chuyên đề giải toán hình học lớp 5

Các hướng tư DUY để giải toán hình học tọa độ KHông gian OXYZ

Các hướng tư DUY để giải toán hình học tọa độ KHông gian OXYZ

... THAM KHẢO: CÁC BÀI TOÁN CỰC TRỊ CỦA HÌNH HỌC GIẢI TÍCH TRONG KHÔNG GIAN Ý tưởng cho các bài toán tìm GTLN ,GTNN nói chung cũng như các bài toán GTLN ,GTNN của hình học giải tích trong không ... BÀI TOÁN CỰC TRỊ (tham khảo thêm) H À N Ộ I 2 / 2 0 1 3 4 B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI I. BÀI TOÁN 1: BÀI TOÁN TÌM ðIỂM CÁC BÀI TOÁN MẪU Trước khi làm các bài tập trong Chuyên ... c = = ⇒ = và 15 d = − ⇒ mp (P): 4 2 7 15 0 x y z + + − = +) Với 0 b = chọn 2 3 a c = ⇒ = và 5 d = − ⇒ mp (P): 2 3 5 0 x z + − = Chú ý: Với số liệu ñặc biệt của bài toán trên các...

Ngày tải lên: 13/01/2014, 17:16

23 4K 39
Ứng dụng phương pháp tọa độ trong không gian để giải toán hình học không gian

Ứng dụng phương pháp tọa độ trong không gian để giải toán hình học không gian

... hình chóp đều 1. Hình chóp tam giác đều S. ABC Dấu hiệu: Đáy là tam giác đều cạnh a, đường cao vuông góc với đáy từ đó ta thiết lập hệ tọa độ như sau Cách chọn: Chọn hệ trục tọa độ như hình ... Oxy    4. Đáy là hình vuông ABCD (thiết lập tương tự như hình thoi hoặc hình chữ nhật) Bài tập giải mẫu: Bài 1: (ĐH – D 2007) Cho hình chóp S.ABCD có đáy là hình thang   0 90 ABC ... tại B có: 2 2 2 2 2 2 4 5 5 AC AB BC a a a AC a        Dựng ( ), BH AC H AC   ta có: 2 2 5 5 AB a a AH AC a    2 2 2 2 1 1 1 5 4 BH AB BC a    2 5 a BH  Dựng hệ trục tọa...

Ngày tải lên: 29/04/2014, 08:38

39 7,6K 21
CHUYÊN ĐỀ BÀI TẬP HÌNH HỌC LỚP 10 ( có sử dụng tài liệu từ các nguồn khác) potx

CHUYÊN ĐỀ BÀI TẬP HÌNH HỌC LỚP 10 ( có sử dụng tài liệu từ các nguồn khác) potx

... src=" 554 oq6uzlMDwK1EfMJI1UilUrNmzbq3fU73dt1MJrN+/frb7x4DANVFtcnlcvf8Gd+9XXcoPxEA1QUAQOmNMwIAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLruQSaTyWQypbq1XC5Xwlsbivb29lwuV8IplfDWAICij+3Zs2fsPNrx48d/+tOfvnTp0vz58ydPnjzUYh03bu7cuf/6r/9aklsbiv/8z/+cOXPmuHHjFixYMGHChCHe2vXr1z/96U+X6tYAgKJIoVCoygeWyWRqa2tv8w1nz55taGi4i0lFIre5tKmpadeuXcPwuFpbWzdt2nSbb+js7KyrqxupKQEAY6668vn81atXb9r47rvvLlmypLGxsbm5OZFI3G3GfXTjokWLpkyZcuDAgWFLk1wul81mb9rY1ta2devWpqamL33pS3f1uEo+JQBgzFXXgLq6uu67775SlUQ2m7106VIl7Apqb2+fN29eLBarwCkBAGOxugAARoojRwAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1XUvcrlcCW8tn8/n83mvoTKptPHmcjlPNwCqa7B+8IMf1NfXt7e3l+TWPvzww4ceeqi1tdU/xmUyf/78yhnvBx984OkGYCgihUKhKh9YNpvdvn37R7en0+kQQjKZ/Pa3v11XVzf4G0ylUh/deOrUqZ6enng83tLSMuA3MBrHe/sXTzwef/311+/qxQMAIYRotT6wT37yk2vXrr1p449+9KPiP5wbNmyYMWPGXd3gR2+tmAUhhI0bNy5evNiLaSgGHO/Fixd7enqWL18+zOMd8MXTV13PPffc3b54ACBU8b6uAR07dux73/vezp07Y7HY0G8tm82+8sorpbo1bpLL5bZs2dLc3JxIJCrh/rS3t588edLTDYDqAgCoaI4cAQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6hob8vn83r17c7lcqW5w3 759 mUym+gbV2tra1dV1b9c9duxYVc4EgDEoagSDlM1mPxpY77zzzsSJE5uamnbu3BmLxYZ4a9///vdra2sbGxubm5sTicRonFIul8tmsx/dnkwm7/i4Brzu9evXR/tMAKAoUigUTGEwUqlUOp2+1aWNjY2vvfZaNBotya0lk8mOjo67yrgK0draumnTpltdGo/H/+Vf/uVW8TSU6wKA6qpy9fX1c+fOLdVumL179x45cuTAgQMNDQ3VNKX29vYnn3yypaVl48aNgw/TvhTbuXPnvV0XAFRXlcjn81evXi3h3pf29vYq662irq6u2bNn31szZTIZ+7cAUF0AAAyWv2EEAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKrrXuRyOY8CTwQAqqvsLly4UF9f397ePqofRUtLSyqVymQyXr4j6+jRo54IAAYvUigUqvKBZbPZ7du3f3R7Op0OISSTyW9/+9t1dXXl+NGZTKampiYWi5XqBlOp1E0P7cSJEyGExsbGl 156 qaampqImX9wDdG8PfyjXHcodzmaziUSiyp4IACrNx/bs2VOtj61QKHz2Z40bN+6NN96Ix+N79+5dtmzZuHFl2dU3fvz4mTNnTps2bfbs2SX5ER9++GH/R/Huu+/+27/9WzKZbGpqmjVrVqWNfcKECdOnT//ggw8WLFgwYcKEu7ruuHHjPvGJT4wbN+4erjuUO7x06dIzZ87Mnz9/8uTJg38ibty4ce7cuXg8vnXr1gULFpTp5QRA1ajafV0Dam9v7+7u3rhxYzQaLckNZjKZ2traW10aj8f/6q/+as2aNaV9FPv27Xv44YcbGhoq4gUUidzm0qampl27dpXjumW6w9u2bXvppZcG/0Tcf//9JXw5AaC6uKV8Pn/16tWPbq+trY3H4y0tLVX/T/KAq5rWr1/f2dnZ1NS0c+fO23xcOOB1Fy1a1NPTc8frlvYOb9my5cSJE+X7oQCgusoVIh0dHWN2F0gul2tpabm3fMlms8ePHx/m0eXz+ebmZr0FgOoCAKgG1v8CAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFMDS9vb0Vck/ef/99TweguoCq9cUvfvErX/nKe++9N+L35NKlS4888sjBgwflF1BRIoVCwRSgmv8nj0T6f933v3ypvp42bdpnP/vZEEImk+nu7p40adKOHTt27 959 091Yvnz5G2+8Uab7EEK477775s+f3/efxZ+VSCQOHTq0dOlSLwNAdQFld/r06eH5QYcOHTpy5MjOnTt37NgxadKkmy596623rl+/PmyPetmyZYlEYs+ePU8//bTXAKC6gOrR29v7jW9845lnnpk6dWolhGYmk9FbgOoCABiLrKYHAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAhiJqBNxKPp//27/926p8aKlUyvMLgOqiUjQ3N//1X//14sWLVRcAqC7K6J133mlubhYoAFASkUKhYAoM/OKIRDo7O+vq6owCAIbOanoGls1mQwjxeNwoAEB1UUY9PT0hhJqaGqMAANVFGXV1dTU2NpoDAKguyqutra0q/3oRAFQXleXUqVMzZswwBwBQXZRRPp/v6emZM2eOUQCA6qKMrl69GkJIJBJGAQCqizLq6OhIJpPmAACqi/K6fPnysmXLzAEAVBfldebMmYULF5oDAJSQMwIx0MvCuYAAoNTs6+JmxXMBOWwEAKguyuvSpUshhFgsZhQAoLooo+7ubucCAgDVRdk5FxAAqC6Gg3MBAYDqouycCwgAVBellMlk6uvrv/a1r2Uymf7bnQsIAFQXpZHP51OpVG1t7Sc/+cnf+73fe/HFF/tf6lxAAKC6KI1oNDpr1qwrV6786Z/+aQghnU7ncrm+S50LCABUFyWza9euRCKxcOHCeDweQjh69GjfRc4FBACqixKLRqPPPfdcCOFrX/ta38YTJ044bAQAlIPzMI5p2Wx2ypQpIYTiWReL//n+++87MD0AlJx9XWNaTU3NypUrQwjf+ta3QgiXLl2Kx+OSCwBUF6W3Z8+eEMLLL7+cy+XOnz+/fPlyMwEA1UXp9V9T39HRYVEXAKguyqL/mvpTp049/PDDZgIA5WA1PT9dUx9CuHLligPTA0A52NfFT9fUB+cCAoCysa+LEELo6ur6/ve/P2PGjHnz5pkGAKguAIDRyieMAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQBQeaJGQBVLpVLpdNocGFBjY2Nra6s5AMMmUigUTIFqlc1mc7mcOTCgWCxWU1NjDoDqAgCoKtZ1wU+9+uqrkWqUSqXueSa//du/bSAAJWFfF/T7/yES+ed//udf+qVfqrLHdc8fpWWz2SlTprz55pv333+/gQAMkdX08BOZTCaEsGTJklgsZhpFPT09IYTPfe5zRgEwdD5hhJ949913QwiSq7+urq7GxkZzAFBdUErnz59XGDdpa2ubNWuWOQCoLiiljo6OxYsXm0N/Fy9eXLBggTkAqC4opVOnTs2YMcMc+uTz+c7Ozjlz5hgFgOqCUhZGT0+Pwujv6tWrIYQHH3zQKABUF5S4MBKJhFH0efvtt5PJZDTqL50BVBeUTkdHRzKZNIf+vve9782dO9ccAFQXlNLly5eXLVtmDv298847a9euNQcA1QWldObMmYULF5pDf+l0uq6uzhwAVBeU0okTJxRGf9lsNoQQj8eNAkB1QYkLw2Ej+iueC8jJCgFUF5TSpUuXgnMB/SznAgJQXVB63d3dCuMmzgUEoLqgLIXhXEA3OXXqlHMBAaguKH1hWNTVnyP1A6guUBjDwbmAAFQXlKswnAuov+KR+p0LCEB1wT1qb2+/VWGYSX+XL192LiAA1QX3IpPJpFKpJUuWPPPMM7lc7qbCGJvnAurq6komk48//vjGjRvz+Xz/i86cOeNcQACqC+4lL2pra0MIc+bMOXjw4KuvvnpTYYzBcwG1trYmk8lf//Vf/9GPfvR3f/d 358 6d63+pI/UDlEOkUCiYAmMhvOrq6lpbWzdt2hSPx997772f/j8QiXR2do61yMjlctlsNpFI7N27d/fu3StXrjx+/Hjxomw2O2XKlGvXrjkwPYDqgntPjYkTJ4YQzp4929DQ0FcY77///pg9MH3xc8YQQl9mtbe3L1myxDsDQMn5hJExJBaLFY9Bv3///uIW5wKqq6srVtcrr7xS3OJI/QCqC0rg+eefDyGk0+nimnqFEUL43d/93f7V5Uj9AKoLSqChoSEej4cQimvqFUYIYf369SGEnp6e4lEkHKkfQHVBafzBH/xBCOGP/uiPFEZRLBbbtm1bCGH//v2O1A9QPlbTM+b0rak/f/78ww8/fOXKFQem71tTf/Hixblz53pbACgH+7oYc/rW1L/00kvBuYBCCCHU1dUVP3j9+te/PpaP1A+guqDEimvqDx069Mu//MumUVT84PXIkSNj80j9AKoLyqJvTX19fb1pFH35y18OIeTz+dmzZ5sGQDlY18UYlc1mP/WpT0WjUaPok8lkfN4KoLoAAEY3nzACAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAGElRI2CQ3nnnnV27dkWjXjOMAq2trYYAqC5Gq9/4jd9YunTp4sWLjQIA7kGkUCiYAoN6rUQiV65cSSQSRgEA98C6LgYlk8mEEGpqaowCAFQXZfTuu+/G4/FYLGYUAKC6KKPz588vX77cHABAdVFeHR0d1tEDgOqi7E6dOjVjxgxzAADVRRnl8/menp45c+YYBQCoLsro6tWrIQTHjAAA1UV5dXR0JJNJcwAA1UV5Xb58edmyZeYAAKqL8jpz5szChQvNAQCGwhmBGMSrJBLp7Oysq6szCgC4Z/Z1cQfZbDaEEI/HjQIAVBdl1NPTE5yBEQBUF+XW1dXV2NhoDgCguiivtra2WbNmmQMAqC7K6+LFizNnzjQHABgif8PInV4ikciVK1ccmB4Ahsi+Lm4nk8mEEB588EGjAADVRQnk8/ljx47l8/mbtr/99tvxeDwajRoRAKguhqqrq2v+/PmbNm2aO3duV1dX/4t+8IMfLF++3IgAQHUxVNlsNplMbtiw4bHHHrt06dK3vvWt/pd2dHSsXbvWlABg6KymJ2Sz2Zqamvb29iVLloQQ3n///Vgs9pPXRyRy9uzZhoYGUwKAIbKvi58cd37hwoXF0/6cPn26uD2Xy4UQfv7nf96IAEB1UTLRaPS 555 4LIfz+7/9+cUvxDIyOGQEAqosS+9KXvhRC6OzsLPZWR0fHypUrjQUAVBcllkgkkslkCOGVV14JIZw7d27OnDnGAgCqi9L74z/+42J15fP5t99+e+HChWYCACXhbxj5GblcbuLEiSGEs2fPLlmypLOzs66uzlgAYOjs6+JnxGKxbdu2hRD+7M/+LIQwY8YMMwGAkrCvi5v1HbgrhODlAQClYl8XN2toaCgeuGvp0qWmAQClYl8XA+jq6vrxj39cW1tbPIAqAKC6AABGB58wAgCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AGAgBw8ePH36tLvK2BE1AgCGQVNT001b3nzzzX/8x39ct27dN7/5zenTp7urVD37ugAYSfPnzx8tHTOK7iqVKVIoFEwBgOH393//97/6q786depUdxXVBQBAyfiEEQBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKgugNEtEolEIhFzANUFAIDqAgBQXQAAqC4AgDFfXb29vS+88EJ3d/fYfA7eeuutpqam3t5eL0cAqGKRQqEwnD+vqalpwO2HDh3KZDKbN29ubm6eOnVqtY67u7v70KFDH92+Z8+eyZMn/+Ef/uFXvvIVL0qo/nfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZUcXKFECZMmPDRCfzP//zPfffd99RTT61Zs8YrEqCscrlcLBYzB0bmN65K+GWrt7f3woULS5cuHZvPwVtvvTV58uTp06d7OcJYeee1r2vk7Nu3r6Ojo7m5OZFImAZjsboAVBfDI5fLTZw4MYTQ2Niovcoqm80eP 358 48aN0WjUNFQXgOqqtn/mt2/ffsdvS6fTfV9rr7Kqr6+/du1aS0uL9lJdAKqrqmQymdra2ru6Sjweb2lpSaVSpnfPM+/o6LjVpa+++uqJEyf65qy9VBeA6hpD8vn8Qw891NPTowNKorW1ddOmTYP85pUrVx4/fnwsj8tLDYAx5Ny5cyGEw4cP662SWL9+/ZUrV 251 6Z//+Z+//PLLIYRkMnngwIGGhoax/huXX7YAhvud176ukdPe3j5v3jwHjxge9fX1IQS9pboAVBeUkb9hVF0AqgsYGc5+DQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXYPS29v7wgsvdHd3j83n4NKlS01NTb29vV6OAFDFIoVCYTh/XlNT04DbDx06lMlkNm/e3NzcPHXq1Cqe+IAT2LNnz+TJk3fs2LFjx45JkyZ5XUKVv/NGIiGEYX77BUZcdJh/3rRp0wbcfuPGjXXr1m3YsKG6k2vACeRyufvuu++pp55at26d5AKAqv2NqxJ+2ert7b1w4cLSpUvH5nNw6dKlj3/849OnT/dyhLHyzmtfF6guAFQXUCb+hhEAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgCgqqurt7f3hRde6O7u9nyUZJhNTU29vb1GAQAVJVIoFIbz5zU1NQ24/dChQ5lMZvPmzc3NzVOnTvXEDGWef/mXf/nBBx/s2LFjx44dkyZNMiWouHfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZIrqHPc/z48U899dS6deskFwBU0G9clfDLVm9v74ULF5YuXer5KMkw/+M//uNzn/ucUUDlvvPa1wWqCwDVBZSJv2EEAFBdAACqCwAA1QUAAzh27Fgmk3+0TNAAABOrSURBVDEHVBcAlNekSZNqa2tTqZT2Krd8Pm8IN/E3jADD/s7rbxjL9s/81atX7/httbW1xS8aGxubm5sTiYTRlUMul1u8ePGBAwcaGhpMQ3UBqK6qkslk+opq8LZt2/bSSy+ZXjmkUql0Op1MJrWX6gJQXVUll8sdPXr0jt+2c+fOnp6eEEI8Hm9padm4cWM0GjW9e9Pe3r5///5bXXrx4sXOzs7i19orDP8ZgQCgTGKxWCqVuv33ZLPZnp4evVUq3d3d6XR6MN 957 dq17u7uMV5d9nUBDPs7r31dI2fv3r3333//s88+q7eGZ9q7d+/WuKoLQHVBGeVyuZkzZ+ot1QWguqC8ikeO0FuqC0B1AcPNUVIBAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAIyi6srn8/l83tMDAKiu8opGo/Pnz29tbdVeAIDqKq8tW7Zs2rTpoYce0l7lduzYsUwmYw4AUFaRQqEw/D913 759 HR0dt/+ebDZ74sSJ4tfxeLylpWXjxo3RaNRzVnJdXV3JZLKxsbG5uTmRSBgIlP2dNxIJIYzI2y8w5qorlUql0+m7ukoymTx69KgmuGetra23uXTTpk3FL7QXqC6gqqprMNrb25csWVLsrQMHDjQ0NHi2hv4uP0hnz541cFBdwFiprlWrVl27dk1vlcrtV24tWrSop6cnhNDY2Hjw4MFYLGZioLqAMVFd+Xz+3Llzemt4WNcFqgsYu9XFcDp27NicOXP0FqguQHUBqC5g1HNGIAAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQAwmkWNAADGgkwm09HRccdvmz59ekNDg3ENclyLFy9OJBKqCwD4qddee2337t13/LbGxkbVFUJ48cUX0+n0Hb/t8OHDg6+uSKFQMFmA4RSJREII3n5LqKmpacDthw4dymQymzdvbm5unjp16hifUn19/WOPPVYoFObNm3f77yzf7q62trY333zzpo1vvPHGG2+8sWzZsj179ixdurRy/j/9nd/5nQcffLCmpub23zn43V32dQFQzRKJxLJlyyRXLpfr7Oz84he/+PTTT98xI4bf5MmTly1bdsccHDaZTCaEMH78+Oeffz4aLVksqS4ARr0BPzjr7e291UVj0IULF0II169fH9nkWrt27dq1az+6/Tvf+c6kSZMqZ1zFFV0TJkwoYXKpLgCq1qRJkyRXn5MnTyaTyQkTJoyWaB5ZbW1tK1aseOCBB0p7s44cAQDV78iRI4899tiCBQuMYjDS6fSv/MqvlHyRmeoCgCpXXNRVU1PzyCOPmMYdFRd1hRBmz56tugCAu1Bc1DVu3LgKXEdfgcq0qEt1AUD1q+RFXRWoTIu6VBcAVL/ioq6HH37YKAYjnU6vWrWqHEcOU10AUM36FnVVztGwKllxUdeHH35Y8kVdqgsAqlzfoq5YLGYad9R37sWSL+pSXQBQ5SzquittbW2f//zn77///nLcuOoCgGpmUdddSafT8+bNK9PpIFUXAFQti7ruSlkXdakuAKiSXNi+fXs+n79pu0VdA+rq6hpwXGVd1BWchxEARrVcLrdly5Z0Oh1C+N///d99+/b1v9Siro/m6Ysvvlgc1y/8wi9s27at/6VlXdQV7OsCgFGtpaVl9erVxRNI79+/v6urq/+lR44cWbFihUVdfV577bXGxsYNGzaEELZv3 953 8p+isi7qUl0AMLrt2rXrYx/72Fe/+tXibpsVK1b0fXBWXNT1cz/3cxZ13TSuv/mbv1m5cmUI4dd+7df6xlXuRV2qCwBGvVQqFYvFWlpa4vF4NpvduXNncXtxUVc+n7eoq781a9bEYrHW1tYQwttvv/0Xf/EXxe3lXtSlugCgSkSj0ddffz2E8PLLLxc/Z7So6zZqamoOHz4cQti6dWtxL1e5F3WpLgCoHnV1dcXPGVetWpXP54uLulasWGEyA0qlUsXPGR9//PF8Pl/uRV2qCwCqSvFzxh/+8IerV6+2qOuOip8zdnV1rV69OpR5UZfqAoCq0vc544kTJ4JFXXdSU1Pz3e9+t29coZyLulQXAFSbvs8Z6+rqLOq6ozVr1jQ2NoYQyr2oKzhKKgBUn5aWlqtXr8ZiMYu6BuPgwYO5XO5Tn/rU2rVry/qD7OsCgGoTjUaPHDkyY8YMi7oGIxaLHT16dMaMGYlEoqw/KFIoFIwbYDhFIpEQgrdfGGvs6wIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAKr668vl8a2trPp/3DAEAqquMotFoW1vbQw89pL2GQS6XMwQAKLdIoVAY/p+azWbv+C99W1vb1q1bQwjxeLylpWXjxo3RaNQTVg779u3r6Ohobm5OJBKmAcPxzhuJhBBG5O0XGHPVlUql0un0XV0lHo+//vrrdXV1nrOSy+VyEydODCE0NjZqL1BdQFVVV3t7e3d39+2 /5/ Lly7t37y5+nUwmDxw40NDQ4AkbSune5tJTp0719PQUv9ZeoLqAchiZz+waGhrumFB79+7VWyV0tzsXAYBqqK47yufzZ86cOXv2rN4qldv8Vu0TRoAqcPvPNPq0traO2RHlcrktW7aM4JQqtLqi0ejx48f9LzQ8jh49mkwmjx49qreAatLb2/ud73zn6aefHgsPNpPJpNPpxx9/fDDfOZzv9m+99db169eXLl1aCVO6cOHCyE7JXwUSVq1aNcjfkAAq08GDBwfc3tLS8uKLLz7zzDPPP//8Aw88UMUT6OjoiMfjixYt+vznPz9S9+G9995ra2v76Pbf+q3fevTRR7/61a+uXbt2ZKd08uTJlStXjuCUVBehpqbGEIBR7b/+678G3P7hhx9OmDAhkUhUd3KFENra2p588snPfOYzI/ipxY0bNwZ8IgqFwqRJkyrhKARHjhxpbGx89NFHR2pKEX9EAzDc77z+hnFY9Pb2fuMb3+j7c/gqls/nx48f/yd/8idPPvlkpa0VOX369PXr19evXz/i96S4iHn//v1PP/10LBYbkftgXxcA1WnSpEljIblCCP/+7/8eQshmsxW4PLdCVnSFEC5cuBBCuHbt2kglV3D2awAY7U6fPh2Px0cwJkaF4qKuceNGsnxUFwCMbkePHn3iiSdmzpxpFLdx5MiRRx99dMWKFaoLALgX+Xz+xIkTM2bMWLx4sWncSi6X6+zs/PjHPz5v3jzVBQDci0pe1FU5iou6fvzjH4/s57CqCwBGMYu6BqMSFnWpLgAY3SzqGoxKWNSlugBgFLOoazAqZFGX6gKAUcyirsGokEVdqgsARjGLugajQhZ1qS4AGMUs6hqMClnUpboAoNJlMplUKrVv376btlvU1V9XV1d9ff2xY8du2l45i7pUFwBUrlwul0qlFi1alE6nt27dmslk+l9aXNSVz+fH+KKubDabSqWSyWRnZ+cXvvCFXC7X/9LKWdSlugCgoq1evfrrX//6jBkzQgjr1q3rf1FxUdfEiRO16erVq3fv3v2Zz3zmv//7v7/85S/3v7S4qOuBBx6ohLsaKRQKXtMAw/rOG4mEELz9MhjZbLb4xZQpU0IIhw8fTqVSxS2rVq36xV/8xbVr165Zs2aMTymTydTU1GSz2dra2hDCd7/73b6Z1NfXb9iw4Yknnqirqxvx+2lfFwBUrpr/d/jw4RDCpk2bih3Wt6jrkUceMaVEIhGLxRKJxDe/+c0QwubNm4ufM/Yt6po9e3Yl3E/VBQCjQCqVWrlyZQihsbEx9FvUVVNTYzh9nn322WQymc1mt2zZEv5/UdcnPvGJaDSqugCAwWptbQ0hnDx5srW11aKuAUWj0aNHj4YQ0un0sWPHKudIXaoLAEaT/p8zHjx48Iknniiusqe/vs8Zf/M3f7N4pK6lS5eqLgDg7qRSqeLRPjs7Oy3qupVnn322rq7uhz/8YUUt6lJdADDKpNPp4hcWdd1KNBr9h3/4h+LXlbOoS3UBwChTU1PT2dm5YcOGCRMmmMatJBKJs2fPfuELX6ioe+V4XQDD/s7reF0MWS6X+6d/+qcnn3zSKG6ju7s7l8vNmTNHdQGoLmAM8QkjAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAqlmkUCiYAgBAudnXBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAv6vnTt2hf+PAzj+Vjc5gwwSA4OZTBIlxSJlU8dkNTAYlOnOYLOxKLFcZruS4v4AZVDqDESuLO4GnbrvoJ9B/Xzdx+e+9/H9Ph7j1V2ve7/fd5+nDwEA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6vqoUqmcn58n5I29vr4mZ5gQws3NTaVSMQMAqK4YpNPppaWlwcHBJOROKpXKZrMJGeZNW1vbxsZGc7snCTN8iGOTJHYSIxnmLzs20HzFYrERL5vJZGr1yOfzjXuPk5OT1Wq1rnkauuZnZ2dfn6RBG3RxcVFLgEwmk8/n692dRhgYGEjIJLlcLpfLlcvlWmIkcKTJycmE7FetVjs7O8tkMsViMQnDJOckLy8v5/P5RB0baLqWarV6e3sb17V8ZGQkhLC3tzc9PV3XEyuVSqlUijcsZmdnHx8ft7a25ubmUqlUXc+9ubmJd5i7u7uxsbFMJrO5udnX11fXz4txbVChUFhYWIgwQwihVCqtrKzEHn+Xl5cXFxddXV0RtqlSqRwdHcU1yf7+ CHUYÊN ĐỀ BÀI TẬP HÌNH HỌC ... src=" 554 oq6uzlMDwK1EfMJI1UilUrNmzbq3fU73dt1MJrN+/frb7x4DANVFtcnlcvf8Gd+9XXcoPxEA1QUAQOmNMwIAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLruQSaTyWQypbq1XC5Xwlsbivb29lwuV8IplfDWAICij+3Zs2fsPNrx48d/+tOfvnTp0vz58ydPnjzUYh03bu7cuf/6r/9aklsbiv/8z/+cOXPmuHHjFixYMGHChCHe2vXr1z/96U+X6tYAgKJIoVCoygeWyWRqa2tv8w1nz55taGi4i0lFIre5tKmpadeuXcPwuFpbWzdt2nSbb+js7KyrqxupKQEAY6668vn81atXb9r47rvvLlmypLGxsbm5OZFI3G3GfXTjokWLpkyZcuDAgWFLk1wul81mb9rY1ta2devWpqamL33pS3f1uEo+JQBgzFXXgLq6uu67775SlUQ2m7106VIl7Apqb2+fN29eLBarwCkBAGOxugAARoojRwAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1XUvcrlcCW8tn8/n83mvoTKptPHmcjlPNwCqa7B+8IMf1NfXt7e3l+TWPvzww4ceeqi1tdU/xmUyf/78yhnvBx984OkGYCgihUKhKh9YNpvdvn37R7en0+kQQjKZ/Pa3v11XVzf4G0ylUh/deOrUqZ6enng83tLSMuA3MBrHe/sXTzwef/311+/qxQMAIYRotT6wT37yk2vXrr1p449+9KPiP5wbNmyYMWPGXd3gR2+tmAUhhI0bNy5evNiLaSgGHO/Fixd7enqWL18+zOMd8MXTV13PPffc3b54ACBU8b6uAR07dux73/vezp07Y7HY0G8tm82+8sorpbo1bpLL5bZs2dLc3JxIJCrh/rS3t588edLTDYDqAgCoaI4cAQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6hob8vn83r17c7lcqW5w3 759 mUym+gbV2tra1dV1b9c9duxYVc4EgDEoagSDlM1mPxpY77zzzsSJE5uamnbu3BmLxYZ4a9///vdra2sbGxubm5sTicRonFIul8tmsx/dnkwm7/i4Brzu9evXR/tMAKAoUigUTGEwUqlUOp2+1aWNjY2vvfZaNBotya0lk8mOjo67yrgK0draumnTpltdGo/H/+Vf/uVW8TSU6wKA6qpy9fX1c+fOLdVumL179x45cuTAgQMNDQ3VNKX29vYnn3yypaVl48aNgw/TvhTbuXPnvV0XAFRXlcjn81evXi3h3pf29vYq662irq6u2bNn31szZTIZ+7cAUF0AAAyWv2EEAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKrrXuRyOY8CTwQAqqvsLly4UF9f397ePqofRUtLSyqVymQyXr4j6+jRo54IAAYvUigUqvKBZbPZ7du3f3R7Op0OISSTyW9/+9t1dXXl+NGZTKampiYWi5XqBlOp1E0P7cSJEyGExsbGl 156 qaampqImX9wDdG8PfyjXHcodzmaziUSiyp4IACrNx/bs2VOtj61QKHz2Z40bN+6NN96Ix+N79+5dtmzZuHFl2dU3fvz4mTNnTps2bfbs2SX5ER9++GH/R/Huu+/+27/9WzKZbGpqmjVrVqWNfcKECdOnT//ggw8WLFgwYcKEu7ruuHHjPvGJT4wbN+4erjuUO7x06dIzZ87Mnz9/8uTJg38ibty4ce7cuXg8vnXr1gULFpTp5QRA1ajafV0Dam9v7+7u3rhxYzQaLckNZjKZ2traW10aj8f/6q/+as2aNaV9FPv27Xv44YcbGhoq4gUUidzm0qampl27dpXjumW6w9u2bXvppZcG/0Tcf//9JXw5AaC6uKV8Pn/16tWPbq+trY3H4y0tLVX/T/KAq5rWr1/f2dnZ1NS0c+fO23xcOOB1Fy1a1NPTc8frlvYOb9my5cSJE+X7oQCgusoVIh0dHWN2F0gul2tpabm3fMlms8ePHx/m0eXz+ebmZr0FgOoCAKgG1v8CAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFMDS9vb0Vck/ef/99TweguoCq9cUvfvErX/nKe++9N+L35NKlS4888sjBgwflF1BRIoVCwRSgmv8nj0T6f933v3ypvp42bdpnP/vZEEImk+nu7p40adKOHTt27 959 091Yvnz5G2+8Uab7EEK477775s+f3/efxZ+VSCQOHTq0dOlSLwNAdQFld/r06eH5QYcOHTpy5MjOnTt37NgxadKkmy596623rl+/PmyPetmyZYlEYs+ePU8//bTXAKC6gOrR29v7jW9845lnnpk6dWolhGYmk9FbgOoCABiLrKYHAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAhiJqBNxKPp//27/926p8aKlUyvMLgOqiUjQ3N//1X//14sWLVRcAqC7K6J133mlubhYoAFASkUKhYAoM/OKIRDo7O+vq6owCAIbOanoGls1mQwjxeNwoAEB1UUY9PT0hhJqaGqMAANVFGXV1dTU2NpoDAKguyqutra0q/3oRAFQXleXUqVMzZswwBwBQXZRRPp/v6emZM2eOUQCA6qKMrl69GkJIJBJGAQCqizLq6OhIJpPmAACqi/K6fPnysmXLzAEAVBfldebMmYULF5oDAJSQMwIx0MvCuYAAoNTs6+JmxXMBOWwEAKguyuvSpUshhFgsZhQAoLooo+7ubucCAgDVRdk5FxAAqC6Gg3MBAYDqouycCwgAVBellMlk6uvrv/a1r2Uymf7bnQsIAFQXpZHP51OpVG1t7Sc/+cnf+73fe/HFF/tf6lxAAKC6KI1oNDpr1qwrV6786Z/+aQghnU7ncrm+S50LCABUFyWza9euRCKxcOHCeDweQjh69GjfRc4FBACqixKLRqPPPfdcCOFrX/ta38YTJ044bAQAlIPzMI5p2Wx2ypQpIYTiWReL//n+++87MD0AlJx9XWNaTU3NypUrQwjf+ta3QgiXLl2Kx+OSCwBUF6W3Z8+eEMLLL7+cy+XOnz+/fPlyMwEA1UXp9V9T39HRYVEXAKguyqL/mvpTp049/PDDZgIA5WA1PT9dUx9CuHLligPTA0A52NfFT9fUB+cCAoCysa+LEELo6ur6/ve/P2PGjHnz5pkGAKguAIDRyieMAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQBQeaJGQBVLpVLpdNocGFBjY2Nra6s5AMMmUigUTIFqlc1mc7mcOTCgWCxWU1NjDoDqAgCoKtZ1wU+9+uqrkWqUSqXueSa//du/bSAAJWFfF/T7/yES+ed//udf+qVfqrLHdc8fpWWz2SlTprz55pv333+/gQAMkdX08BOZTCaEsGTJklgsZhpFPT09IYTPfe5zRgEwdD5hhJ949913QwiSq7+urq7GxkZzAFBdUErnz59XGDdpa2ubNWuWOQCoLiiljo6OxYsXm0N/Fy9eXLBggTkAqC4opVOnTs2YMcMc+uTz+c7Ozjlz5hgFgOqCUhZGT0+Pwujv6tWrIYQHH3zQKABUF5S4MBKJhFH0efvtt5PJZDTqL50BVBeUTkdHRzKZNIf+vve9782dO9ccAFQXlNLly5eXLVtmDv298847a9euNQcA1QWldObMmYULF5pDf+l0uq6uzhwAVBeU0okTJxRGf9lsNoQQj8eNAkB1QYkLw2Ej+iueC8jJCgFUF5TSpUuXgnMB/SznAgJQXVB63d3dCuMmzgUEoLqgLIXhXEA3OXXqlHMBAaguKH1hWNTVnyP1A6guUBjDwbmAAFQXlKswnAuov+KR+p0LCEB1wT1qb2+/VWGYSX+XL192LiAA1QX3IpPJpFKpJUuWPPPMM7lc7qbCGJvnAurq6komk48//vjGjRvz+Xz/i86cOeNcQACqC+4lL2pra0MIc+bMOXjw4KuvvnpTYYzBcwG1trYmk8lf//Vf/9GPfvR3f/d 358 6d63+pI/UDlEOkUCiYAmMhvOrq6lpbWzdt2hSPx997772f/j8QiXR2do61yMjlctlsNpFI7N27d/fu3StXrjx+/Hjxomw2O2XKlGvXrjkwPYDqgntPjYkTJ4YQzp4929DQ0FcY77///pg9MH3xc8YQQl9mtbe3L1myxDsDQMn5hJExJBaLFY9Bv3///uIW5wKqq6srVtcrr7xS3OJI/QCqC0rg+eefDyGk0+nimnqFEUL43d/93f7V5Uj9AKoLSqChoSEej4cQimvqFUYIYf369SGEnp6e4lEkHKkfQHVBafzBH/xBCOGP/uiPFEZRLBbbtm1bCGH//v2O1A9QPlbTM+b0rak/f/78ww8/fOXKFQem71tTf/Hixblz53pbACgH+7oYc/rW1L/00kvBuYBCCCHU1dUVP3j9+te/PpaP1A+guqDEimvqDx069Mu//MumUVT84PXIkSNj80j9AKoLyqJvTX19fb1pFH35y18OIeTz+dmzZ5sGQDlY18UYlc1mP/WpT0WjUaPok8lkfN4KoLoAAEY3nzACAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAGElRI2CQ3nnnnV27dkWjXjOMAq2trYYAqC5Gq9/4jd9YunTp4sWLjQIA7kGkUCiYAoN6rUQiV65cSSQSRgEA98C6LgYlk8mEEGpqaowCAFQXZfTuu+/G4/FYLGYUAKC6KKPz588vX77cHABAdVFeHR0d1tEDgOqi7E6dOjVjxgxzAADVRRnl8/menp45c+YYBQCoLsro6tWrIQTHjAAA1UV5dXR0JJNJcwAA1UV5Xb58edmyZeYAAKqL8jpz5szChQvNAQCGwhmBGMSrJBLp7Oysq6szCgC4Z/Z1cQfZbDaEEI/HjQIAVBdl1NPTE5yBEQBUF+XW1dXV2NhoDgCguiivtra2WbNmmQMAqC7K6+LFizNnzjQHABgif8PInV4ikciVK1ccmB4Ahsi+Lm4nk8mEEB588EGjAADVRQnk8/ljx47l8/mbtr/99tvxeDwajRoRAKguhqqrq2v+/PmbNm2aO3duV1dX/4t+8IMfLF++3IgAQHUxVNlsNplMbtiw4bHHHrt06dK3vvWt/pd2dHSsXbvWlABg6KymJ2Sz2Zqamvb29iVLloQQ3n///Vgs9pPXRyRy9uzZhoYGUwKAIbKvi58cd37hwoXF0/6cPn26uD2Xy4UQfv7nf96IAEB1UTLRaPS 555 4LIfz+7/9+cUvxDIyOGQEAqosS+9KXvhRC6OzsLPZWR0fHypUrjQUAVBcllkgkkslkCOGVV14JIZw7d27OnDnGAgCqi9L74z/+42J15fP5t99+e+HChWYCACXhbxj5GblcbuLEiSGEs2fPLlmypLOzs66uzlgAYOjs6+JnxGKxbdu2hRD+7M/+LIQwY8YMMwGAkrCvi5v1HbgrhODlAQClYl8XN2toaCgeuGvp0qWmAQClYl8XA+jq6vrxj39cW1tbPIAqAKC6AABGB58wAgCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AGAgBw8ePH36tLvK2BE1AgCGQVNT001b3nzzzX/8x39ct27dN7/5zenTp7urVD37ugAYSfPnzx8tHTOK7iqVKVIoFEwBgOH393//97/6q786depUdxXVBQBAyfiEEQBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKgugNEtEolEIhFzANUFAIDqAgBQXQAAqC4AgDFfXb29vS+88EJ3d/fYfA7eeuutpqam3t5eL0cAqGKRQqEwnD+vqalpwO2HDh3KZDKbN29ubm6eOnVqtY67u7v70KFDH92+Z8+eyZMn/+Ef/uFXvvIVL0qo/nfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZUcXKFECZMmPDRCfzP//zPfffd99RTT61Zs8YrEqCscrlcLBYzB0bmN65K+GWrt7f3woULS5cuHZvPwVtvvTV58uTp06d7OcJYeee1r2vk7Nu3r6Ojo7m5OZFImAZjsboAVBfDI5fLTZw4MYTQ2Niovcoqm80eP 358 48aN0WjUNFQXgOqqtn/mt2/ffsdvS6fTfV9rr7Kqr6+/du1aS0uL9lJdAKqrqmQymdra2ru6Sjweb2lpSaVSpnfPM+/o6LjVpa+++uqJEyf65qy9VBeA6hpD8vn8Qw891NPTowNKorW1ddOmTYP85pUrVx4/fnwsj8tLDYAx5Ny5cyGEw4cP662SWL9+/ZUrV 251 6Z//+Z+//PLLIYRkMnngwIGGhoax/huXX7YAhvud176ukdPe3j5v3jwHjxge9fX1IQS9pboAVBeUkb9hVF0AqgsYGc5+DQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXYPS29v7wgsvdHd3j83n4NKlS01NTb29vV6OAFDFIoVCYTh/XlNT04DbDx06lMlkNm/e3NzcPHXq1Cqe+IAT2LNnz+TJk3fs2LFjx45JkyZ5XUKVv/NGIiGEYX77BUZcdJh/3rRp0wbcfuPGjXXr1m3YsKG6k2vACeRyufvuu++pp55at26d5AKAqv2NqxJ+2ert7b1w4cLSpUvH5nNw6dKlj3/849OnT/dyhLHyzmtfF6guAFQXUCb+hhEAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgCgqqurt7f3hRde6O7u9nyUZJhNTU29vb1GAQAVJVIoFIbz5zU1NQ24/dChQ5lMZvPmzc3NzVOnTvXEDGWef/mXf/nBBx/s2LFjx44dkyZNMiWouHfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZIrqHPc/z48U899dS6deskFwBU0G9clfDLVm9v74ULF5YuXer5KMkw/+M//uNzn/ucUUDlvvPa1wWqCwDVBZSJv2EEAFBdAACqCwAA1QUAAzh27Fgmk3+0TNAAABOrSURBVDEHVBcAlNekSZNqa2tTqZT2Krd8Pm8IN/E3jADD/s7rbxjL9s/81atX7/httbW1xS8aGxubm5sTiYTRlUMul1u8ePGBAwcaGhpMQ3UBqK6qkslk+opq8LZt2/bSSy+ZXjmkUql0Op1MJrWX6gJQXVUll8sdPXr0jt+2c+fOnp6eEEI8Hm9padm4cWM0GjW9e9Pe3r5///5bXXrx4sXOzs7i19orDP8ZgQCgTGKxWCqVuv33ZLPZnp4evVUq3d3d6XR6MN 957 dq17u7uMV5d9nUBDPs7r31dI2fv3r3333//s88+q7eGZ9q7d+/WuKoLQHVBGeVyuZkzZ+ot1QWguqC8ikeO0FuqC0B1AcPNUVIBAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAIyi6srn8/l83tMDAKiu8opGo/Pnz29tbdVeAIDqKq8tW7Zs2rTpoYce0l7lduzYsUwmYw4AUFaRQqEw/D913 759 HR0dt/+ebDZ74sSJ4tfxeLylpWXjxo3RaNRzVnJdXV3JZLKxsbG5uTmRSBgIlP2dNxIJIYzI2y8w5qorlUql0+m7ukoymTx69KgmuGetra23uXTTpk3FL7QXqC6gqqprMNrb25csWVLsrQMHDjQ0NHi2hv4uP0hnz541cFBdwFiprlWrVl27dk1vlcrtV24tWrSop6cnhNDY2Hjw4MFYLGZioLqAMVFd+Xz+3Llzemt4WNcFqgsYu9XFcDp27NicOXP0FqguQHUBqC5g1HNGIAAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQAwmkWNAADGgkwm09HRccdvmz59ekNDg3ENclyLFy9OJBKqCwD4qddee2337t13/LbGxkbVFUJ48cUX0+n0Hb/t8OHDg6+uSKFQMFmA4RSJREII3n5LqKmpacDthw4dymQymzdvbm5unjp16hifUn19/WOPPVYoFObNm3f77yzf7q62trY333zzpo1vvPHGG2+8sWzZsj179ixdurRy/j/9nd/5nQcffLCmpub23zn43V32dQFQzRKJxLJlyyRXLpfr7Oz84he/+PTTT98xI4bf5MmTly1bdsccHDaZTCaEMH78+Oeffz4aLVksqS4ARr0BPzjr7e291UVj0IULF0II169fH9nkWrt27dq1az+6/Tvf+c6kSZMqZ1zFFV0TJkwoYXKpLgCq1qRJkyRXn5MnTyaTyQkTJoyWaB5ZbW1tK1aseOCBB0p7s44cAQDV78iRI4899tiCBQuMYjDS6fSv/MqvlHyRmeoCgCpXXNRVU1PzyCOPmMYdFRd1hRBmz56tugCAu1Bc1DVu3LgKXEdfgcq0qEt1AUD1q+RFXRWoTIu6VBcAVL/ioq6HH37YKAYjnU6vWrWqHEcOU10AUM36FnVVztGwKllxUdeHH35Y8kVdqgsAqlzfoq5YLGYad9R37sWSL+pSXQBQ5SzquittbW2f//zn77///nLcuOoCgGpmUdddSafT8+bNK9PpIFUXAFQti7ruSlkXdakuAKiSXNi+fXs+n79pu0VdA+rq6hpwXGVd1BWchxEARrVcLrdly5Z0Oh1C+N///d99+/b1v9Siro/m6Ysvvlgc1y/8wi9s27at/6VlXdQV7OsCgFGtpaVl9erVxRNI79+/v6urq/+lR44cWbFihUVdfV577bXGxsYNGzaEELZv3 953 8p+isi7qUl0AMLrt2rXrYx/72Fe/+tXibpsVK1b0fXBWXNT1cz/3cxZ13TSuv/mbv1m5cmUI4dd+7df6xlXuRV2qCwBGvVQqFYvFWlpa4vF4NpvduXNncXtxUVc+n7eoq781a9bEYrHW1tYQwttvv/0Xf/EXxe3lXtSlugCgSkSj0ddffz2E8PLLLxc/Z7So6zZqamoOHz4cQti6dWtxL1e5F3WpLgCoHnV1dcXPGVetWpXP54uLulasWGEyA0qlUsXPGR9//PF8Pl/uRV2qCwCqSvFzxh/+8IerV6+2qOuOip8zdnV1rV69OpR5UZfqAoCq0vc544kTJ4JFXXdSU1Pz3e9+t29coZyLulQXAFSbvs8Z6+rqLOq6ozVr1jQ2NoYQyr2oKzhKKgBUn5aWlqtXr8ZiMYu6BuPgwYO5XO5Tn/rU2rVry/qD7OsCgGoTjUaPHDkyY8YMi7oGIxaLHT16dMaMGYlEoqw/KFIoFIwbYDhFIpEQgrdfGGvs6wIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAKr668vl8a2trPp/3DAEAqquMotFoW1vbQw89pL2GQS6XMwQAKLdIoVAY/p+azWbv+C99W1vb1q1bQwjxeLylpWXjxo3RaNQTVg779u3r6Ohobm5OJBKmAcPxzhuJhBBG5O0XGHPVlUql0un0XV0lHo+//vrrdXV1nrOSy+VyEydODCE0NjZqL1BdQFVVV3t7e3d39+2 /5/ Lly7t37y5+nUwmDxw40NDQ4AkbSune5tJTp0719PQUv9ZeoLqAchiZz+waGhrumFB79+7VWyV0tzsXAYBqqK47yufzZ86cOXv2rN4qldv8Vu0TRoAqcPvPNPq0traO2RHlcrktW7aM4JQqtLqi0ejx48f9LzQ8jh49mkwmjx49qreAatLb2/ud73zn6aefHgsPNpPJpNPpxx9/fDDfOZzv9m+99db169eXLl1aCVO6cOHCyE7JXwUSVq1aNcjfkAAq08GDBwfc3tLS8uKLLz7zzDPPP//8Aw88UMUT6OjoiMfjixYt+vznPz9S9+G9995ra2v76Pbf+q3fevTRR7/61a+uXbt2ZKd08uTJlStXjuCUVBehpqbGEIBR7b/+678G3P7hhx9OmDAhkUhUd3KFENra2p588snPfOYzI/ipxY0bNwZ8IgqFwqRJkyrhKARHjhxpbGx89NFHR2pKEX9EAzDc77z+hnFY9Pb2fuMb3+j7c/gqls/nx48f/yd/8idPPvlkpa0VOX369PXr19evXz/i96S4iHn//v1PP/10LBYbkftgXxcA1WnSpEljIblCCP/+7/8eQshmsxW4PLdCVnSFEC5cuBBCuHbt2kglV3D2awAY7U6fPh2Px0cwJkaF4qKuceNGsnxUFwCMbkePHn3iiSdmzpxpFLdx5MiRRx99dMWKFaoLALgX+Xz+xIkTM2bMWLx4sWncSi6X6+zs/PjHPz5v3jzVBQDci0pe1FU5iou6fvzjH4/s57CqCwBGMYu6BqMSFnWpLgAY3SzqGoxKWNSlugBgFLOoazAqZFGX6gKAUcyirsGokEVdqgsARjGLugajQhZ1qS4AGMUs6hqMClnUpboAoNJlMplUKrVv376btlvU1V9XV1d9ff2xY8du2l45i7pUFwBUrlwul0qlFi1alE6nt27dmslk+l9aXNSVz+fH+KKubDabSqWSyWRnZ+cXvvCFXC7X/9LKWdSlugCgoq1evfrrX//6jBkzQgjr1q3rf1FxUdfEiRO16erVq3fv3v2Zz3zmv//7v7/85S/3v7S4qOuBBx6ohLsaKRQKXtMAw/rOG4mEELz9MhjZbLb4xZQpU0IIhw8fTqVSxS2rVq36xV/8xbVr165Zs2aMTymTydTU1GSz2dra2hDCd7/73b6Z1NfXb9iw4Yknnqirqxvx+2lfFwBUrpr/d/jw4RDCpk2bih3Wt6jrkUceMaVEIhGLxRKJxDe/+c0QwubNm4ufM/Yt6po9e3Yl3E/VBQCjQCqVWrlyZQihsbEx9FvUVVNTYzh9nn322WQymc1mt2zZEv5/UdcnPvGJaDSqugCAwWptbQ0hnDx5srW11aKuAUWj0aNHj4YQ0un0sWPHKudIXaoLAEaT/p8zHjx48Iknniiusqe/vs8Zf/M3f7N4pK6lS5eqLgDg7qRSqeLRPjs7Oy3qupVnn322rq7uhz/8YUUt6lJdADDKpNPp4hcWdd1KNBr9h3/4h+LXlbOoS3UBwChTU1PT2dm5YcOGCRMmmMatJBKJs2fPfuELX6ioe+V4XQDD/s7reF0MWS6X+6d/+qcnn3zSKG6ju7s7l8vNmTNHdQGoLmAM8QkjAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAqlmkUCiYAgBAudnXBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAv6vnTt2hf+PAzj+Vjc5gwwSA4OZTBIlxSJlU8dkNTAYlOnOYLOxKLFcZruS4v4AZVDqDESuLO4GnbrvoJ9B/Xzdx+e+9/H9Ph7j1V2ve7/fd5+nDwEA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6vqoUqmcn58n5I29vr4mZ5gQws3NTaVSMQMAqK4YpNPppaWlwcHBJOROKpXKZrMJGeZNW1vbxsZGc7snCTN8iGOTJHYSIxnmLzs20HzFYrERL5vJZGr1yOfzjXuPk5OT1Wq1rnkauuZnZ2dfn6RBG3RxcVFLgEwmk8/n692dRhgYGEjIJLlcLpfLlcvlWmIkcKTJycmE7FetVjs7O8tkMsViMQnDJOckLy8v5/P5RB0baLqWarV6e3sb17V8ZGQkhLC3tzc9PV3XEyuVSqlUijcsZmdnHx8ft7a25ubmUqlUXc+9ubmJd5i7u7uxsbFMJrO5udnX11fXz4txbVChUFhYWIgwQwihVCqtrKzEHn+Xl5cXFxddXV0RtqlSqRwdHcU1yf7+ ... src=" 554 oq6uzlMDwK1EfMJI1UilUrNmzbq3fU73dt1MJrN+/frb7x4DANVFtcnlcvf8Gd+9XXcoPxEA1QUAQOmNMwIAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLruQSaTyWQypbq1XC5Xwlsbivb29lwuV8IplfDWAICij+3Zs2fsPNrx48d/+tOfvnTp0vz58ydPnjzUYh03bu7cuf/6r/9aklsbiv/8z/+cOXPmuHHjFixYMGHChCHe2vXr1z/96U+X6tYAgKJIoVCoygeWyWRqa2tv8w1nz55taGi4i0lFIre5tKmpadeuXcPwuFpbWzdt2nSbb+js7KyrqxupKQEAY6668vn81atXb9r47rvvLlmypLGxsbm5OZFI3G3GfXTjokWLpkyZcuDAgWFLk1wul81mb9rY1ta2devWpqamL33pS3f1uEo+JQBgzFXXgLq6uu67775SlUQ2m7106VIl7Apqb2+fN29eLBarwCkBAGOxugAARoojRwAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1XUvcrlcCW8tn8/n83mvoTKptPHmcjlPNwCqa7B+8IMf1NfXt7e3l+TWPvzww4ceeqi1tdU/xmUyf/78yhnvBx984OkGYCgihUKhKh9YNpvdvn37R7en0+kQQjKZ/Pa3v11XVzf4G0ylUh/deOrUqZ6enng83tLSMuA3MBrHe/sXTzwef/311+/qxQMAIYRotT6wT37yk2vXrr1p449+9KPiP5wbNmyYMWPGXd3gR2+tmAUhhI0bNy5evNiLaSgGHO/Fixd7enqWL18+zOMd8MXTV13PPffc3b54ACBU8b6uAR07dux73/vezp07Y7HY0G8tm82+8sorpbo1bpLL5bZs2dLc3JxIJCrh/rS3t588edLTDYDqAgCoaI4cAQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6hob8vn83r17c7lcqW5w3 759 mUym+gbV2tra1dV1b9c9duxYVc4EgDEoagSDlM1mPxpY77zzzsSJE5uamnbu3BmLxYZ4a9///vdra2sbGxubm5sTicRonFIul8tmsx/dnkwm7/i4Brzu9evXR/tMAKAoUigUTGEwUqlUOp2+1aWNjY2vvfZaNBotya0lk8mOjo67yrgK0draumnTpltdGo/H/+Vf/uVW8TSU6wKA6qpy9fX1c+fOLdVumL179x45cuTAgQMNDQ3VNKX29vYnn3yypaVl48aNgw/TvhTbuXPnvV0XAFRXlcjn81evXi3h3pf29vYq662irq6u2bNn31szZTIZ+7cAUF0AAAyWv2EEAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKrrXuRyOY8CTwQAqqvsLly4UF9f397ePqofRUtLSyqVymQyXr4j6+jRo54IAAYvUigUqvKBZbPZ7du3f3R7Op0OISSTyW9/+9t1dXXl+NGZTKampiYWi5XqBlOp1E0P7cSJEyGExsbGl 156 qaampqImX9wDdG8PfyjXHcodzmaziUSiyp4IACrNx/bs2VOtj61QKHz2Z40bN+6NN96Ix+N79+5dtmzZuHFl2dU3fvz4mTNnTps2bfbs2SX5ER9++GH/R/Huu+/+27/9WzKZbGpqmjVrVqWNfcKECdOnT//ggw8WLFgwYcKEu7ruuHHjPvGJT4wbN+4erjuUO7x06dIzZ87Mnz9/8uTJg38ibty4ce7cuXg8vnXr1gULFpTp5QRA1ajafV0Dam9v7+7u3rhxYzQaLckNZjKZ2traW10aj8f/6q/+as2aNaV9FPv27Xv44YcbGhoq4gUUidzm0qampl27dpXjumW6w9u2bXvppZcG/0Tcf//9JXw5AaC6uKV8Pn/16tWPbq+trY3H4y0tLVX/T/KAq5rWr1/f2dnZ1NS0c+fO23xcOOB1Fy1a1NPTc8frlvYOb9my5cSJE+X7oQCgusoVIh0dHWN2F0gul2tpabm3fMlms8ePHx/m0eXz+ebmZr0FgOoCAKgG1v8CAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFMDS9vb0Vck/ef/99TweguoCq9cUvfvErX/nKe++9N+L35NKlS4888sjBgwflF1BRIoVCwRSgmv8nj0T6f933v3ypvp42bdpnP/vZEEImk+nu7p40adKOHTt27 959 091Yvnz5G2+8Uab7EEK477775s+f3/efxZ+VSCQOHTq0dOlSLwNAdQFld/r06eH5QYcOHTpy5MjOnTt37NgxadKkmy596623rl+/PmyPetmyZYlEYs+ePU8//bTXAKC6gOrR29v7jW9845lnnpk6dWolhGYmk9FbgOoCABiLrKYHAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAhiJqBNxKPp//27/926p8aKlUyvMLgOqiUjQ3N//1X//14sWLVRcAqC7K6J133mlubhYoAFASkUKhYAoM/OKIRDo7O+vq6owCAIbOanoGls1mQwjxeNwoAEB1UUY9PT0hhJqaGqMAANVFGXV1dTU2NpoDAKguyqutra0q/3oRAFQXleXUqVMzZswwBwBQXZRRPp/v6emZM2eOUQCA6qKMrl69GkJIJBJGAQCqizLq6OhIJpPmAACqi/K6fPnysmXLzAEAVBfldebMmYULF5oDAJSQMwIx0MvCuYAAoNTs6+JmxXMBOWwEAKguyuvSpUshhFgsZhQAoLooo+7ubucCAgDVRdk5FxAAqC6Gg3MBAYDqouycCwgAVBellMlk6uvrv/a1r2Uymf7bnQsIAFQXpZHP51OpVG1t7Sc/+cnf+73fe/HFF/tf6lxAAKC6KI1oNDpr1qwrV6786Z/+aQghnU7ncrm+S50LCABUFyWza9euRCKxcOHCeDweQjh69GjfRc4FBACqixKLRqPPPfdcCOFrX/ta38YTJ044bAQAlIPzMI5p2Wx2ypQpIYTiWReL//n+++87MD0AlJx9XWNaTU3NypUrQwjf+ta3QgiXLl2Kx+OSCwBUF6W3Z8+eEMLLL7+cy+XOnz+/fPlyMwEA1UXp9V9T39HRYVEXAKguyqL/mvpTp049/PDDZgIA5WA1PT9dUx9CuHLligPTA0A52NfFT9fUB+cCAoCysa+LEELo6ur6/ve/P2PGjHnz5pkGAKguAIDRyieMAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQBQeaJGQBVLpVLpdNocGFBjY2Nra6s5AMMmUigUTIFqlc1mc7mcOTCgWCxWU1NjDoDqAgCoKtZ1wU+9+uqrkWqUSqXueSa//du/bSAAJWFfF/T7/yES+ed//udf+qVfqrLHdc8fpWWz2SlTprz55pv333+/gQAMkdX08BOZTCaEsGTJklgsZhpFPT09IYTPfe5zRgEwdD5hhJ949913QwiSq7+urq7GxkZzAFBdUErnz59XGDdpa2ubNWuWOQCoLiiljo6OxYsXm0N/Fy9eXLBggTkAqC4opVOnTs2YMcMc+uTz+c7Ozjlz5hgFgOqCUhZGT0+Pwujv6tWrIYQHH3zQKABUF5S4MBKJhFH0efvtt5PJZDTqL50BVBeUTkdHRzKZNIf+vve9782dO9ccAFQXlNLly5eXLVtmDv298847a9euNQcA1QWldObMmYULF5pDf+l0uq6uzhwAVBeU0okTJxRGf9lsNoQQj8eNAkB1QYkLw2Ej+iueC8jJCgFUF5TSpUuXgnMB/SznAgJQXVB63d3dCuMmzgUEoLqgLIXhXEA3OXXqlHMBAaguKH1hWNTVnyP1A6guUBjDwbmAAFQXlKswnAuov+KR+p0LCEB1wT1qb2+/VWGYSX+XL192LiAA1QX3IpPJpFKpJUuWPPPMM7lc7qbCGJvnAurq6komk48//vjGjRvz+Xz/i86cOeNcQACqC+4lL2pra0MIc+bMOXjw4KuvvnpTYYzBcwG1trYmk8lf//Vf/9GPfvR3f/d 358 6d63+pI/UDlEOkUCiYAmMhvOrq6lpbWzdt2hSPx997772f/j8QiXR2do61yMjlctlsNpFI7N27d/fu3StXrjx+/Hjxomw2O2XKlGvXrjkwPYDqgntPjYkTJ4YQzp4929DQ0FcY77///pg9MH3xc8YQQl9mtbe3L1myxDsDQMn5hJExJBaLFY9Bv3///uIW5wKqq6srVtcrr7xS3OJI/QCqC0rg+eefDyGk0+nimnqFEUL43d/93f7V5Uj9AKoLSqChoSEej4cQimvqFUYIYf369SGEnp6e4lEkHKkfQHVBafzBH/xBCOGP/uiPFEZRLBbbtm1bCGH//v2O1A9QPlbTM+b0rak/f/78ww8/fOXKFQem71tTf/Hixblz53pbACgH+7oYc/rW1L/00kvBuYBCCCHU1dUVP3j9+te/PpaP1A+guqDEimvqDx069Mu//MumUVT84PXIkSNj80j9AKoLyqJvTX19fb1pFH35y18OIeTz+dmzZ5sGQDlY18UYlc1mP/WpT0WjUaPok8lkfN4KoLoAAEY3nzACAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAGElRI2CQ3nnnnV27dkWjXjOMAq2trYYAqC5Gq9/4jd9YunTp4sWLjQIA7kGkUCiYAoN6rUQiV65cSSQSRgEA98C6LgYlk8mEEGpqaowCAFQXZfTuu+/G4/FYLGYUAKC6KKPz588vX77cHABAdVFeHR0d1tEDgOqi7E6dOjVjxgxzAADVRRnl8/menp45c+YYBQCoLsro6tWrIQTHjAAA1UV5dXR0JJNJcwAA1UV5Xb58edmyZeYAAKqL8jpz5szChQvNAQCGwhmBGMSrJBLp7Oysq6szCgC4Z/Z1cQfZbDaEEI/HjQIAVBdl1NPTE5yBEQBUF+XW1dXV2NhoDgCguiivtra2WbNmmQMAqC7K6+LFizNnzjQHABgif8PInV4ikciVK1ccmB4Ahsi+Lm4nk8mEEB588EGjAADVRQnk8/ljx47l8/mbtr/99tvxeDwajRoRAKguhqqrq2v+/PmbNm2aO3duV1dX/4t+8IMfLF++3IgAQHUxVNlsNplMbtiw4bHHHrt06dK3vvWt/pd2dHSsXbvWlABg6KymJ2Sz2Zqamvb29iVLloQQ3n///Vgs9pPXRyRy9uzZhoYGUwKAIbKvi58cd37hwoXF0/6cPn26uD2Xy4UQfv7nf96IAEB1UTLRaPS 555 4LIfz+7/9+cUvxDIyOGQEAqosS+9KXvhRC6OzsLPZWR0fHypUrjQUAVBcllkgkkslkCOGVV14JIZw7d27OnDnGAgCqi9L74z/+42J15fP5t99+e+HChWYCACXhbxj5GblcbuLEiSGEs2fPLlmypLOzs66uzlgAYOjs6+JnxGKxbdu2hRD+7M/+LIQwY8YMMwGAkrCvi5v1HbgrhODlAQClYl8XN2toaCgeuGvp0qWmAQClYl8XA+jq6vrxj39cW1tbPIAqAKC6AABGB58wAgCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AGAgBw8ePH36tLvK2BE1AgCGQVNT001b3nzzzX/8x39ct27dN7/5zenTp7urVD37ugAYSfPnzx8tHTOK7iqVKVIoFEwBgOH393//97/6q786depUdxXVBQBAyfiEEQBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKgugNEtEolEIhFzANUFAIDqAgBQXQAAqC4AgDFfXb29vS+88EJ3d/fYfA7eeuutpqam3t5eL0cAqGKRQqEwnD+vqalpwO2HDh3KZDKbN29ubm6eOnVqtY67u7v70KFDH92+Z8+eyZMn/+Ef/uFXvvIVL0qo/nfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZUcXKFECZMmPDRCfzP//zPfffd99RTT61Zs8YrEqCscrlcLBYzB0bmN65K+GWrt7f3woULS5cuHZvPwVtvvTV58uTp06d7OcJYeee1r2vk7Nu3r6Ojo7m5OZFImAZjsboAVBfDI5fLTZw4MYTQ2Niovcoqm80eP 358 48aN0WjUNFQXgOqqtn/mt2/ffsdvS6fTfV9rr7Kqr6+/du1aS0uL9lJdAKqrqmQymdra2ru6Sjweb2lpSaVSpnfPM+/o6LjVpa+++uqJEyf65qy9VBeA6hpD8vn8Qw891NPTowNKorW1ddOmTYP85pUrVx4/fnwsj8tLDYAx5Ny5cyGEw4cP662SWL9+/ZUrV 251 6Z//+Z+//PLLIYRkMnngwIGGhoax/huXX7YAhvud176ukdPe3j5v3jwHjxge9fX1IQS9pboAVBeUkb9hVF0AqgsYGc5+DQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXYPS29v7wgsvdHd3j83n4NKlS01NTb29vV6OAFDFIoVCYTh/XlNT04DbDx06lMlkNm/e3NzcPHXq1Cqe+IAT2LNnz+TJk3fs2LFjx45JkyZ5XUKVv/NGIiGEYX77BUZcdJh/3rRp0wbcfuPGjXXr1m3YsKG6k2vACeRyufvuu++pp55at26d5AKAqv2NqxJ+2ert7b1w4cLSpUvH5nNw6dKlj3/849OnT/dyhLHyzmtfF6guAFQXUCb+hhEAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgCgqqurt7f3hRde6O7u9nyUZJhNTU29vb1GAQAVJVIoFIbz5zU1NQ24/dChQ5lMZvPmzc3NzVOnTvXEDGWef/mXf/nBBx/s2LFjx44dkyZNMiWouHfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZIrqHPc/z48U899dS6deskFwBU0G9clfDLVm9v74ULF5YuXer5KMkw/+M//uNzn/ucUUDlvvPa1wWqCwDVBZSJv2EEAFBdAACqCwAA1QUAAzh27Fgmk3+0TNAAABOrSURBVDEHVBcAlNekSZNqa2tTqZT2Krd8Pm8IN/E3jADD/s7rbxjL9s/81atX7/httbW1xS8aGxubm5sTiYTRlUMul1u8ePGBAwcaGhpMQ3UBqK6qkslk+opq8LZt2/bSSy+ZXjmkUql0Op1MJrWX6gJQXVUll8sdPXr0jt+2c+fOnp6eEEI8Hm9padm4cWM0GjW9e9Pe3r5///5bXXrx4sXOzs7i19orDP8ZgQCgTGKxWCqVuv33ZLPZnp4evVUq3d3d6XR6MN 957 dq17u7uMV5d9nUBDPs7r31dI2fv3r3333//s88+q7eGZ9q7d+/WuKoLQHVBGeVyuZkzZ+ot1QWguqC8ikeO0FuqC0B1AcPNUVIBAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAIyi6srn8/l83tMDAKiu8opGo/Pnz29tbdVeAIDqKq8tW7Zs2rTpoYce0l7lduzYsUwmYw4AUFaRQqEw/D913 759 HR0dt/+ebDZ74sSJ4tfxeLylpWXjxo3RaNRzVnJdXV3JZLKxsbG5uTmRSBgIlP2dNxIJIYzI2y8w5qorlUql0+m7ukoymTx69KgmuGetra23uXTTpk3FL7QXqC6gqqprMNrb25csWVLsrQMHDjQ0NHi2hv4uP0hnz541cFBdwFiprlWrVl27dk1vlcrtV24tWrSop6cnhNDY2Hjw4MFYLGZioLqAMVFd+Xz+3Llzemt4WNcFqgsYu9XFcDp27NicOXP0FqguQHUBqC5g1HNGIAAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQAwmkWNAADGgkwm09HRccdvmz59ekNDg3ENclyLFy9OJBKqCwD4qddee2337t13/LbGxkbVFUJ48cUX0+n0Hb/t8OHDg6+uSKFQMFmA4RSJREII3n5LqKmpacDthw4dymQymzdvbm5unjp16hifUn19/WOPPVYoFObNm3f77yzf7q62trY333zzpo1vvPHGG2+8sWzZsj179ixdurRy/j/9nd/5nQcffLCmpub23zn43V32dQFQzRKJxLJlyyRXLpfr7Oz84he/+PTTT98xI4bf5MmTly1bdsccHDaZTCaEMH78+Oeffz4aLVksqS4ARr0BPzjr7e291UVj0IULF0II169fH9nkWrt27dq1az+6/Tvf+c6kSZMqZ1zFFV0TJkwoYXKpLgCq1qRJkyRXn5MnTyaTyQkTJoyWaB5ZbW1tK1aseOCBB0p7s44cAQDV78iRI4899tiCBQuMYjDS6fSv/MqvlHyRmeoCgCpXXNRVU1PzyCOPmMYdFRd1hRBmz56tugCAu1Bc1DVu3LgKXEdfgcq0qEt1AUD1q+RFXRWoTIu6VBcAVL/ioq6HH37YKAYjnU6vWrWqHEcOU10AUM36FnVVztGwKllxUdeHH35Y8kVdqgsAqlzfoq5YLGYad9R37sWSL+pSXQBQ5SzquittbW2f//zn77///nLcuOoCgGpmUdddSafT8+bNK9PpIFUXAFQti7ruSlkXdakuAKiSXNi+fXs+n79pu0VdA+rq6hpwXGVd1BWchxEARrVcLrdly5Z0Oh1C+N///d99+/b1v9Siro/m6Ysvvlgc1y/8wi9s27at/6VlXdQV7OsCgFGtpaVl9erVxRNI79+/v6urq/+lR44cWbFihUVdfV577bXGxsYNGzaEELZv3 953 8p+isi7qUl0AMLrt2rXrYx/72Fe/+tXibpsVK1b0fXBWXNT1cz/3cxZ13TSuv/mbv1m5cmUI4dd+7df6xlXuRV2qCwBGvVQqFYvFWlpa4vF4NpvduXNncXtxUVc+n7eoq781a9bEYrHW1tYQwttvv/0Xf/EXxe3lXtSlugCgSkSj0ddffz2E8PLLLxc/Z7So6zZqamoOHz4cQti6dWtxL1e5F3WpLgCoHnV1dcXPGVetWpXP54uLulasWGEyA0qlUsXPGR9//PF8Pl/uRV2qCwCqSvFzxh/+8IerV6+2qOuOip8zdnV1rV69OpR5UZfqAoCq0vc544kTJ4JFXXdSU1Pz3e9+t29coZyLulQXAFSbvs8Z6+rqLOq6ozVr1jQ2NoYQyr2oKzhKKgBUn5aWlqtXr8ZiMYu6BuPgwYO5XO5Tn/rU2rVry/qD7OsCgGoTjUaPHDkyY8YMi7oGIxaLHT16dMaMGYlEoqw/KFIoFIwbYDhFIpEQgrdfGGvs6wIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAKr668vl8a2trPp/3DAEAqquMotFoW1vbQw89pL2GQS6XMwQAKLdIoVAY/p+azWbv+C99W1vb1q1bQwjxeLylpWXjxo3RaNQTVg779u3r6Ohobm5OJBKmAcPxzhuJhBBG5O0XGHPVlUql0un0XV0lHo+//vrrdXV1nrOSy+VyEydODCE0NjZqL1BdQFVVV3t7e3d39+2 /5/ Lly7t37y5+nUwmDxw40NDQ4AkbSune5tJTp0719PQUv9ZeoLqAchiZz+waGhrumFB79+7VWyV0tzsXAYBqqK47yufzZ86cOXv2rN4qldv8Vu0TRoAqcPvPNPq0traO2RHlcrktW7aM4JQqtLqi0ejx48f9LzQ8jh49mkwmjx49qreAatLb2/ud73zn6aefHgsPNpPJpNPpxx9/fDDfOZzv9m+99db169eXLl1aCVO6cOHCyE7JXwUSVq1aNcjfkAAq08GDBwfc3tLS8uKLLz7zzDPPP//8Aw88UMUT6OjoiMfjixYt+vznPz9S9+G9995ra2v76Pbf+q3fevTRR7/61a+uXbt2ZKd08uTJlStXjuCUVBehpqbGEIBR7b/+678G3P7hhx9OmDAhkUhUd3KFENra2p588snPfOYzI/ipxY0bNwZ8IgqFwqRJkyrhKARHjhxpbGx89NFHR2pKEX9EAzDc77z+hnFY9Pb2fuMb3+j7c/gqls/nx48f/yd/8idPPvlkpa0VOX369PXr19evXz/i96S4iHn//v1PP/10LBYbkftgXxcA1WnSpEljIblCCP/+7/8eQshmsxW4PLdCVnSFEC5cuBBCuHbt2kglV3D2awAY7U6fPh2Px0cwJkaF4qKuceNGsnxUFwCMbkePHn3iiSdmzpxpFLdx5MiRRx99dMWKFaoLALgX+Xz+xIkTM2bMWLx4sWncSi6X6+zs/PjHPz5v3jzVBQDci0pe1FU5iou6fvzjH4/s57CqCwBGMYu6BqMSFnWpLgAY3SzqGoxKWNSlugBgFLOoazAqZFGX6gKAUcyirsGokEVdqgsARjGLugajQhZ1qS4AGMUs6hqMClnUpboAoNJlMplUKrVv376btlvU1V9XV1d9ff2xY8du2l45i7pUFwBUrlwul0qlFi1alE6nt27dmslk+l9aXNSVz+fH+KKubDabSqWSyWRnZ+cXvvCFXC7X/9LKWdSlugCgoq1evfrrX//6jBkzQgjr1q3rf1FxUdfEiRO16erVq3fv3v2Zz3zmv//7v7/85S/3v7S4qOuBBx6ohLsaKRQKXtMAw/rOG4mEELz9MhjZbLb4xZQpU0IIhw8fTqVSxS2rVq36xV/8xbVr165Zs2aMTymTydTU1GSz2dra2hDCd7/73b6Z1NfXb9iw4Yknnqirqxvx+2lfFwBUrpr/d/jw4RDCpk2bih3Wt6jrkUceMaVEIhGLxRKJxDe/+c0QwubNm4ufM/Yt6po9e3Yl3E/VBQCjQCqVWrlyZQihsbEx9FvUVVNTYzh9nn322WQymc1mt2zZEv5/UdcnPvGJaDSqugCAwWptbQ0hnDx5srW11aKuAUWj0aNHj4YQ0un0sWPHKudIXaoLAEaT/p8zHjx48Iknniiusqe/vs8Zf/M3f7N4pK6lS5eqLgDg7qRSqeLRPjs7Oy3qupVnn322rq7uhz/8YUUt6lJdADDKpNPp4hcWdd1KNBr9h3/4h+LXlbOoS3UBwChTU1PT2dm5YcOGCRMmmMatJBKJs2fPfuELX6ioe+V4XQDD/s7reF0MWS6X+6d/+qcnn3zSKG6ju7s7l8vNmTNHdQGoLmAM8QkjAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAqlmkUCiYAgBAudnXBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAv6vnTt2hf+PAzj+Vjc5gwwSA4OZTBIlxSJlU8dkNTAYlOnOYLOxKLFcZruS4v4AZVDqDESuLO4GnbrvoJ9B/Xzdx+e+9/H9Ph7j1V2ve7/fd5+nDwEA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6vqoUqmcn58n5I29vr4mZ5gQws3NTaVSMQMAqK4YpNPppaWlwcHBJOROKpXKZrMJGeZNW1vbxsZGc7snCTN8iGOTJHYSIxnmLzs20HzFYrERL5vJZGr1yOfzjXuPk5OT1Wq1rnkauuZnZ2dfn6RBG3RxcVFLgEwmk8/n692dRhgYGEjIJLlcLpfLlcvlWmIkcKTJycmE7FetVjs7O8tkMsViMQnDJOckLy8v5/P5RB0baLqWarV6e3sb17V8ZGQkhLC3tzc9PV3XEyuVSqlUijcsZmdnHx8ft7a25ubmUqlUXc+9ubmJd5i7u7uxsbFMJrO5udnX11fXz4txbVChUFhYWIgwQwihVCqtrKzEHn+Xl5cXFxddXV0RtqlSqRwdHcU1yf7+...

Ngày tải lên: 26/06/2014, 23:20

56 3,5K 49
Chuyên đề giải tích hình hoc 12_p1 doc

Chuyên đề giải tích hình hoc 12_p1 doc

... vectơ : =[ n JJG a J JG NB J JJG , ] = (− 15; −11; 17) Phöông trình (P) laø: − 15( x–1) – 11(y+2) + 17(z+1) = 0 ⇔ 15x + 11y – 17z – 10 = 0 b) A( 5, 0, 5) ; B (12, 0, 10) ⇒ = (0, −10, 0) OA,OB ⎡ ⎣ JJJG ... Vấn đề 5 KHOẢNG CÁCH Bài toán 1 : Tính khoảng cách từ điểm M(x 0 , y 0 , z 0 ) đến mặt phẳng α : Ax + By + Cz + D = 0 ắ Phương pháp : dM Ax By Cz D ABC (,)α= +++ ++ 000 222 Bài toán ... và song song với (D). Khi đó (Δ) chính là giao tuyến của α và β. Vấn đề 3 HÌNH CHIẾU Bài toán 1 : Tìm hình chiếu vuông góc H của điểm A treõn ủửụứng thaỳng (d) ắ Phửụng phaựp : ...

Ngày tải lên: 08/08/2014, 09:22

18 326 1
Chuyên đề giải tích hình hoc 12_p2 pot

Chuyên đề giải tích hình hoc 12_p2 pot

... =1 c) ABCE laø hình thang có đáy AB và E nằm trên Ox. ⇔ E y = 0 CE ⎧ ⎪ ⎨ ΑΒ ⎪ ⎩ JJJG JJJG // ⇔ E EE y = 0 x - 4 y - 2 = 0 - 2 3 + 1 ⎧ ⎪ ⎨ ⎪ ⎩ ⇔ hay E (5, 0) E E y = 0 x = 5 ⎧ ⎨ ⎩ d) H ... điểm E để ABCE là hình thang có một cạnh đáy là AB và E nằm trên Ox. d) Tìm tọa độ trực tâm H, trọng tâm G và tâm I đường tròn ngoại tiếp ABC. Δ e) Chứng tỏ H, G, I thẳng hàng. Giải a) D là điểm ... ⇔ BABA CACA x - x y - y x - x y - y = 0 . Với việc tìm góc của hai vectơ ta có: - Góc hình học tạo bởi hai vectơ a G , b G được suy từ công thức: cos( n a, b G G ) = 11 22 ab + ab a.b G G ...

Ngày tải lên: 08/08/2014, 09:22

5 280 0
Chuyên đề  các phương pháp giải toán hình học không gian ôn thi đại học

Chuyên đề các phương pháp giải toán hình học không gian ôn thi đại học

... TẠO CỦA HỌC SINH QUA DẠY HỌC MÔN TOÁN NĂM HỌC 2011-2012 TỔ TOÁN TRƯỜNG THPT CHUYÊN TIỀN GIANG trang 1 GIẢI TOÁN HÌNH HỌC KHÔNG GIAN Thầy: Lâm Tấn Dũng Mở đầu Hình học không gian là môn học khó ... một.  Một số phương pháp giải toán Hình Học Không Gian PHÁT TRIỂN NĂNG LỰC TƯ DUY SÁNG TẠO CỦA HỌC SINH QUA DẠY HỌC MÔN TOÁN NĂM HỌC 2011-2012 TỔ TOÁN TRƯỜNG THPT CHUYÊN TIỀN GIANG trang 4  ... đối với nhiều học sinh, nhưng nếu biết đưa ra phương pháp giải cho từng dạng toán, kiên trì hướng dẫn học sinh thực hiện theo đúng phương pháp đó, thì việc họcgiải toán hình học không gian...

Ngày tải lên: 07/05/2014, 20:52

23 3,3K 4
Lý thuyết và phương pháp giải toán hình học tọa độ oxyz lớp 12

Lý thuyết và phương pháp giải toán hình học tọa độ oxyz lớp 12

... diện (P) cần tìm. VẤN ĐỀ 7: GIẢI BÀI TOÁN HÌNH HỌC KHÔNG GIAN BẰNG PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Việc sử dụng phương pháp tọa độ trong không gian giải các bài toán hình học không gian là một ... (d’) VẤN ĐỀ 3: HÌNH CHIẾU 1. Tìm hình chiếu vuông góc của 1 điểm M trờn mt mt phng )( ã Vit phng trỡnh ng thng d i qua M v vuụng gúc vi )( ã Gi H là hình chiếu của M trên )( α )( α ∩=⇒ dH 8 Chuyên ... trên SA ứng với trục Oz.  Với hình chóp có đáy là hình thoi tâm O ta thường thiết lập hệ trục tọa độ dựa trên AC và BD ứng với trục Ox và trục Oy. 12 Chuyên đề: Phương pháp tọa độ trong không...

Ngày tải lên: 17/08/2013, 08:07

11 34,7K 25
Phát triển tư duy sáng tạo cho học sinh trung học phổ thông qua dạy học chuyên đề “giải toán bằng phương pháp vectơ và tọa độ”

Phát triển tư duy sáng tạo cho học sinh trung học phổ thông qua dạy học chuyên đề “giải toán bằng phương pháp vectơ và tọa độ”

... c. Lớp 12 chuyên Lý - Năm học 2011-2012 - Sĩ số : 35 học sinh. - Giáo viên dạy : Thầy giáo Nguyễn Hoàng Cương - Học sinh trong lớp có trình độ học tập môn Toán tương đối đồng đều. Đa số học ... a. Lớp 10A2 - Năm học 2011-2012 - Sĩ số : 45 học sinh. - Giáo viên dạy : Cô giáo Nguyễn Phương Hạnh - Học sinh trong lớp có trình độ học tập môn Toán tương đối đồng đều. Đa số học sinh đều ... 2.2.3.2. Một số bài toán hình học phẳng giải bằng phương pháp vectơ và tọa độ *) Dạng 1: bài toán hình giải tích thuần tuý (chứa đựng sẳn các yếu tố về hình giải tích) Bài toán 1 a. Công thức...

Ngày tải lên: 09/02/2014, 14:58

17 1,6K 1
Các bổ đề hình học toán lớp 9

Các bổ đề hình học toán lớp 9

...    BD là phân giác góc   . 8 .5.      III. CÁC BỔ ĐỀ VỀ ĐƯỜNG TRÒN 1.  ...           ABOC là hình vuông        . ...                     5.   ...

Ngày tải lên: 23/06/2014, 22:38

13 6,4K 9

Bạn có muốn tìm thêm với từ khóa:

w