxtF5PLly2qFmDl9e2kZhlFdXS0iwWDQWVs8FgK1FhSEy+WyVp/87W9/S2QBnKgIhZZ4PB4KhaLRaOZ/W9QcotOnT2f+U6wJw++/ /76 6Zfny5U55F0q1iwKpBZWlpaVF07Q77riDVlzAiUzT3LBhgxR4dZCzZ8+2trbu3r 078 2957rnn5vRXJT17vfzyyyLi8/mcslBeIXZRcPZHYk4BCvW75XLpun706FHrww0AB7Emrezfv7/QP2tOC8etXr366tWrmWev9JXZjh49Kjcbch2BQssk9LWgsP7rv/7rl7/85Wc+8xlOBeAgVmtad3d3Z2dn4X5QPB5ftGiRiBToYhQKhVpbW0UkmUyKyIIFC9TXjhi2tk4OHS0WRohQWH/0R39EZAEcpzxWB0mfMOzxeE6dOiWOmvNs7aJAZCG1AABmv9g7enWQSdnr4MGD4pw5z4XbRYHUAgAoH2p1EE3TyqbQ4na7TdOMRCIisn79ekccv1VoccoMbVILAKDYDMPYvn27iPT19dm50BKPx9vb23t6embOXnKz0HLu3Dl1+5IlS+z/LlBomQ5ziAAAHyjypBW32622Zpyr3/zmN/39/SKyY8eOW6cEW9krGAyq7KXWd/H7/Y6YP7x582YR8fl8FFomYQ4RAOCDi71TlmG1FsnVdb2urm7SvT09PV1dXZqmXblyRcWUhQsXJhKJ48ePNzc32/xdsFbyHR0dLdxKOQ7FCBEA4A8ctDqItUiuWjhuUvaatDJbKpVSo0UPPvig/d+F9AVm+J0ktQAAphCPx521DKtaLG7v3r2zZi8159nr9dp/zrPdtqsktQAA7Mhxq4M0NTWJSCKRSF9aN5VK3Zq91JznJ5980v4vikILqQUAMAsnTlrxeDxer1dEXnrpJevG9vb2SdnLMAynzHkOhUIUWkgtAIBZlGp1EMMwQqFQKBTK7ttV+WRoaGiG7HXhwgX1hc3nPKcvMEOhZTrMfAaASlfaQovaJ6ipqSmLppOtW7euWrVq6dKlM2SvwcFBEWlra7N5s0557KJAagEAFNa6deukRKuDWAvZGYaRRWrxeDzWd02XvVRq+cIXvmDnt6BsdlEoNEaIAKCiWZNW9u/f7+gXolZmm1RoicfjqoCxcuVKOx88hRZSCwBgduUxaSUajaqWW6vHRTl27JiKMnYuYBiGoYbJBgYGKLSQWgAA017sy2PSynTZS4UYVYaxLWuBmS1btvA7OTNW9AeACmWa5rJly3Rd9/v9Wc/iycN1qKpKclu9frol8K0NCqZc9d8mHLSLgh1QawGACjU4OKgKLTt37nT0C1EX+zvvvHNS7rHmPNs2soijdlGwA+YQAUAlSp+0Utp17tWez1n3cwwPD//bv/2biFy7di2VSqW/FmvOs23fhSlX8sUMGCECgEoUCoVUB+jY2JhzO0BN06ypqUkkEnffffc 777 wzaZBFjT3ZeZ/nQCAQDoe9Xu/58+dJLZlghAgAKk7ZrA5iTRh+9tln5eZ+Q0osFlNf2HbOc/oCM0QWUgsAYJaLvaNXB0nPXk899ZSIRCIRwzDUvWfOnBERn89n21hWql0USC0AAMewVgcJBoPlUWjp6Oiw+m2tDly1aJ5a9teGnLhdJakFAFBs5TFpxTCMSYNcqutWdeAahqGmRz366KP2PP4pV/LFrBhIA4AKYhiG3SatRKPRX//61ytWrJjTei19fX2JRELTNDXOIiJf+MIX3nrrrU984hNyc3hI0zR7Lvg73Uq+ILUAAP7PxV5sVmjZvXt3OBwOBoOZJ4wps1dzc7M1V+jVV18VEdsWk8pjFwVSCwAniUaju3fvnvkxO3fuLO1aIEhXNquDzJq9+vv7bZtaymYXBVILACcZHBycmJhobm7+8Ic/PN1j5s+fz4myj/b2dhHxer1O72iZOXtZc56XLl1qw+On0EJqAVCa1PL1r3/96aefnvlhjl7ErJyUzeogqpFlhkLLyy+/LHad8zw8PEyhhdQCoNhSqVQikfjwhz/M+trOutg7fdJKPB5Xoz9HjhyZLnsdPXpUbDnn2TTNZ555RkS6u7sptGSHmc8AsvHGG2/4fL4PfYi/IY652JfH6iCzZq/XX39dFTPUunO2Uh6L+5FaADjP4cOHV61a9cADD3AqHKE8VgfJJHtdunRJffHHf/zHtjr4stlFgdQCwHnC4fAdd9xhz25HTGLz1UFWrFjh9/vvvffeWR+ZySDXT37yE/XFuXPnbPUyKbSQWgCU7COv+uzIR0ZHsPmklW3btoVCoVmLQLFYbNZCi2maP/zhD62UYJ/XeOtKviC1ACiSs2fP0tTiFGWzOsjGjRtV9poh37z99tvW17ZKLbeu5AtSC4AiOXbsGE0tTlEeq4NkmL3UnOeHH35YRBKJhLVwS2nZcBcFUguACkJTi1OEQqHyKLRkmL3UnOdnn33W5/PJzd2ISq48tqsktQBwJJpanCJ90kolFFpSqZR6WFNTk1qsxQ7dxxRaSC0ASommFqdwyqSVeDweCoWi0eh02SvDQsupU6dERNM0j8ezadOmZDKpbiktNeecQgupBUBp0NTiCA5aHeTs2bOtra3T7cQ5ODioKij79++f+XkOHjwoIlu3bhURt9tth207rQVmZljJF6QWAHkQjUbr6+uHh4cn3U5TiyOUx+ogmWcv0zTVmjTr16+3z/GXxy4KtkL0AzCFpqYmj8ej6/pTTz2VSCSsCwZNLY5gGEZra6uIDAwMOPqdyjx7WWvKLVmyxCYHXza7KNgKtRYAU/jxj3/8qU996rnnnhsbGwsEAtbtNLU4gjVpZcuWLc59FXMa5Dp9+rSI+P1++wzEUGgpBGotAKbgdrs7OztN0zx9+vQrr7wyPDzc3NwsNLU4QdlMWtm3b1/mg1x79+6VmyvRpZ+KM2fOXLt2LT15F0c0GlWFlsOHD/M7mUd8YAIw/ccal0v1CrS2thqGITS1OEF5rA5iGMb27dtFJBgMzlpoSaVSKt88+OCD6befOXNm7dq1JensseY91dXV8TtJagFQJB6PJxgMXrt2bdOmTTS1OOJiXx6Fljllr5deeklEvF7vpHlDK1euFJFEIqF+dYumbHZRILUAcJ5A4P+3d/+xUdeH48dfZWe2SeOMsXi6McqGmS7r+SMSEmDqxjHHj61ZdCZX/WdxS5RJieE//ii7JmN/sURKpgkxJlvabh3GMCkOKRE3SmJ0ibSG+QeRY2za9RJ/bL1shvfs94/X10s/BUp/XMvd+Xj8Va/H9foG6ZPX+/Wjbd26db///e9bW1tNaqlycXeQTCZTQwMty5Yty+Vyq1evnnV7xd3k7r///kmPL168OJPJhBAOHjy4kN9RfZyiUJ0axsfHXQVgasViccmSJSGEX/ziF9/85jfNLqxOhUJh+fLlIYTjx4/X9O9RZ2fnzp 070 +n0uXPnLlstpVKpsbExhDA0NHTh7Zi9e/du3bo1k8mcPHlyYd784ODg2rVrQwhnzpxRLRXn30zA5cX7RCGExsZGk1qqVn0sWikWizMaaHnjjTfiBxdd87x58+YYNHFi1nxLkuSBBx4IIbS3t0sW1QJcMW1tbWNjY3/6059MaqlOdbM7yLZt22J7TXPhT19fX6yEiyZOc3NzOp0OC3WSYnmDGTNaVAtwhS1evHjv3r2uQ3Wqj4GWWbRXrJb77rvvUk+Ie/wvwArkGjpFoXbZrwWYgTi7hWpTN7uDzLS9CoVCHNuIy4UuKu7xv27duvl+8/VxioJqAWB+1fTuIKVSKS4CWr169UwHWuLioEwmM8XYRktLywJcFgMtqgWAy6v13UGKxWI8NSmbzYYZ3uSKuRPXe19Zu3btGhkZSafTBlrmlZXPALXttttuGxoayuVyPT09tfj+ywu2o+kvGJ56zfNCKr+T7u7uhT894FPFbFyAGnbo0KF62oZ1RjuzlZcFXfH7YvVxioJqAWAeJUnyyCOPhDraHWRG7XX48OH4vU//chWLxYq/57o5RUG1ADCP6mx3kJlugb9nz54w5ZrniQYHB6+66qo4daay4ronAy2qBYCpRg7qY9FKnFE70/YaHh6OH0yx5nmia665JszDJrmFQiHG0zPPPGOgRbUAcHH1sTtIkiQ///nP48czGmiJk1qy2ew0i62lpWU+NsktbzCzceNGfyZVCwAXUSqV6mOgpa+vL841+eEPfzijX7hv 374 QQmtr6/R/SbyDU8GN+OrmFIUaYuUzQO2Z0anIVStJkqVLl46MjOTz+Y6OjhlFW1xpPKNzlcunMZ8/f74iF62tra23t3chD5RGtQDUmLrZHaSnpyfuLzc2NjajEaNDhw5t2rQpnU6/++67M4qkq666KlRof5fh4eFMJhNCOH78eE2f/VRb3CECqDH1sTvIXG5yxTXPM/32U6lUXEP0/PPPz/39P/zwwyGEXC4nWVQLAJf8YV8fu4Ps3r07boEfJ7ROX5IkcdnOLKLtiSeeCCG89dZbc3zztX6KQu1yhwiglmzbtm3Pnj21PqNlLje5yrdmZnpfKRZPCGHu163WT1GoXRaXA9SM8u4g+/fvr/WBljDhJlf82d/a2jqdCon3d6a/5vn//MyrxEUz0KJaALi88u4gNT2X4sKbXHFO7pkzZ6YTIs8991yY4ZrnCkqS5IEHHggz38mXinCHCKA2lM9GrvVFK3HB8MSbXA0NDWF6y5iLxeKSJUtCCKOjo01NTQv/5me97omKMBsXoDbUx0BLeWe22d3keu2110II6XT6iiRL3ZyiULvcIQKoAcPDw/WxDesc2yvubPvYY4/N5T0Ui8Wnnnrquuuue/zxx2f0C+vjFIWa5g4RQA2oj0Url7rJNc07ROVt4uZ4j2x2m+TOeidfKsgdIoBqVzeLVuY40PLXv/41frBq1aq5vI3bb7990gtOx9NPPx03mDHQoloAuKQtW7aE2l+0MvebXOU1z3NcwLx48eKZbpJbKpW2bt0aQti9e7cZLaoFgIurm4GWKbbAz+fzuVzuH//4x9Sv8NRTT4UQfvSjH839zcQXiS84HfVxikIdMK8FoHqV51LU+oyW8lSSGZ3SPFFl1zzP6NXq5rjKOmCsBaB6lRet7Nu3r6a/kbnf5Dpy5Eio3JrnpqameCzA7 373 u8s+2UCLagHgMupmd5CK3OR69tlnw5zXPE90//33hxAOHDgw9dMKhUJ9HFdZH9whAqhS9bENa0VucpXXPA8NDbW0tFTkjRUKhVOnTq1cuXLqwZu4k28mkzl58qQ/k6oFgKl+2Nf67iAVaa/Z7bBSkbKpj1MU6obBLoBqtGvXrjrYHWSaN7kGBwfPnj27evXqS816OXr0aAghl8st8D2a+jhFoZ4YawGoOnWzaGWaAy3xLswU3+yNN944MjLS39+/cePGBXvzBlqqkNm4AFWnPhatVGo2cbFYjAupVq5cuZDvv7W1NYSQzWYli2oB4OJKpVJ9LFqJW+CHOZ81GBcnZzKZeTrnuVgsDg8PT3qwvO6p1tecqxYA5lGcS1HrAy3lLfC7u7vnuAAqLk6OC5UrrqenZ8mSJXHf3onq4xQF1QLAPCoUCnv27AkhPPPMMzU90FKpm1ylUmlgYCCE8IMf/GA+3uf69etDCENDQ8Visfxg3ZyioFoAmEflRSsLOe204mZ6kyve+jl9+vSFn3rjjTfiB7feeut8vNWmpqZ0Oh0+2Xs3hJAkiYEW1QLAZRQKhTmeilwlZjrQsmrVqhDCW2+9deGn+vr6Qgjt7e3zN/IU99uNe+/GrxgHWp588kl/JlULABdXH7uDzGIL/GXLluVyudWrV1+qWu 677 775 e8Px3tPAwECpVJq47mmeJv8yF/ZrAaiWH/b1sTtIBbfAL1+TeT3ToHxcwPHjx8+ePVsHpyjUMWMthBBCwzS4SgsjSZKGOXMZa1HcHSSXy9X6QEsFb3IdPHgwhJDJZOY1IFKpVHt7ewjht7/9bX0cV1nH7OhPCCEYcqui/ydTKb8dn0J1s2ilsje54prnn/zkJ/P9tu +77 75jx469++67Fdlghnn8N7a/HwGuuEwmMzw8PJdTkatBZW9ylY81qOA5z9P5crV+ioJqAWAeFYvFZcuW/ec//7noZyf9LV3+4VqFz1y/fv3AwEA2mz1y5EhFXnPS8xfgO0qn0+fOnavpnXLqm3ktAFfYkSNHLpUsF5r+fIsFfubg4GDcDi5ugV+prx5nnMzfd1TeDyZ66aWXJItqAeCSHnzwwXXr1sWP77rrrvgv/vFPxMeTJClv3jp+CRcdV1iwZ164M9v0X7O7uzv+2gufNmnNcwW/o0Kh0NbWtnbt2vifuVzuzJkzC3ArCtUCUMNSqdQf//jHTCYTQnj99dffeeedODN30hjAkiVLbrzxxm3btg0ODpZKpar6Fio+m7h8nOE999xT8Xcbe2X58uVxuVPslZ6eHjvhqhYAphUuAwMDcWv5O++888InHD58OIQwMjKyZ8+etWvXNjY23nbbbZ2dnRceVnxFVHwL/FdeeSWEkM1mK7sCeVKvZDIZvaJaAJixpqamoaGhdDo9MjKSyWQmHuYXQnjyySdHR0f7+/vL8zyGhoZ27tz5/PPPX/F33tPTU/Fl23FyTNzDpiJKpVJnZ+fEXjl+/PjJkyf1Sm2xhgigihSLxUwmMzIykk6nh4aGLrWpfKFQOHHixMGDB3/6059OWmO8d+/e6667bvXq1Qvz8zhJkqVLl46MjOTz+Y6Ojtm9yPDwcLxBFn8kldf1nDlzZu7fRalU2r17dzxkIPbKr 371 q5reyk+1AFAtyrueZLPZF198caZLWiZujpzL5R5++OGVK1fO35E6PT09c98Cv/wtxx9Jhw4d2rRpUzqdfvfddyvYK+l0evfu3fZiqWnuEAFUl+bm5uPHj4cQBgYGNmzYkCTJjH5O5/P5OG4RQujt7d20aVOcxjvpllNFTDxrsIITUOIknmmeF32pN9bT07NixYqYLOl0uru7+9y5c5Kl1hlrAahGg4ODcVHu7EZcSqXSG2+80dfX19fXF3epP3/+/MQXSZLko48+mmNqzGigJa57uujTisXitm3b4gtOPMtwFvdxkiTp6+vbvn 17/ K7j+MqDDz5oF5Y6MQ5AVYojLjFczp8/P+vXGR0dPX78+KQH4/zZbDbb1dU1NDQ0i9cfGxuLi566urou++T45X7961+Pjo5O55mxhGb6lrq7u+NbivL5/FyuG1VItQBUr66urvIP4Hl65bJsNtvd3X3ZqijL5/NxMOOyZVDum1tuuSV+rVwu193dfdFaii+bzWZnWnjl+2Lxcs0ielAtAMxJ/Ck+H+EyNDTU1dWVzWYntsukDWqnCJH4/O7u7ss+OZfLxWeeOXOmvb19Yl6EEDKZTD6f7+/vj8EUPzudl9UrqgWAT1G4ROfPnx8aGorTeC/Mhf7+/v7+/kkpMP2Blrhb/6Sxk7GxsdhMMWgmTpSJH0xnyGdoaGhir+RyuekPFFGjzMYFqAGdnZ1xOUxXV9fjjz++kF/6tttui3NNMpnM/fffv27duptvvvmGG26IIyJTr8opFotLlixJp9OnT5+eYrpuoVA4derU66+/fvPNN7e1tV12zXOhUNixY0fcLy72yq5du+wX92lg5TNADejo6Ii3crZu3To4OLiQX/ree++Ns1Librxr166NydLU1DT14uQkSeJ73r9//9QrjJqamj744IMVK1a88MILIYTHHntsil5xhNCnmuEmgJpw/vz58hyUC9cEzbczZ850d3dPvKFz8ODB6dzYam9vn86LT/zBdNHvbnR0dOJXj1vy+1PhDhEAVSpJkg0bNgwMDITZbmcyd21tbb29vV/+8pfPnj 078 fF4MyiXy23evHn9+vXxNKVMJvOXv/zlsnullPfGjSZtLWNLfspUC0CthktFjumZkXJeXNhMcRv+8n9ef/31n//85/P5/ObNmy97nkAsnvhxNps9cuSIXkG1ANSDaZ6wOB/iQEsmkzl58uSkT8XdeI8ePfrcc8+Vd4qLqXHhky/y0+iT45PiDN8kSZ5++umtW7fGB21xi2oBEC4zUD6ZeWhoqKWlZeq399prrx0+fLivr++xxx6bdBZ0oVD4 97/ /feutt05MkHK1vPPOOy+//LIt+VEtAMJl9uIS6FwuV95VZTqSJJkUHOvXr493uLLZbGtr6+bNm5ubm2O13HTTTR9//LFeQbUA1GG4xOkg05z0Ohfl0xznPpmmXC1TyOfz27dvr+A50tQH+7UA1KqmpqZ4wuLQ0NCGDRuSJJm/r7Vly5YQQi6Xm/v83yNHjsTdeLu6uibt7h8+2ZK/o6NDsqBaAOrKmjVrYrgMDAzMX7gMDg7GCba7du2qyAumUqmWlpY77rhj4oPt7e16ham5QwRQ88q3b7LZ7IsvvljZW0VJkixdunRkZGSmM1qmUCgUWltby0uNbMnPNBlrAah5a9asiYcUDgwMVGo4pKyvry9Oj923b19FeiVuyR+TxZb8zMhnfvazn7kKALWupaVl0aJFx44dO3bs2KJFi+65556KvGySJN/97nfHxsby+fz69evn2Ctbtmz58Y9//Oabb4YQstns0aNHH3nkkWuvvdZvH9PkDhFA/SgfDZ3P5yftkjI7PT09Dz30UAhhbGxs1tNNSqXSjh 079 uzZE//TFrfMmjtEAPWjo6Mjnlm4c+fOvXv3zvHVkiTZvn17bKDZJUupVOrs7GxsbIzJEo88PHnypGRhdoy1ANSb8oYoczxhce/evVu3bk2n06dPn55ptUw6QiidTu/fv1+soFoA+D8qcjR0qVRqbGwMnxwMNKOv3tfXF+8rBVvcUlHuEAHUm1Qq9eKLL2az2RDC2rVrBwcHZ/Eiu3fvjs3x4IMPTr9Xenp6li5dGpMlnU53d3efO3eura1NslARxloA6tPEEZfLnnc4yUwHWuL4SvnIwxBCV1fXo48+KlaoLGMtAPUplUr19PSk0+kQwne+851isTj9XzujgZbBwcE4vhKTJW7J//jjj0sWKs5YC0A9m8XR0IVCYfny5WEaAy2Dg4Nbtmwpb3HryENUCwALGi5tbW29vb2ZTObkyZPT7JVcLrdv3z69gmoBoJLhcu7cuSnu3ZQHWi61+KhQKOzYsaO3t7fcK44QYsGY1wJQ/5qamvbv3x9CGBkZmfpo6B07doQQMpnMhclSPkIoJosjhFh4xloAPi0uezT0pQZaJo2vZDKZAwcOiBUWnrEWgE+LNWvWHD9+PIQwMDBw0RGX1tbW2DTlZIlb8pfHV8pb8ksWVAsA8x4u/f39MVziGUNlg4ODcXbtvn37woQjhOKu/I4QQrUAsNA2btwYT1jcs2dPZ2dn+fEtW7aEEHK5XFNT08ReiVvc6hWqgS2AAD51Ojo6Qgg7d+6MXdLR0VEeaFm1atWKFSvifnGOEKLamI0L8CnV2dkZqyWfz+/fv394ePhzn/vcf//7X72CagGg6sQN5SY9mM/nd+zYoVdQLQBUkXjC4v/+ 979 isfjmm2/akh/VAkBVh0sI4f33 37/ 66qv1CqoFAKACrHwGAFQLAIBqAQBUCwCAagEAUC0AgGoBAFAtAACqBQBQLQAAqgUAQLUAAKoFAEC1AACEkHIJqkSpVDpw4IDrMH+WLVu2Zs0a1wFAtTBXr7zyyvbt 27/ 1rW+5FPNk9erVqgWgpjWMj4+7CtWgs7Pz448/zufzLsW88gceoHYZa6kWf/7zn9va2s6cOdPc3OxqAMCFzMatFgMDA//6 17+ +9KUvuRQAoFqqV6FQCCF85jOfSaWMfgGAaqlip06dymaz 773 3nksBAKqlqh0+fHjVqlUrVqxwKQBAtVS1Y8eO3XTTTatXr3YpAEC1VK8kSYaGhs6fP28qLgColqr2 97/ /PYTw4YcfmooLAKqlqp04cSKbzboOAKBaqt2rr75qKi4AqJYaYCouAKiWGhCn4i5atMhUXABQLVUtTsVNksRUXABQLVXtxIkTuVzOdQAA1VJFBgcH43lDE7366qt33XXXV77yFdcHAFTLlZckybZt29auXbtp06ZJn+rr67v66qu//vWvu0oAoFquvF27dq1ateqLX/ziqVOnjh49Wn68VCqNjIx88MEHzc3NrhIAqJYrr6Oj4/Tp03/4wx9CCA899FD58bfffjuE0NjY6BIBgGqponC58847c7ncP//5z2effTY+ODw8nMvl3nvvPdcHAC6rYXx83FVYMIVCYfny5Y2Nje+//34qlWpra8tkMplMZuPGjS4OAEzNWMuCam5ubm9vHxsb+81vfhNCePnll6+99lpTcQFAtVSjXbt2hRDa29sLhYKpuACgWqrX4sWL8/n82NjY 977 3vWAqLgColmq2ffv2G2644c033 ... Hình chóp đều là hình chóp có đáy là đa giác đều các cạnh bên bằng nhau. Đỉnh của hình chóp đều có hình chiếu là tâm của đáy. Hình chóp tam giác còn gọi là tứ diện hình tứ diện. Hình...

Ngày tải lên: 02/06/2014, 20:02

28 1,4K 1
Tổng hợp kiến thức và các chuyên đề toán 12

Tổng hợp kiến thức và các chuyên đề toán 12

... 1x m m x m y xm luôn có cực đại cực tiểu. Bài 3. Cho hàm số 32 2 ± 12 13y x x . Tìm a để hàm số có cực đại, cực tiểu các điểm cực tiểu của đồ thị cách đều trục tung. Bài 4. Hàm số 32 2( ... 1x m m x m y xm luôn có cực đại cực tiểu. Bài 13. Cho hàm số 32 2 ± 12 13y x x . Tìm a để hàm số có cực đại, cực tiểu các điểm cực tiểu của đồ thị cách đều trục tung. Bài 14. Hàm số ... khảo sát vẽ hàm bậc ba Dạng 1: Khảo sát vẽ hàm số 32 (a 0)y ax bx cx d Ph-ơng pháp 1. Tìm tập xác định. 2. Xét sự biến thiên của hàm số a. Tìm các giới hạn tại vô cực các giới...

Ngày tải lên: 18/10/2014, 11:30

36 596 4

Bạn có muốn tìm thêm với từ khóa:

w