chuyên đề giải toán hình học lớp 5

Các hướng tư DUY để giải toán hình học tọa độ KHông gian OXYZ

Các hướng tư DUY để giải toán hình học tọa độ KHông gian OXYZ

... THAM KHẢO: CÁC BÀI TOÁN CỰC TRỊ CỦA HÌNH HỌC GIẢI TÍCH TRONG KHÔNG GIAN Ý tưởng cho các bài toán tìm GTLN ,GTNN nói chung cũng như các bài toán GTLN ,GTNN của hình học giải tích trong không ... BÀI TOÁN CỰC TRỊ (tham khảo thêm) H À N Ộ I 2 / 2 0 1 3 4 B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI I. BÀI TOÁN 1: BÀI TOÁN TÌM ðIỂM CÁC BÀI TOÁN MẪU Trước khi làm các bài tập trong Chuyên ... c = = ⇒ = và 15 d = − ⇒ mp (P): 4 2 7 15 0 x y z + + − = +) Với 0 b = chọn 2 3 a c = ⇒ = và 5 d = − ⇒ mp (P): 2 3 5 0 x z + − = Chú ý: Với số liệu ñặc biệt của bài toán trên các...

Ngày tải lên: 13/01/2014, 17:16

23 4K 39
Ứng dụng phương pháp tọa độ trong không gian để giải toán hình học không gian

Ứng dụng phương pháp tọa độ trong không gian để giải toán hình học không gian

... hình chóp đều 1. Hình chóp tam giác đều S. ABC Dấu hiệu: Đáy là tam giác đều cạnh a, đường cao vuông góc với đáy từ đó ta thiết lập hệ tọa độ như sau Cách chọn: Chọn hệ trục tọa độ như hình ... Oxy    4. Đáy là hình vuông ABCD (thiết lập tương tự như hình thoi hoặc hình chữ nhật) Bài tập giải mẫu: Bài 1: (ĐH – D 2007) Cho hình chóp S.ABCD có đáy là hình thang   0 90 ABC ... tại B có: 2 2 2 2 2 2 4 5 5 AC AB BC a a a AC a        Dựng ( ), BH AC H AC   ta có: 2 2 5 5 AB a a AH AC a    2 2 2 2 1 1 1 5 4 BH AB BC a    2 5 a BH  Dựng hệ trục tọa...

Ngày tải lên: 29/04/2014, 08:38

39 7,6K 21
CHUYÊN ĐỀ BÀI TẬP HÌNH HỌC LỚP 10 ( có sử dụng tài liệu từ các nguồn khác) potx

CHUYÊN ĐỀ BÀI TẬP HÌNH HỌC LỚP 10 ( có sử dụng tài liệu từ các nguồn khác) potx

... src=" 554 oq6uzlMDwK1EfMJI1UilUrNmzbq3fU73dt1MJrN+/frb7x4DANVFtcnlcvf8Gd+9XXcoPxEA1QUAQOmNMwIAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLruQSaTyWQypbq1XC5Xwlsbivb29lwuV8IplfDWAICij+3Zs2fsPNrx48d/+tOfvnTp0vz58ydPnjzUYh03bu7cuf/6r/9aklsbiv/8z/+cOXPmuHHjFixYMGHChCHe2vXr1z/96U+X6tYAgKJIoVCoygeWyWRqa2tv8w1nz55taGi4i0lFIre5tKmpadeuXcPwuFpbWzdt2nSbb+js7KyrqxupKQEAY6668vn81atXb9r47rvvLlmypLGxsbm5OZFI3G3GfXTjokWLpkyZcuDAgWFLk1wul81mb9rY1ta2devWpqamL33pS3f1uEo+JQBgzFXXgLq6uu67775SlUQ2m7106VIl7Apqb2+fN29eLBarwCkBAGOxugAARoojRwAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1XUvcrlcCW8tn8/n83mvoTKptPHmcjlPNwCqa7B+8IMf1NfXt7e3l+TWPvzww4ceeqi1tdU/xmUyf/78yhnvBx984OkGYCgihUKhKh9YNpvdvn37R7en0+kQQjKZ/Pa3v11XVzf4G0ylUh/deOrUqZ6enng83tLSMuA3MBrHe/sXTzwef/311+/qxQMAIYRotT6wT37yk2vXrr1p449+9KPiP5wbNmyYMWPGXd3gR2+tmAUhhI0bNy5evNiLaSgGHO/Fixd7enqWL18+zOMd8MXTV13PPffc3b54ACBU8b6uAR07dux73/vezp07Y7HY0G8tm82+8sorpbo1bpLL5bZs2dLc3JxIJCrh/rS3t588edLTDYDqAgCoaI4cAQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6hob8vn83r17c7lcqW5w3 759 mUym+gbV2tra1dV1b9c9duxYVc4EgDEoagSDlM1mPxpY77zzzsSJE5uamnbu3BmLxYZ4a9///vdra2sbGxubm5sTicRonFIul8tmsx/dnkwm7/i4Brzu9evXR/tMAKAoUigUTGEwUqlUOp2+1aWNjY2vvfZaNBotya0lk8mOjo67yrgK0draumnTpltdGo/H/+Vf/uVW8TSU6wKA6qpy9fX1c+fOLdVumL179x45cuTAgQMNDQ3VNKX29vYnn3yypaVl48aNgw/TvhTbuXPnvV0XAFRXlcjn81evXi3h3pf29vYq662irq6u2bNn31szZTIZ+7cAUF0AAAyWv2EEAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKrrXuRyOY8CTwQAqqvsLly4UF9f397ePqofRUtLSyqVymQyXr4j6+jRo54IAAYvUigUqvKBZbPZ7du3f3R7Op0OISSTyW9/+9t1dXXl+NGZTKampiYWi5XqBlOp1E0P7cSJEyGExsbGl 156 qaampqImX9wDdG8PfyjXHcodzmaziUSiyp4IACrNx/bs2VOtj61QKHz2Z40bN+6NN96Ix+N79+5dtmzZuHFl2dU3fvz4mTNnTps2bfbs2SX5ER9++GH/R/Huu+/+27/9WzKZbGpqmjVrVqWNfcKECdOnT//ggw8WLFgwYcKEu7ruuHHjPvGJT4wbN+4erjuUO7x06dIzZ87Mnz9/8uTJg38ibty4ce7cuXg8vnXr1gULFpTp5QRA1ajafV0Dam9v7+7u3rhxYzQaLckNZjKZ2traW10aj8f/6q/+as2aNaV9FPv27Xv44YcbGhoq4gUUidzm0qampl27dpXjumW6w9u2bXvppZcG/0Tcf//9JXw5AaC6uKV8Pn/16tWPbq+trY3H4y0tLVX/T/KAq5rWr1/f2dnZ1NS0c+fO23xcOOB1Fy1a1NPTc8frlvYOb9my5cSJE+X7oQCgusoVIh0dHWN2F0gul2tpabm3fMlms8ePHx/m0eXz+ebmZr0FgOoCAKgG1v8CAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFMDS9vb0Vck/ef/99TweguoCq9cUvfvErX/nKe++9N+L35NKlS4888sjBgwflF1BRIoVCwRSgmv8nj0T6f933v3ypvp42bdpnP/vZEEImk+nu7p40adKOHTt27 959 091Yvnz5G2+8Uab7EEK477775s+f3/efxZ+VSCQOHTq0dOlSLwNAdQFld/r06eH5QYcOHTpy5MjOnTt37NgxadKkmy596623rl+/PmyPetmyZYlEYs+ePU8//bTXAKC6gOrR29v7jW9845lnnpk6dWolhGYmk9FbgOoCABiLrKYHAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAhiJqBNxKPp//27/926p8aKlUyvMLgOqiUjQ3N//1X//14sWLVRcAqC7K6J133mlubhYoAFASkUKhYAoM/OKIRDo7O+vq6owCAIbOanoGls1mQwjxeNwoAEB1UUY9PT0hhJqaGqMAANVFGXV1dTU2NpoDAKguyqutra0q/3oRAFQXleXUqVMzZswwBwBQXZRRPp/v6emZM2eOUQCA6qKMrl69GkJIJBJGAQCqizLq6OhIJpPmAACqi/K6fPnysmXLzAEAVBfldebMmYULF5oDAJSQMwIx0MvCuYAAoNTs6+JmxXMBOWwEAKguyuvSpUshhFgsZhQAoLooo+7ubucCAgDVRdk5FxAAqC6Gg3MBAYDqouycCwgAVBellMlk6uvrv/a1r2Uymf7bnQsIAFQXpZHP51OpVG1t7Sc/+cnf+73fe/HFF/tf6lxAAKC6KI1oNDpr1qwrV6786Z/+aQghnU7ncrm+S50LCABUFyWza9euRCKxcOHCeDweQjh69GjfRc4FBACqixKLRqPPPfdcCOFrX/ta38YTJ044bAQAlIPzMI5p2Wx2ypQpIYTiWReL//n+++87MD0AlJx9XWNaTU3NypUrQwjf+ta3QgiXLl2Kx+OSCwBUF6W3Z8+eEMLLL7+cy+XOnz+/fPlyMwEA1UXp9V9T39HRYVEXAKguyqL/mvpTp049/PDDZgIA5WA1PT9dUx9CuHLligPTA0A52NfFT9fUB+cCAoCysa+LEELo6ur6/ve/P2PGjHnz5pkGAKguAIDRyieMAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQBQeaJGQBVLpVLpdNocGFBjY2Nra6s5AMMmUigUTIFqlc1mc7mcOTCgWCxWU1NjDoDqAgCoKtZ1wU+9+uqrkWqUSqXueSa//du/bSAAJWFfF/T7/yES+ed//udf+qVfqrLHdc8fpWWz2SlTprz55pv333+/gQAMkdX08BOZTCaEsGTJklgsZhpFPT09IYTPfe5zRgEwdD5hhJ949913QwiSq7+urq7GxkZzAFBdUErnz59XGDdpa2ubNWuWOQCoLiiljo6OxYsXm0N/Fy9eXLBggTkAqC4opVOnTs2YMcMc+uTz+c7Ozjlz5hgFgOqCUhZGT0+Pwujv6tWrIYQHH3zQKABUF5S4MBKJhFH0efvtt5PJZDTqL50BVBeUTkdHRzKZNIf+vve9782dO9ccAFQXlNLly5eXLVtmDv298847a9euNQcA1QWldObMmYULF5pDf+l0uq6uzhwAVBeU0okTJxRGf9lsNoQQj8eNAkB1QYkLw2Ej+iueC8jJCgFUF5TSpUuXgnMB/SznAgJQXVB63d3dCuMmzgUEoLqgLIXhXEA3OXXqlHMBAaguKH1hWNTVnyP1A6guUBjDwbmAAFQXlKswnAuov+KR+p0LCEB1wT1qb2+/VWGYSX+XL192LiAA1QX3IpPJpFKpJUuWPPPMM7lc7qbCGJvnAurq6komk48//vjGjRvz+Xz/i86cOeNcQACqC+4lL2pra0MIc+bMOXjw4KuvvnpTYYzBcwG1trYmk8lf//Vf/9GPfvR3f/d 358 6d63+pI/UDlEOkUCiYAmMhvOrq6lpbWzdt2hSPx997772f/j8QiXR2do61yMjlctlsNpFI7N27d/fu3StXrjx+/Hjxomw2O2XKlGvXrjkwPYDqgntPjYkTJ4YQzp4929DQ0FcY77///pg9MH3xc8YQQl9mtbe3L1myxDsDQMn5hJExJBaLFY9Bv3///uIW5wKqq6srVtcrr7xS3OJI/QCqC0rg+eefDyGk0+nimnqFEUL43d/93f7V5Uj9AKoLSqChoSEej4cQimvqFUYIYf369SGEnp6e4lEkHKkfQHVBafzBH/xBCOGP/uiPFEZRLBbbtm1bCGH//v2O1A9QPlbTM+b0rak/f/78ww8/fOXKFQem71tTf/Hixblz53pbACgH+7oYc/rW1L/00kvBuYBCCCHU1dUVP3j9+te/PpaP1A+guqDEimvqDx069Mu//MumUVT84PXIkSNj80j9AKoLyqJvTX19fb1pFH35y18OIeTz+dmzZ5sGQDlY18UYlc1mP/WpT0WjUaPok8lkfN4KoLoAAEY3nzACAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAGElRI2CQ3nnnnV27dkWjXjOMAq2trYYAqC5Gq9/4jd9YunTp4sWLjQIA7kGkUCiYAoN6rUQiV65cSSQSRgEA98C6LgYlk8mEEGpqaowCAFQXZfTuu+/G4/FYLGYUAKC6KKPz588vX77cHABAdVFeHR0d1tEDgOqi7E6dOjVjxgxzAADVRRnl8/menp45c+YYBQCoLsro6tWrIQTHjAAA1UV5dXR0JJNJcwAA1UV5Xb58edmyZeYAAKqL8jpz5szChQvNAQCGwhmBGMSrJBLp7Oysq6szCgC4Z/Z1cQfZbDaEEI/HjQIAVBdl1NPTE5yBEQBUF+XW1dXV2NhoDgCguiivtra2WbNmmQMAqC7K6+LFizNnzjQHABgif8PInV4ikciVK1ccmB4Ahsi+Lm4nk8mEEB588EGjAADVRQnk8/ljx47l8/mbtr/99tvxeDwajRoRAKguhqqrq2v+/PmbNm2aO3duV1dX/4t+8IMfLF++3IgAQHUxVNlsNplMbtiw4bHHHrt06dK3vvWt/pd2dHSsXbvWlABg6KymJ2Sz2Zqamvb29iVLloQQ3n///Vgs9pPXRyRy9uzZhoYGUwKAIbKvi58cd37hwoXF0/6cPn26uD2Xy4UQfv7nf96IAEB1UTLRaPS 555 4LIfz+7/9+cUvxDIyOGQEAqosS+9KXvhRC6OzsLPZWR0fHypUrjQUAVBcllkgkkslkCOGVV14JIZw7d27OnDnGAgCqi9L74z/+42J15fP5t99+e+HChWYCACXhbxj5GblcbuLEiSGEs2fPLlmypLOzs66uzlgAYOjs6+JnxGKxbdu2hRD+7M/+LIQwY8YMMwGAkrCvi5v1HbgrhODlAQClYl8XN2toaCgeuGvp0qWmAQClYl8XA+jq6vrxj39cW1tbPIAqAKC6AABGB58wAgCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AGAgBw8ePH36tLvK2BE1AgCGQVNT001b3nzzzX/8x39ct27dN7/5zenTp7urVD37ugAYSfPnzx8tHTOK7iqVKVIoFEwBgOH393//97/6q786depUdxXVBQBAyfiEEQBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKgugNEtEolEIhFzANUFAIDqAgBQXQAAqC4AgDFfXb29vS+88EJ3d/fYfA7eeuutpqam3t5eL0cAqGKRQqEwnD+vqalpwO2HDh3KZDKbN29ubm6eOnVqtY67u7v70KFDH92+Z8+eyZMn/+Ef/uFXvvIVL0qo/nfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZUcXKFECZMmPDRCfzP//zPfffd99RTT61Zs8YrEqCscrlcLBYzB0bmN65K+GWrt7f3woULS5cuHZvPwVtvvTV58uTp06d7OcJYeee1r2vk7Nu3r6Ojo7m5OZFImAZjsboAVBfDI5fLTZw4MYTQ2Niovcoqm80eP 358 48aN0WjUNFQXgOqqtn/mt2/ffsdvS6fTfV9rr7Kqr6+/du1aS0uL9lJdAKqrqmQymdra2ru6Sjweb2lpSaVSpnfPM+/o6LjVpa+++uqJEyf65qy9VBeA6hpD8vn8Qw891NPTowNKorW1ddOmTYP85pUrVx4/fnwsj8tLDYAx5Ny5cyGEw4cP662SWL9+/ZUrV 251 6Z//+Z+//PLLIYRkMnngwIGGhoax/huXX7YAhvud176ukdPe3j5v3jwHjxge9fX1IQS9pboAVBeUkb9hVF0AqgsYGc5+DQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXYPS29v7wgsvdHd3j83n4NKlS01NTb29vV6OAFDFIoVCYTh/XlNT04DbDx06lMlkNm/e3NzcPHXq1Cqe+IAT2LNnz+TJk3fs2LFjx45JkyZ5XUKVv/NGIiGEYX77BUZcdJh/3rRp0wbcfuPGjXXr1m3YsKG6k2vACeRyufvuu++pp55at26d5AKAqv2NqxJ+2ert7b1w4cLSpUvH5nNw6dKlj3/849OnT/dyhLHyzmtfF6guAFQXUCb+hhEAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgCgqqurt7f3hRde6O7u9nyUZJhNTU29vb1GAQAVJVIoFIbz5zU1NQ24/dChQ5lMZvPmzc3NzVOnTvXEDGWef/mXf/nBBx/s2LFjx44dkyZNMiWouHfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZIrqHPc/z48U899dS6deskFwBU0G9clfDLVm9v74ULF5YuXer5KMkw/+M//uNzn/ucUUDlvvPa1wWqCwDVBZSJv2EEAFBdAACqCwAA1QUAAzh27Fgmk3+0TNAAABOrSURBVDEHVBcAlNekSZNqa2tTqZT2Krd8Pm8IN/E3jADD/s7rbxjL9s/81atX7/httbW1xS8aGxubm5sTiYTRlUMul1u8ePGBAwcaGhpMQ3UBqK6qkslk+opq8LZt2/bSSy+ZXjmkUql0Op1MJrWX6gJQXVUll8sdPXr0jt+2c+fOnp6eEEI8Hm9padm4cWM0GjW9e9Pe3r5///5bXXrx4sXOzs7i19orDP8ZgQCgTGKxWCqVuv33ZLPZnp4evVUq3d3d6XR6MN 957 dq17u7uMV5d9nUBDPs7r31dI2fv3r3333//s88+q7eGZ9q7d+/WuKoLQHVBGeVyuZkzZ+ot1QWguqC8ikeO0FuqC0B1AcPNUVIBAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAIyi6srn8/l83tMDAKiu8opGo/Pnz29tbdVeAIDqKq8tW7Zs2rTpoYce0l7lduzYsUwmYw4AUFaRQqEw/D913 759 HR0dt/+ebDZ74sSJ4tfxeLylpWXjxo3RaNRzVnJdXV3JZLKxsbG5uTmRSBgIlP2dNxIJIYzI2y8w5qorlUql0+m7ukoymTx69KgmuGetra23uXTTpk3FL7QXqC6gqqprMNrb25csWVLsrQMHDjQ0NHi2hv4uP0hnz541cFBdwFiprlWrVl27dk1vlcrtV24tWrSop6cnhNDY2Hjw4MFYLGZioLqAMVFd+Xz+3Llzemt4WNcFqgsYu9XFcDp27NicOXP0FqguQHUBqC5g1HNGIAAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQAwmkWNAADGgkwm09HRccdvmz59ekNDg3ENclyLFy9OJBKqCwD4qddee2337t13/LbGxkbVFUJ48cUX0+n0Hb/t8OHDg6+uSKFQMFmA4RSJREII3n5LqKmpacDthw4dymQymzdvbm5unjp16hifUn19/WOPPVYoFObNm3f77yzf7q62trY333zzpo1vvPHGG2+8sWzZsj179ixdurRy/j/9nd/5nQcffLCmpub23zn43V32dQFQzRKJxLJlyyRXLpfr7Oz84he/+PTTT98xI4bf5MmTly1bdsccHDaZTCaEMH78+Oeffz4aLVksqS4ARr0BPzjr7e291UVj0IULF0II169fH9nkWrt27dq1az+6/Tvf+c6kSZMqZ1zFFV0TJkwoYXKpLgCq1qRJkyRXn5MnTyaTyQkTJoyWaB5ZbW1tK1aseOCBB0p7s44cAQDV78iRI4899tiCBQuMYjDS6fSv/MqvlHyRmeoCgCpXXNRVU1PzyCOPmMYdFRd1hRBmz56tugCAu1Bc1DVu3LgKXEdfgcq0qEt1AUD1q+RFXRWoTIu6VBcAVL/ioq6HH37YKAYjnU6vWrWqHEcOU10AUM36FnVVztGwKllxUdeHH35Y8kVdqgsAqlzfoq5YLGYad9R37sWSL+pSXQBQ5SzquittbW2f//zn77///nLcuOoCgGpmUdddSafT8+bNK9PpIFUXAFQti7ruSlkXdakuAKiSXNi+fXs+n79pu0VdA+rq6hpwXGVd1BWchxEARrVcLrdly5Z0Oh1C+N///d99+/b1v9Siro/m6Ysvvlgc1y/8wi9s27at/6VlXdQV7OsCgFGtpaVl9erVxRNI79+/v6urq/+lR44cWbFihUVdfV577bXGxsYNGzaEELZv3 953 8p+isi7qUl0AMLrt2rXrYx/72Fe/+tXibpsVK1b0fXBWXNT1cz/3cxZ13TSuv/mbv1m5cmUI4dd+7df6xlXuRV2qCwBGvVQqFYvFWlpa4vF4NpvduXNncXtxUVc+n7eoq781a9bEYrHW1tYQwttvv/0Xf/EXxe3lXtSlugCgSkSj0ddffz2E8PLLLxc/Z7So6zZqamoOHz4cQti6dWtxL1e5F3WpLgCoHnV1dcXPGVetWpXP54uLulasWGEyA0qlUsXPGR9//PF8Pl/uRV2qCwCqSvFzxh/+8IerV6+2qOuOip8zdnV1rV69OpR5UZfqAoCq0vc544kTJ4JFXXdSU1Pz3e9+t29coZyLulQXAFSbvs8Z6+rqLOq6ozVr1jQ2NoYQyr2oKzhKKgBUn5aWlqtXr8ZiMYu6BuPgwYO5XO5Tn/rU2rVry/qD7OsCgGoTjUaPHDkyY8YMi7oGIxaLHT16dMaMGYlEoqw/KFIoFIwbYDhFIpEQgrdfGGvs6wIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAKr668vl8a2trPp/3DAEAqquMotFoW1vbQw89pL2GQS6XMwQAKLdIoVAY/p+azWbv+C99W1vb1q1bQwjxeLylpWXjxo3RaNQTVg779u3r6Ohobm5OJBKmAcPxzhuJhBBG5O0XGHPVlUql0un0XV0lHo+//vrrdXV1nrOSy+VyEydODCE0NjZqL1BdQFVVV3t7e3d39+2 /5/ Lly7t37y5+nUwmDxw40NDQ4AkbSune5tJTp0719PQUv9ZeoLqAchiZz+waGhrumFB79+7VWyV0tzsXAYBqqK47yufzZ86cOXv2rN4qldv8Vu0TRoAqcPvPNPq0traO2RHlcrktW7aM4JQqtLqi0ejx48f9LzQ8jh49mkwmjx49qreAatLb2/ud73zn6aefHgsPNpPJpNPpxx9/fDDfOZzv9m+99db169eXLl1aCVO6cOHCyE7JXwUSVq1aNcjfkAAq08GDBwfc3tLS8uKLLz7zzDPPP//8Aw88UMUT6OjoiMfjixYt+vznPz9S9+G9995ra2v76Pbf+q3fevTRR7/61a+uXbt2ZKd08uTJlStXjuCUVBehpqbGEIBR7b/+678G3P7hhx9OmDAhkUhUd3KFENra2p588snPfOYzI/ipxY0bNwZ8IgqFwqRJkyrhKARHjhxpbGx89NFHR2pKEX9EAzDc77z+hnFY9Pb2fuMb3+j7c/gqls/nx48f/yd/8idPPvlkpa0VOX369PXr19evXz/i96S4iHn//v1PP/10LBYbkftgXxcA1WnSpEljIblCCP/+7/8eQshmsxW4PLdCVnSFEC5cuBBCuHbt2kglV3D2awAY7U6fPh2Px0cwJkaF4qKuceNGsnxUFwCMbkePHn3iiSdmzpxpFLdx5MiRRx99dMWKFaoLALgX+Xz+xIkTM2bMWLx4sWncSi6X6+zs/PjHPz5v3jzVBQDci0pe1FU5iou6fvzjH4/s57CqCwBGMYu6BqMSFnWpLgAY3SzqGoxKWNSlugBgFLOoazAqZFGX6gKAUcyirsGokEVdqgsARjGLugajQhZ1qS4AGMUs6hqMClnUpboAoNJlMplUKrVv376btlvU1V9XV1d9ff2xY8du2l45i7pUFwBUrlwul0qlFi1alE6nt27dmslk+l9aXNSVz+fH+KKubDabSqWSyWRnZ+cXvvCFXC7X/9LKWdSlugCgoq1evfrrX//6jBkzQgjr1q3rf1FxUdfEiRO16erVq3fv3v2Zz3zmv//7v7/85S/3v7S4qOuBBx6ohLsaKRQKXtMAw/rOG4mEELz9MhjZbLb4xZQpU0IIhw8fTqVSxS2rVq36xV/8xbVr165Zs2aMTymTydTU1GSz2dra2hDCd7/73b6Z1NfXb9iw4Yknnqirqxvx+2lfFwBUrpr/d/jw4RDCpk2bih3Wt6jrkUceMaVEIhGLxRKJxDe/+c0QwubNm4ufM/Yt6po9e3Yl3E/VBQCjQCqVWrlyZQihsbEx9FvUVVNTYzh9nn322WQymc1mt2zZEv5/UdcnPvGJaDSqugCAwWptbQ0hnDx5srW11aKuAUWj0aNHj4YQ0un0sWPHKudIXaoLAEaT/p8zHjx48Iknniiusqe/vs8Zf/M3f7N4pK6lS5eqLgDg7qRSqeLRPjs7Oy3qupVnn322rq7uhz/8YUUt6lJdADDKpNPp4hcWdd1KNBr9h3/4h+LXlbOoS3UBwChTU1PT2dm5YcOGCRMmmMatJBKJs2fPfuELX6ioe+V4XQDD/s7reF0MWS6X+6d/+qcnn3zSKG6ju7s7l8vNmTNHdQGoLmAM8QkjAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAqlmkUCiYAgBAudnXBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAv6vnTt2hf+PAzj+Vjc5gwwSA4OZTBIlxSJlU8dkNTAYlOnOYLOxKLFcZruS4v4AZVDqDESuLO4GnbrvoJ9B/Xzdx+e+9/H9Ph7j1V2ve7/fd5+nDwEA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6vqoUqmcn58n5I29vr4mZ5gQws3NTaVSMQMAqK4YpNPppaWlwcHBJOROKpXKZrMJGeZNW1vbxsZGc7snCTN8iGOTJHYSIxnmLzs20HzFYrERL5vJZGr1yOfzjXuPk5OT1Wq1rnkauuZnZ2dfn6RBG3RxcVFLgEwmk8/n692dRhgYGEjIJLlcLpfLlcvlWmIkcKTJycmE7FetVjs7O8tkMsViMQnDJOckLy8v5/P5RB0baLqWarV6e3sb17V8ZGQkhLC3tzc9PV3XEyuVSqlUijcsZmdnHx8ft7a25ubmUqlUXc+9ubmJd5i7u7uxsbFMJrO5udnX11fXz4txbVChUFhYWIgwQwihVCqtrKzEHn+Xl5cXFxddXV0RtqlSqRwdHcU1yf7+ CHUYÊN ĐỀ BÀI TẬP HÌNH HỌC ... src=" 554 oq6uzlMDwK1EfMJI1UilUrNmzbq3fU73dt1MJrN+/frb7x4DANVFtcnlcvf8Gd+9XXcoPxEA1QUAQOmNMwIAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLruQSaTyWQypbq1XC5Xwlsbivb29lwuV8IplfDWAICij+3Zs2fsPNrx48d/+tOfvnTp0vz58ydPnjzUYh03bu7cuf/6r/9aklsbiv/8z/+cOXPmuHHjFixYMGHChCHe2vXr1z/96U+X6tYAgKJIoVCoygeWyWRqa2tv8w1nz55taGi4i0lFIre5tKmpadeuXcPwuFpbWzdt2nSbb+js7KyrqxupKQEAY6668vn81atXb9r47rvvLlmypLGxsbm5OZFI3G3GfXTjokWLpkyZcuDAgWFLk1wul81mb9rY1ta2devWpqamL33pS3f1uEo+JQBgzFXXgLq6uu67775SlUQ2m7106VIl7Apqb2+fN29eLBarwCkBAGOxugAARoojRwAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1XUvcrlcCW8tn8/n83mvoTKptPHmcjlPNwCqa7B+8IMf1NfXt7e3l+TWPvzww4ceeqi1tdU/xmUyf/78yhnvBx984OkGYCgihUKhKh9YNpvdvn37R7en0+kQQjKZ/Pa3v11XVzf4G0ylUh/deOrUqZ6enng83tLSMuA3MBrHe/sXTzwef/311+/qxQMAIYRotT6wT37yk2vXrr1p449+9KPiP5wbNmyYMWPGXd3gR2+tmAUhhI0bNy5evNiLaSgGHO/Fixd7enqWL18+zOMd8MXTV13PPffc3b54ACBU8b6uAR07dux73/vezp07Y7HY0G8tm82+8sorpbo1bpLL5bZs2dLc3JxIJCrh/rS3t588edLTDYDqAgCoaI4cAQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6hob8vn83r17c7lcqW5w3 759 mUym+gbV2tra1dV1b9c9duxYVc4EgDEoagSDlM1mPxpY77zzzsSJE5uamnbu3BmLxYZ4a9///vdra2sbGxubm5sTicRonFIul8tmsx/dnkwm7/i4Brzu9evXR/tMAKAoUigUTGEwUqlUOp2+1aWNjY2vvfZaNBotya0lk8mOjo67yrgK0draumnTpltdGo/H/+Vf/uVW8TSU6wKA6qpy9fX1c+fOLdVumL179x45cuTAgQMNDQ3VNKX29vYnn3yypaVl48aNgw/TvhTbuXPnvV0XAFRXlcjn81evXi3h3pf29vYq662irq6u2bNn31szZTIZ+7cAUF0AAAyWv2EEAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKrrXuRyOY8CTwQAqqvsLly4UF9f397ePqofRUtLSyqVymQyXr4j6+jRo54IAAYvUigUqvKBZbPZ7du3f3R7Op0OISSTyW9/+9t1dXXl+NGZTKampiYWi5XqBlOp1E0P7cSJEyGExsbGl 156 qaampqImX9wDdG8PfyjXHcodzmaziUSiyp4IACrNx/bs2VOtj61QKHz2Z40bN+6NN96Ix+N79+5dtmzZuHFl2dU3fvz4mTNnTps2bfbs2SX5ER9++GH/R/Huu+/+27/9WzKZbGpqmjVrVqWNfcKECdOnT//ggw8WLFgwYcKEu7ruuHHjPvGJT4wbN+4erjuUO7x06dIzZ87Mnz9/8uTJg38ibty4ce7cuXg8vnXr1gULFpTp5QRA1ajafV0Dam9v7+7u3rhxYzQaLckNZjKZ2traW10aj8f/6q/+as2aNaV9FPv27Xv44YcbGhoq4gUUidzm0qampl27dpXjumW6w9u2bXvppZcG/0Tcf//9JXw5AaC6uKV8Pn/16tWPbq+trY3H4y0tLVX/T/KAq5rWr1/f2dnZ1NS0c+fO23xcOOB1Fy1a1NPTc8frlvYOb9my5cSJE+X7oQCgusoVIh0dHWN2F0gul2tpabm3fMlms8ePHx/m0eXz+ebmZr0FgOoCAKgG1v8CAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFMDS9vb0Vck/ef/99TweguoCq9cUvfvErX/nKe++9N+L35NKlS4888sjBgwflF1BRIoVCwRSgmv8nj0T6f933v3ypvp42bdpnP/vZEEImk+nu7p40adKOHTt27 959 091Yvnz5G2+8Uab7EEK477775s+f3/efxZ+VSCQOHTq0dOlSLwNAdQFld/r06eH5QYcOHTpy5MjOnTt37NgxadKkmy596623rl+/PmyPetmyZYlEYs+ePU8//bTXAKC6gOrR29v7jW9845lnnpk6dWolhGYmk9FbgOoCABiLrKYHAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAhiJqBNxKPp//27/926p8aKlUyvMLgOqiUjQ3N//1X//14sWLVRcAqC7K6J133mlubhYoAFASkUKhYAoM/OKIRDo7O+vq6owCAIbOanoGls1mQwjxeNwoAEB1UUY9PT0hhJqaGqMAANVFGXV1dTU2NpoDAKguyqutra0q/3oRAFQXleXUqVMzZswwBwBQXZRRPp/v6emZM2eOUQCA6qKMrl69GkJIJBJGAQCqizLq6OhIJpPmAACqi/K6fPnysmXLzAEAVBfldebMmYULF5oDAJSQMwIx0MvCuYAAoNTs6+JmxXMBOWwEAKguyuvSpUshhFgsZhQAoLooo+7ubucCAgDVRdk5FxAAqC6Gg3MBAYDqouycCwgAVBellMlk6uvrv/a1r2Uymf7bnQsIAFQXpZHP51OpVG1t7Sc/+cnf+73fe/HFF/tf6lxAAKC6KI1oNDpr1qwrV6786Z/+aQghnU7ncrm+S50LCABUFyWza9euRCKxcOHCeDweQjh69GjfRc4FBACqixKLRqPPPfdcCOFrX/ta38YTJ044bAQAlIPzMI5p2Wx2ypQpIYTiWReL//n+++87MD0AlJx9XWNaTU3NypUrQwjf+ta3QgiXLl2Kx+OSCwBUF6W3Z8+eEMLLL7+cy+XOnz+/fPlyMwEA1UXp9V9T39HRYVEXAKguyqL/mvpTp049/PDDZgIA5WA1PT9dUx9CuHLligPTA0A52NfFT9fUB+cCAoCysa+LEELo6ur6/ve/P2PGjHnz5pkGAKguAIDRyieMAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQBQeaJGQBVLpVLpdNocGFBjY2Nra6s5AMMmUigUTIFqlc1mc7mcOTCgWCxWU1NjDoDqAgCoKtZ1wU+9+uqrkWqUSqXueSa//du/bSAAJWFfF/T7/yES+ed//udf+qVfqrLHdc8fpWWz2SlTprz55pv333+/gQAMkdX08BOZTCaEsGTJklgsZhpFPT09IYTPfe5zRgEwdD5hhJ949913QwiSq7+urq7GxkZzAFBdUErnz59XGDdpa2ubNWuWOQCoLiiljo6OxYsXm0N/Fy9eXLBggTkAqC4opVOnTs2YMcMc+uTz+c7Ozjlz5hgFgOqCUhZGT0+Pwujv6tWrIYQHH3zQKABUF5S4MBKJhFH0efvtt5PJZDTqL50BVBeUTkdHRzKZNIf+vve9782dO9ccAFQXlNLly5eXLVtmDv298847a9euNQcA1QWldObMmYULF5pDf+l0uq6uzhwAVBeU0okTJxRGf9lsNoQQj8eNAkB1QYkLw2Ej+iueC8jJCgFUF5TSpUuXgnMB/SznAgJQXVB63d3dCuMmzgUEoLqgLIXhXEA3OXXqlHMBAaguKH1hWNTVnyP1A6guUBjDwbmAAFQXlKswnAuov+KR+p0LCEB1wT1qb2+/VWGYSX+XL192LiAA1QX3IpPJpFKpJUuWPPPMM7lc7qbCGJvnAurq6komk48//vjGjRvz+Xz/i86cOeNcQACqC+4lL2pra0MIc+bMOXjw4KuvvnpTYYzBcwG1trYmk8lf//Vf/9GPfvR3f/d 358 6d63+pI/UDlEOkUCiYAmMhvOrq6lpbWzdt2hSPx997772f/j8QiXR2do61yMjlctlsNpFI7N27d/fu3StXrjx+/Hjxomw2O2XKlGvXrjkwPYDqgntPjYkTJ4YQzp4929DQ0FcY77///pg9MH3xc8YQQl9mtbe3L1myxDsDQMn5hJExJBaLFY9Bv3///uIW5wKqq6srVtcrr7xS3OJI/QCqC0rg+eefDyGk0+nimnqFEUL43d/93f7V5Uj9AKoLSqChoSEej4cQimvqFUYIYf369SGEnp6e4lEkHKkfQHVBafzBH/xBCOGP/uiPFEZRLBbbtm1bCGH//v2O1A9QPlbTM+b0rak/f/78ww8/fOXKFQem71tTf/Hixblz53pbACgH+7oYc/rW1L/00kvBuYBCCCHU1dUVP3j9+te/PpaP1A+guqDEimvqDx069Mu//MumUVT84PXIkSNj80j9AKoLyqJvTX19fb1pFH35y18OIeTz+dmzZ5sGQDlY18UYlc1mP/WpT0WjUaPok8lkfN4KoLoAAEY3nzACAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAGElRI2CQ3nnnnV27dkWjXjOMAq2trYYAqC5Gq9/4jd9YunTp4sWLjQIA7kGkUCiYAoN6rUQiV65cSSQSRgEA98C6LgYlk8mEEGpqaowCAFQXZfTuu+/G4/FYLGYUAKC6KKPz588vX77cHABAdVFeHR0d1tEDgOqi7E6dOjVjxgxzAADVRRnl8/menp45c+YYBQCoLsro6tWrIQTHjAAA1UV5dXR0JJNJcwAA1UV5Xb58edmyZeYAAKqL8jpz5szChQvNAQCGwhmBGMSrJBLp7Oysq6szCgC4Z/Z1cQfZbDaEEI/HjQIAVBdl1NPTE5yBEQBUF+XW1dXV2NhoDgCguiivtra2WbNmmQMAqC7K6+LFizNnzjQHABgif8PInV4ikciVK1ccmB4Ahsi+Lm4nk8mEEB588EGjAADVRQnk8/ljx47l8/mbtr/99tvxeDwajRoRAKguhqqrq2v+/PmbNm2aO3duV1dX/4t+8IMfLF++3IgAQHUxVNlsNplMbtiw4bHHHrt06dK3vvWt/pd2dHSsXbvWlABg6KymJ2Sz2Zqamvb29iVLloQQ3n///Vgs9pPXRyRy9uzZhoYGUwKAIbKvi58cd37hwoXF0/6cPn26uD2Xy4UQfv7nf96IAEB1UTLRaPS 555 4LIfz+7/9+cUvxDIyOGQEAqosS+9KXvhRC6OzsLPZWR0fHypUrjQUAVBcllkgkkslkCOGVV14JIZw7d27OnDnGAgCqi9L74z/+42J15fP5t99+e+HChWYCACXhbxj5GblcbuLEiSGEs2fPLlmypLOzs66uzlgAYOjs6+JnxGKxbdu2hRD+7M/+LIQwY8YMMwGAkrCvi5v1HbgrhODlAQClYl8XN2toaCgeuGvp0qWmAQClYl8XA+jq6vrxj39cW1tbPIAqAKC6AABGB58wAgCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AGAgBw8ePH36tLvK2BE1AgCGQVNT001b3nzzzX/8x39ct27dN7/5zenTp7urVD37ugAYSfPnzx8tHTOK7iqVKVIoFEwBgOH393//97/6q786depUdxXVBQBAyfiEEQBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKgugNEtEolEIhFzANUFAIDqAgBQXQAAqC4AgDFfXb29vS+88EJ3d/fYfA7eeuutpqam3t5eL0cAqGKRQqEwnD+vqalpwO2HDh3KZDKbN29ubm6eOnVqtY67u7v70KFDH92+Z8+eyZMn/+Ef/uFXvvIVL0qo/nfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZUcXKFECZMmPDRCfzP//zPfffd99RTT61Zs8YrEqCscrlcLBYzB0bmN65K+GWrt7f3woULS5cuHZvPwVtvvTV58uTp06d7OcJYeee1r2vk7Nu3r6Ojo7m5OZFImAZjsboAVBfDI5fLTZw4MYTQ2Niovcoqm80eP 358 48aN0WjUNFQXgOqqtn/mt2/ffsdvS6fTfV9rr7Kqr6+/du1aS0uL9lJdAKqrqmQymdra2ru6Sjweb2lpSaVSpnfPM+/o6LjVpa+++uqJEyf65qy9VBeA6hpD8vn8Qw891NPTowNKorW1ddOmTYP85pUrVx4/fnwsj8tLDYAx5Ny5cyGEw4cP662SWL9+/ZUrV 251 6Z//+Z+//PLLIYRkMnngwIGGhoax/huXX7YAhvud176ukdPe3j5v3jwHjxge9fX1IQS9pboAVBeUkb9hVF0AqgsYGc5+DQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXYPS29v7wgsvdHd3j83n4NKlS01NTb29vV6OAFDFIoVCYTh/XlNT04DbDx06lMlkNm/e3NzcPHXq1Cqe+IAT2LNnz+TJk3fs2LFjx45JkyZ5XUKVv/NGIiGEYX77BUZcdJh/3rRp0wbcfuPGjXXr1m3YsKG6k2vACeRyufvuu++pp55at26d5AKAqv2NqxJ+2ert7b1w4cLSpUvH5nNw6dKlj3/849OnT/dyhLHyzmtfF6guAFQXUCb+hhEAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgCgqqurt7f3hRde6O7u9nyUZJhNTU29vb1GAQAVJVIoFIbz5zU1NQ24/dChQ5lMZvPmzc3NzVOnTvXEDGWef/mXf/nBBx/s2LFjx44dkyZNMiWouHfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZIrqHPc/z48U899dS6deskFwBU0G9clfDLVm9v74ULF5YuXer5KMkw/+M//uNzn/ucUUDlvvPa1wWqCwDVBZSJv2EEAFBdAACqCwAA1QUAAzh27Fgmk3+0TNAAABOrSURBVDEHVBcAlNekSZNqa2tTqZT2Krd8Pm8IN/E3jADD/s7rbxjL9s/81atX7/httbW1xS8aGxubm5sTiYTRlUMul1u8ePGBAwcaGhpMQ3UBqK6qkslk+opq8LZt2/bSSy+ZXjmkUql0Op1MJrWX6gJQXVUll8sdPXr0jt+2c+fOnp6eEEI8Hm9padm4cWM0GjW9e9Pe3r5///5bXXrx4sXOzs7i19orDP8ZgQCgTGKxWCqVuv33ZLPZnp4evVUq3d3d6XR6MN 957 dq17u7uMV5d9nUBDPs7r31dI2fv3r3333//s88+q7eGZ9q7d+/WuKoLQHVBGeVyuZkzZ+ot1QWguqC8ikeO0FuqC0B1AcPNUVIBAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAIyi6srn8/l83tMDAKiu8opGo/Pnz29tbdVeAIDqKq8tW7Zs2rTpoYce0l7lduzYsUwmYw4AUFaRQqEw/D913 759 HR0dt/+ebDZ74sSJ4tfxeLylpWXjxo3RaNRzVnJdXV3JZLKxsbG5uTmRSBgIlP2dNxIJIYzI2y8w5qorlUql0+m7ukoymTx69KgmuGetra23uXTTpk3FL7QXqC6gqqprMNrb25csWVLsrQMHDjQ0NHi2hv4uP0hnz541cFBdwFiprlWrVl27dk1vlcrtV24tWrSop6cnhNDY2Hjw4MFYLGZioLqAMVFd+Xz+3Llzemt4WNcFqgsYu9XFcDp27NicOXP0FqguQHUBqC5g1HNGIAAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQAwmkWNAADGgkwm09HRccdvmz59ekNDg3ENclyLFy9OJBKqCwD4qddee2337t13/LbGxkbVFUJ48cUX0+n0Hb/t8OHDg6+uSKFQMFmA4RSJREII3n5LqKmpacDthw4dymQymzdvbm5unjp16hifUn19/WOPPVYoFObNm3f77yzf7q62trY333zzpo1vvPHGG2+8sWzZsj179ixdurRy/j/9nd/5nQcffLCmpub23zn43V32dQFQzRKJxLJlyyRXLpfr7Oz84he/+PTTT98xI4bf5MmTly1bdsccHDaZTCaEMH78+Oeffz4aLVksqS4ARr0BPzjr7e291UVj0IULF0II169fH9nkWrt27dq1az+6/Tvf+c6kSZMqZ1zFFV0TJkwoYXKpLgCq1qRJkyRXn5MnTyaTyQkTJoyWaB5ZbW1tK1aseOCBB0p7s44cAQDV78iRI4899tiCBQuMYjDS6fSv/MqvlHyRmeoCgCpXXNRVU1PzyCOPmMYdFRd1hRBmz56tugCAu1Bc1DVu3LgKXEdfgcq0qEt1AUD1q+RFXRWoTIu6VBcAVL/ioq6HH37YKAYjnU6vWrWqHEcOU10AUM36FnVVztGwKllxUdeHH35Y8kVdqgsAqlzfoq5YLGYad9R37sWSL+pSXQBQ5SzquittbW2f//zn77///nLcuOoCgGpmUdddSafT8+bNK9PpIFUXAFQti7ruSlkXdakuAKiSXNi+fXs+n79pu0VdA+rq6hpwXGVd1BWchxEARrVcLrdly5Z0Oh1C+N///d99+/b1v9Siro/m6Ysvvlgc1y/8wi9s27at/6VlXdQV7OsCgFGtpaVl9erVxRNI79+/v6urq/+lR44cWbFihUVdfV577bXGxsYNGzaEELZv3 953 8p+isi7qUl0AMLrt2rXrYx/72Fe/+tXibpsVK1b0fXBWXNT1cz/3cxZ13TSuv/mbv1m5cmUI4dd+7df6xlXuRV2qCwBGvVQqFYvFWlpa4vF4NpvduXNncXtxUVc+n7eoq781a9bEYrHW1tYQwttvv/0Xf/EXxe3lXtSlugCgSkSj0ddffz2E8PLLLxc/Z7So6zZqamoOHz4cQti6dWtxL1e5F3WpLgCoHnV1dcXPGVetWpXP54uLulasWGEyA0qlUsXPGR9//PF8Pl/uRV2qCwCqSvFzxh/+8IerV6+2qOuOip8zdnV1rV69OpR5UZfqAoCq0vc544kTJ4JFXXdSU1Pz3e9+t29coZyLulQXAFSbvs8Z6+rqLOq6ozVr1jQ2NoYQyr2oKzhKKgBUn5aWlqtXr8ZiMYu6BuPgwYO5XO5Tn/rU2rVry/qD7OsCgGoTjUaPHDkyY8YMi7oGIxaLHT16dMaMGYlEoqw/KFIoFIwbYDhFIpEQgrdfGGvs6wIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAKr668vl8a2trPp/3DAEAqquMotFoW1vbQw89pL2GQS6XMwQAKLdIoVAY/p+azWbv+C99W1vb1q1bQwjxeLylpWXjxo3RaNQTVg779u3r6Ohobm5OJBKmAcPxzhuJhBBG5O0XGHPVlUql0un0XV0lHo+//vrrdXV1nrOSy+VyEydODCE0NjZqL1BdQFVVV3t7e3d39+2 /5/ Lly7t37y5+nUwmDxw40NDQ4AkbSune5tJTp0719PQUv9ZeoLqAchiZz+waGhrumFB79+7VWyV0tzsXAYBqqK47yufzZ86cOXv2rN4qldv8Vu0TRoAqcPvPNPq0traO2RHlcrktW7aM4JQqtLqi0ejx48f9LzQ8jh49mkwmjx49qreAatLb2/ud73zn6aefHgsPNpPJpNPpxx9/fDDfOZzv9m+99db169eXLl1aCVO6cOHCyE7JXwUSVq1aNcjfkAAq08GDBwfc3tLS8uKLLz7zzDPPP//8Aw88UMUT6OjoiMfjixYt+vznPz9S9+G9995ra2v76Pbf+q3fevTRR7/61a+uXbt2ZKd08uTJlStXjuCUVBehpqbGEIBR7b/+678G3P7hhx9OmDAhkUhUd3KFENra2p588snPfOYzI/ipxY0bNwZ8IgqFwqRJkyrhKARHjhxpbGx89NFHR2pKEX9EAzDc77z+hnFY9Pb2fuMb3+j7c/gqls/nx48f/yd/8idPPvlkpa0VOX369PXr19evXz/i96S4iHn//v1PP/10LBYbkftgXxcA1WnSpEljIblCCP/+7/8eQshmsxW4PLdCVnSFEC5cuBBCuHbt2kglV3D2awAY7U6fPh2Px0cwJkaF4qKuceNGsnxUFwCMbkePHn3iiSdmzpxpFLdx5MiRRx99dMWKFaoLALgX+Xz+xIkTM2bMWLx4sWncSi6X6+zs/PjHPz5v3jzVBQDci0pe1FU5iou6fvzjH4/s57CqCwBGMYu6BqMSFnWpLgAY3SzqGoxKWNSlugBgFLOoazAqZFGX6gKAUcyirsGokEVdqgsARjGLugajQhZ1qS4AGMUs6hqMClnUpboAoNJlMplUKrVv376btlvU1V9XV1d9ff2xY8du2l45i7pUFwBUrlwul0qlFi1alE6nt27dmslk+l9aXNSVz+fH+KKubDabSqWSyWRnZ+cXvvCFXC7X/9LKWdSlugCgoq1evfrrX//6jBkzQgjr1q3rf1FxUdfEiRO16erVq3fv3v2Zz3zmv//7v7/85S/3v7S4qOuBBx6ohLsaKRQKXtMAw/rOG4mEELz9MhjZbLb4xZQpU0IIhw8fTqVSxS2rVq36xV/8xbVr165Zs2aMTymTydTU1GSz2dra2hDCd7/73b6Z1NfXb9iw4Yknnqirqxvx+2lfFwBUrpr/d/jw4RDCpk2bih3Wt6jrkUceMaVEIhGLxRKJxDe/+c0QwubNm4ufM/Yt6po9e3Yl3E/VBQCjQCqVWrlyZQihsbEx9FvUVVNTYzh9nn322WQymc1mt2zZEv5/UdcnPvGJaDSqugCAwWptbQ0hnDx5srW11aKuAUWj0aNHj4YQ0un0sWPHKudIXaoLAEaT/p8zHjx48Iknniiusqe/vs8Zf/M3f7N4pK6lS5eqLgDg7qRSqeLRPjs7Oy3qupVnn322rq7uhz/8YUUt6lJdADDKpNPp4hcWdd1KNBr9h3/4h+LXlbOoS3UBwChTU1PT2dm5YcOGCRMmmMatJBKJs2fPfuELX6ioe+V4XQDD/s7reF0MWS6X+6d/+qcnn3zSKG6ju7s7l8vNmTNHdQGoLmAM8QkjAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAqlmkUCiYAgBAudnXBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAv6vnTt2hf+PAzj+Vjc5gwwSA4OZTBIlxSJlU8dkNTAYlOnOYLOxKLFcZruS4v4AZVDqDESuLO4GnbrvoJ9B/Xzdx+e+9/H9Ph7j1V2ve7/fd5+nDwEA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6vqoUqmcn58n5I29vr4mZ5gQws3NTaVSMQMAqK4YpNPppaWlwcHBJOROKpXKZrMJGeZNW1vbxsZGc7snCTN8iGOTJHYSIxnmLzs20HzFYrERL5vJZGr1yOfzjXuPk5OT1Wq1rnkauuZnZ2dfn6RBG3RxcVFLgEwmk8/n692dRhgYGEjIJLlcLpfLlcvlWmIkcKTJycmE7FetVjs7O8tkMsViMQnDJOckLy8v5/P5RB0baLqWarV6e3sb17V8ZGQkhLC3tzc9PV3XEyuVSqlUijcsZmdnHx8ft7a25ubmUqlUXc+9ubmJd5i7u7uxsbFMJrO5udnX11fXz4txbVChUFhYWIgwQwihVCqtrKzEHn+Xl5cXFxddXV0RtqlSqRwdHcU1yf7+ ... src=" 554 oq6uzlMDwK1EfMJI1UilUrNmzbq3fU73dt1MJrN+/frb7x4DANVFtcnlcvf8Gd+9XXcoPxEA1QUAQOmNMwIAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLruQSaTyWQypbq1XC5Xwlsbivb29lwuV8IplfDWAICij+3Zs2fsPNrx48d/+tOfvnTp0vz58ydPnjzUYh03bu7cuf/6r/9aklsbiv/8z/+cOXPmuHHjFixYMGHChCHe2vXr1z/96U+X6tYAgKJIoVCoygeWyWRqa2tv8w1nz55taGi4i0lFIre5tKmpadeuXcPwuFpbWzdt2nSbb+js7KyrqxupKQEAY6668vn81atXb9r47rvvLlmypLGxsbm5OZFI3G3GfXTjokWLpkyZcuDAgWFLk1wul81mb9rY1ta2devWpqamL33pS3f1uEo+JQBgzFXXgLq6uu67775SlUQ2m7106VIl7Apqb2+fN29eLBarwCkBAGOxugAARoojRwAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1XUvcrlcCW8tn8/n83mvoTKptPHmcjlPNwCqa7B+8IMf1NfXt7e3l+TWPvzww4ceeqi1tdU/xmUyf/78yhnvBx984OkGYCgihUKhKh9YNpvdvn37R7en0+kQQjKZ/Pa3v11XVzf4G0ylUh/deOrUqZ6enng83tLSMuA3MBrHe/sXTzwef/311+/qxQMAIYRotT6wT37yk2vXrr1p449+9KPiP5wbNmyYMWPGXd3gR2+tmAUhhI0bNy5evNiLaSgGHO/Fixd7enqWL18+zOMd8MXTV13PPffc3b54ACBU8b6uAR07dux73/vezp07Y7HY0G8tm82+8sorpbo1bpLL5bZs2dLc3JxIJCrh/rS3t588edLTDYDqAgCoaI4cAQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6hob8vn83r17c7lcqW5w3 759 mUym+gbV2tra1dV1b9c9duxYVc4EgDEoagSDlM1mPxpY77zzzsSJE5uamnbu3BmLxYZ4a9///vdra2sbGxubm5sTicRonFIul8tmsx/dnkwm7/i4Brzu9evXR/tMAKAoUigUTGEwUqlUOp2+1aWNjY2vvfZaNBotya0lk8mOjo67yrgK0draumnTpltdGo/H/+Vf/uVW8TSU6wKA6qpy9fX1c+fOLdVumL179x45cuTAgQMNDQ3VNKX29vYnn3yypaVl48aNgw/TvhTbuXPnvV0XAFRXlcjn81evXi3h3pf29vYq662irq6u2bNn31szZTIZ+7cAUF0AAAyWv2EEAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKrrXuRyOY8CTwQAqqvsLly4UF9f397ePqofRUtLSyqVymQyXr4j6+jRo54IAAYvUigUqvKBZbPZ7du3f3R7Op0OISSTyW9/+9t1dXXl+NGZTKampiYWi5XqBlOp1E0P7cSJEyGExsbGl 156 qaampqImX9wDdG8PfyjXHcodzmaziUSiyp4IACrNx/bs2VOtj61QKHz2Z40bN+6NN96Ix+N79+5dtmzZuHFl2dU3fvz4mTNnTps2bfbs2SX5ER9++GH/R/Huu+/+27/9WzKZbGpqmjVrVqWNfcKECdOnT//ggw8WLFgwYcKEu7ruuHHjPvGJT4wbN+4erjuUO7x06dIzZ87Mnz9/8uTJg38ibty4ce7cuXg8vnXr1gULFpTp5QRA1ajafV0Dam9v7+7u3rhxYzQaLckNZjKZ2traW10aj8f/6q/+as2aNaV9FPv27Xv44YcbGhoq4gUUidzm0qampl27dpXjumW6w9u2bXvppZcG/0Tcf//9JXw5AaC6uKV8Pn/16tWPbq+trY3H4y0tLVX/T/KAq5rWr1/f2dnZ1NS0c+fO23xcOOB1Fy1a1NPTc8frlvYOb9my5cSJE+X7oQCgusoVIh0dHWN2F0gul2tpabm3fMlms8ePHx/m0eXz+ebmZr0FgOoCAKgG1v8CAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFMDS9vb0Vck/ef/99TweguoCq9cUvfvErX/nKe++9N+L35NKlS4888sjBgwflF1BRIoVCwRSgmv8nj0T6f933v3ypvp42bdpnP/vZEEImk+nu7p40adKOHTt27 959 091Yvnz5G2+8Uab7EEK477775s+f3/efxZ+VSCQOHTq0dOlSLwNAdQFld/r06eH5QYcOHTpy5MjOnTt37NgxadKkmy596623rl+/PmyPetmyZYlEYs+ePU8//bTXAKC6gOrR29v7jW9845lnnpk6dWolhGYmk9FbgOoCABiLrKYHAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwAA1QUAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAhiJqBNxKPp//27/926p8aKlUyvMLgOqiUjQ3N//1X//14sWLVRcAqC7K6J133mlubhYoAFASkUKhYAoM/OKIRDo7O+vq6owCAIbOanoGls1mQwjxeNwoAEB1UUY9PT0hhJqaGqMAANVFGXV1dTU2NpoDAKguyqutra0q/3oRAFQXleXUqVMzZswwBwBQXZRRPp/v6emZM2eOUQCA6qKMrl69GkJIJBJGAQCqizLq6OhIJpPmAACqi/K6fPnysmXLzAEAVBfldebMmYULF5oDAJSQMwIx0MvCuYAAoNTs6+JmxXMBOWwEAKguyuvSpUshhFgsZhQAoLooo+7ubucCAgDVRdk5FxAAqC6Gg3MBAYDqouycCwgAVBellMlk6uvrv/a1r2Uymf7bnQsIAFQXpZHP51OpVG1t7Sc/+cnf+73fe/HFF/tf6lxAAKC6KI1oNDpr1qwrV6786Z/+aQghnU7ncrm+S50LCABUFyWza9euRCKxcOHCeDweQjh69GjfRc4FBACqixKLRqPPPfdcCOFrX/ta38YTJ044bAQAlIPzMI5p2Wx2ypQpIYTiWReL//n+++87MD0AlJx9XWNaTU3NypUrQwjf+ta3QgiXLl2Kx+OSCwBUF6W3Z8+eEMLLL7+cy+XOnz+/fPlyMwEA1UXp9V9T39HRYVEXAKguyqL/mvpTp049/PDDZgIA5WA1PT9dUx9CuHLligPTA0A52NfFT9fUB+cCAoCysa+LEELo6ur6/ve/P2PGjHnz5pkGAKguAIDRyieMAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQBQeaJGQBVLpVLpdNocGFBjY2Nra6s5AMMmUigUTIFqlc1mc7mcOTCgWCxWU1NjDoDqAgCoKtZ1wU+9+uqrkWqUSqXueSa//du/bSAAJWFfF/T7/yES+ed//udf+qVfqrLHdc8fpWWz2SlTprz55pv333+/gQAMkdX08BOZTCaEsGTJklgsZhpFPT09IYTPfe5zRgEwdD5hhJ949913QwiSq7+urq7GxkZzAFBdUErnz59XGDdpa2ubNWuWOQCoLiiljo6OxYsXm0N/Fy9eXLBggTkAqC4opVOnTs2YMcMc+uTz+c7Ozjlz5hgFgOqCUhZGT0+Pwujv6tWrIYQHH3zQKABUF5S4MBKJhFH0efvtt5PJZDTqL50BVBeUTkdHRzKZNIf+vve9782dO9ccAFQXlNLly5eXLVtmDv298847a9euNQcA1QWldObMmYULF5pDf+l0uq6uzhwAVBeU0okTJxRGf9lsNoQQj8eNAkB1QYkLw2Ej+iueC8jJCgFUF5TSpUuXgnMB/SznAgJQXVB63d3dCuMmzgUEoLqgLIXhXEA3OXXqlHMBAaguKH1hWNTVnyP1A6guUBjDwbmAAFQXlKswnAuov+KR+p0LCEB1wT1qb2+/VWGYSX+XL192LiAA1QX3IpPJpFKpJUuWPPPMM7lc7qbCGJvnAurq6komk48//vjGjRvz+Xz/i86cOeNcQACqC+4lL2pra0MIc+bMOXjw4KuvvnpTYYzBcwG1trYmk8lf//Vf/9GPfvR3f/d 358 6d63+pI/UDlEOkUCiYAmMhvOrq6lpbWzdt2hSPx997772f/j8QiXR2do61yMjlctlsNpFI7N27d/fu3StXrjx+/Hjxomw2O2XKlGvXrjkwPYDqgntPjYkTJ4YQzp4929DQ0FcY77///pg9MH3xc8YQQl9mtbe3L1myxDsDQMn5hJExJBaLFY9Bv3///uIW5wKqq6srVtcrr7xS3OJI/QCqC0rg+eefDyGk0+nimnqFEUL43d/93f7V5Uj9AKoLSqChoSEej4cQimvqFUYIYf369SGEnp6e4lEkHKkfQHVBafzBH/xBCOGP/uiPFEZRLBbbtm1bCGH//v2O1A9QPlbTM+b0rak/f/78ww8/fOXKFQem71tTf/Hixblz53pbACgH+7oYc/rW1L/00kvBuYBCCCHU1dUVP3j9+te/PpaP1A+guqDEimvqDx069Mu//MumUVT84PXIkSNj80j9AKoLyqJvTX19fb1pFH35y18OIeTz+dmzZ5sGQDlY18UYlc1mP/WpT0WjUaPok8lkfN4KoLoAAEY3nzACAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAGElRI2CQ3nnnnV27dkWjXjOMAq2trYYAqC5Gq9/4jd9YunTp4sWLjQIA7kGkUCiYAoN6rUQiV65cSSQSRgEA98C6LgYlk8mEEGpqaowCAFQXZfTuu+/G4/FYLGYUAKC6KKPz588vX77cHABAdVFeHR0d1tEDgOqi7E6dOjVjxgxzAADVRRnl8/menp45c+YYBQCoLsro6tWrIQTHjAAA1UV5dXR0JJNJcwAA1UV5Xb58edmyZeYAAKqL8jpz5szChQvNAQCGwhmBGMSrJBLp7Oysq6szCgC4Z/Z1cQfZbDaEEI/HjQIAVBdl1NPTE5yBEQBUF+XW1dXV2NhoDgCguiivtra2WbNmmQMAqC7K6+LFizNnzjQHABgif8PInV4ikciVK1ccmB4Ahsi+Lm4nk8mEEB588EGjAADVRQnk8/ljx47l8/mbtr/99tvxeDwajRoRAKguhqqrq2v+/PmbNm2aO3duV1dX/4t+8IMfLF++3IgAQHUxVNlsNplMbtiw4bHHHrt06dK3vvWt/pd2dHSsXbvWlABg6KymJ2Sz2Zqamvb29iVLloQQ3n///Vgs9pPXRyRy9uzZhoYGUwKAIbKvi58cd37hwoXF0/6cPn26uD2Xy4UQfv7nf96IAEB1UTLRaPS 555 4LIfz+7/9+cUvxDIyOGQEAqosS+9KXvhRC6OzsLPZWR0fHypUrjQUAVBcllkgkkslkCOGVV14JIZw7d27OnDnGAgCqi9L74z/+42J15fP5t99+e+HChWYCACXhbxj5GblcbuLEiSGEs2fPLlmypLOzs66uzlgAYOjs6+JnxGKxbdu2hRD+7M/+LIQwY8YMMwGAkrCvi5v1HbgrhODlAQClYl8XN2toaCgeuGvp0qWmAQClYl8XA+jq6vrxj39cW1tbPIAqAKC6AABGB58wAgCoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AGAgBw8ePH36tLvK2BE1AgCGQVNT001b3nzzzX/8x39ct27dN7/5zenTp7urVD37ugAYSfPnzx8tHTOK7iqVKVIoFEwBgOH393//97/6q786depUdxXVBQBAyfiEEQBAdQEAqC4AAFQXAIDqAgBQXQAAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAABUFwCA6gIAUF0AAKgugNEtEolEIhFzANUFAIDqAgBQXQAAqC4AgDFfXb29vS+88EJ3d/fYfA7eeuutpqam3t5eL0cAqGKRQqEwnD+vqalpwO2HDh3KZDKbN29ubm6eOnVqtY67u7v70KFDH92+Z8+eyZMn/+Ef/uFXvvIVL0qo/nfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZUcXKFECZMmPDRCfzP//zPfffd99RTT61Zs8YrEqCscrlcLBYzB0bmN65K+GWrt7f3woULS5cuHZvPwVtvvTV58uTp06d7OcJYeee1r2vk7Nu3r6Ojo7m5OZFImAZjsboAVBfDI5fLTZw4MYTQ2Niovcoqm80eP 358 48aN0WjUNFQXgOqqtn/mt2/ffsdvS6fTfV9rr7Kqr6+/du1aS0uL9lJdAKqrqmQymdra2ru6Sjweb2lpSaVSpnfPM+/o6LjVpa+++uqJEyf65qy9VBeA6hpD8vn8Qw891NPTowNKorW1ddOmTYP85pUrVx4/fnwsj8tLDYAx5Ny5cyGEw4cP662SWL9+/ZUrV 251 6Z//+Z+//PLLIYRkMnngwIGGhoax/huXX7YAhvud176ukdPe3j5v3jwHjxge9fX1IQS9pboAVBeUkb9hVF0AqgsYGc5+DQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXYPS29v7wgsvdHd3j83n4NKlS01NTb29vV6OAFDFIoVCYTh/XlNT04DbDx06lMlkNm/e3NzcPHXq1Cqe+IAT2LNnz+TJk3fs2LFjx45JkyZ5XUKVv/NGIiGEYX77BUZcdJh/3rRp0wbcfuPGjXXr1m3YsKG6k2vACeRyufvuu++pp55at26d5AKAqv2NqxJ+2ert7b1w4cLSpUvH5nNw6dKlj3/849OnT/dyhLHyzmtfF6guAFQXUCb+hhEAQHUBAKguAABUFwCA6gIAUF0AAKguAADVBQCA6gIAUF0AAKoLAADVBQCgugAAUF0AAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAVBcAgOoCAFBdAACoLgAA1QUAgOoCAFBdAACqCwAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAIDqAgCgqqurt7f3hRde6O7u9nyUZJhNTU29vb1GAQAVJVIoFIbz5zU1NQ24/dChQ5lMZvPmzc3NzVOnTvXEDGWef/mXf/nBBx/s2LFjx44dkyZNMiWouHfeSCSEMMxvv8CIiw7zz5s2bdqA22/cuLFu3boNGzZIrqHPc/z48U899dS6deskFwBU0G9clfDLVm9v74ULF5YuXer5KMkw/+M//uNzn/ucUUDlvvPa1wWqCwDVBZSJv2EEAFBdAACqCwAA1QUAAzh27Fgmk3+0TNAAABOrSURBVDEHVBcAlNekSZNqa2tTqZT2Krd8Pm8IN/E3jADD/s7rbxjL9s/81atX7/httbW1xS8aGxubm5sTiYTRlUMul1u8ePGBAwcaGhpMQ3UBqK6qkslk+opq8LZt2/bSSy+ZXjmkUql0Op1MJrWX6gJQXVUll8sdPXr0jt+2c+fOnp6eEEI8Hm9padm4cWM0GjW9e9Pe3r5///5bXXrx4sXOzs7i19orDP8ZgQCgTGKxWCqVuv33ZLPZnp4evVUq3d3d6XR6MN 957 dq17u7uMV5d9nUBDPs7r31dI2fv3r3333//s88+q7eGZ9q7d+/WuKoLQHVBGeVyuZkzZ+ot1QWguqC8ikeO0FuqC0B1AcPNUVIBAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAIyi6srn8/l83tMDAKiu8opGo/Pnz29tbdVeAIDqKq8tW7Zs2rTpoYce0l7lduzYsUwmYw4AUFaRQqEw/D913 759 HR0dt/+ebDZ74sSJ4tfxeLylpWXjxo3RaNRzVnJdXV3JZLKxsbG5uTmRSBgIlP2dNxIJIYzI2y8w5qorlUql0+m7ukoymTx69KgmuGetra23uXTTpk3FL7QXqC6gqqprMNrb25csWVLsrQMHDjQ0NHi2hv4uP0hnz541cFBdwFiprlWrVl27dk1vlcrtV24tWrSop6cnhNDY2Hjw4MFYLGZioLqAMVFd+Xz+3Llzemt4WNcFqgsYu9XFcDp27NicOXP0FqguQHUBqC5g1HNGIAAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqgsAANUFAKC6AABQXQAAqgsAQHUBAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKoLAADVBQAwmkWNAADGgkwm09HRccdvmz59ekNDg3ENclyLFy9OJBKqCwD4qddee2337t13/LbGxkbVFUJ48cUX0+n0Hb/t8OHDg6+uSKFQMFmA4RSJREII3n5LqKmpacDthw4dymQymzdvbm5unjp16hifUn19/WOPPVYoFObNm3f77yzf7q62trY333zzpo1vvPHGG2+8sWzZsj179ixdurRy/j/9nd/5nQcffLCmpub23zn43V32dQFQzRKJxLJlyyRXLpfr7Oz84he/+PTTT98xI4bf5MmTly1bdsccHDaZTCaEMH78+Oeffz4aLVksqS4ARr0BPzjr7e291UVj0IULF0II169fH9nkWrt27dq1az+6/Tvf+c6kSZMqZ1zFFV0TJkwoYXKpLgCq1qRJkyRXn5MnTyaTyQkTJoyWaB5ZbW1tK1aseOCBB0p7s44cAQDV78iRI4899tiCBQuMYjDS6fSv/MqvlHyRmeoCgCpXXNRVU1PzyCOPmMYdFRd1hRBmz56tugCAu1Bc1DVu3LgKXEdfgcq0qEt1AUD1q+RFXRWoTIu6VBcAVL/ioq6HH37YKAYjnU6vWrWqHEcOU10AUM36FnVVztGwKllxUdeHH35Y8kVdqgsAqlzfoq5YLGYad9R37sWSL+pSXQBQ5SzquittbW2f//zn77///nLcuOoCgGpmUdddSafT8+bNK9PpIFUXAFQti7ruSlkXdakuAKiSXNi+fXs+n79pu0VdA+rq6hpwXGVd1BWchxEARrVcLrdly5Z0Oh1C+N///d99+/b1v9Siro/m6Ysvvlgc1y/8wi9s27at/6VlXdQV7OsCgFGtpaVl9erVxRNI79+/v6urq/+lR44cWbFihUVdfV577bXGxsYNGzaEELZv3 953 8p+isi7qUl0AMLrt2rXrYx/72Fe/+tXibpsVK1b0fXBWXNT1cz/3cxZ13TSuv/mbv1m5cmUI4dd+7df6xlXuRV2qCwBGvVQqFYvFWlpa4vF4NpvduXNncXtxUVc+n7eoq781a9bEYrHW1tYQwttvv/0Xf/EXxe3lXtSlugCgSkSj0ddffz2E8PLLLxc/Z7So6zZqamoOHz4cQti6dWtxL1e5F3WpLgCoHnV1dcXPGVetWpXP54uLulasWGEyA0qlUsXPGR9//PF8Pl/uRV2qCwCqSvFzxh/+8IerV6+2qOuOip8zdnV1rV69OpR5UZfqAoCq0vc544kTJ4JFXXdSU1Pz3e9+t29coZyLulQXAFSbvs8Z6+rqLOq6ozVr1jQ2NoYQyr2oKzhKKgBUn5aWlqtXr8ZiMYu6BuPgwYO5XO5Tn/rU2rVry/qD7OsCgGoTjUaPHDkyY8YMi7oGIxaLHT16dMaMGYlEoqw/KFIoFIwbYDhFIpEQgrdfGGvs6wIAUF0AAKoLAADVBQCgugAAVBcAAKoLAEB1AQCgugAAVBcAgOoCAEB1AQCoLgAAKr668vl8a2trPp/3DAEAqquMotFoW1vbQw89pL2GQS6XMwQAKLdIoVAY/p+azWbv+C99W1vb1q1bQwjxeLylpWXjxo3RaNQTVg779u3r6Ohobm5OJBKmAcPxzhuJhBBG5O0XGHPVlUql0un0XV0lHo+//vrrdXV1nrOSy+VyEydODCE0NjZqL1BdQFVVV3t7e3d39+2 /5/ Lly7t37y5+nUwmDxw40NDQ4AkbSune5tJTp0719PQUv9ZeoLqAchiZz+waGhrumFB79+7VWyV0tzsXAYBqqK47yufzZ86cOXv2rN4qldv8Vu0TRoAqcPvPNPq0traO2RHlcrktW7aM4JQqtLqi0ejx48f9LzQ8jh49mkwmjx49qreAatLb2/ud73zn6aefHgsPNpPJpNPpxx9/fDDfOZzv9m+99db169eXLl1aCVO6cOHCyE7JXwUSVq1aNcjfkAAq08GDBwfc3tLS8uKLLz7zzDPPP//8Aw88UMUT6OjoiMfjixYt+vznPz9S9+G9995ra2v76Pbf+q3fevTRR7/61a+uXbt2ZKd08uTJlStXjuCUVBehpqbGEIBR7b/+678G3P7hhx9OmDAhkUhUd3KFENra2p588snPfOYzI/ipxY0bNwZ8IgqFwqRJkyrhKARHjhxpbGx89NFHR2pKEX9EAzDc77z+hnFY9Pb2fuMb3+j7c/gqls/nx48f/yd/8idPPvlkpa0VOX369PXr19evXz/i96S4iHn//v1PP/10LBYbkftgXxcA1WnSpEljIblCCP/+7/8eQshmsxW4PLdCVnSFEC5cuBBCuHbt2kglV3D2awAY7U6fPh2Px0cwJkaF4qKuceNGsnxUFwCMbkePHn3iiSdmzpxpFLdx5MiRRx99dMWKFaoLALgX+Xz+xIkTM2bMWLx4sWncSi6X6+zs/PjHPz5v3jzVBQDci0pe1FU5iou6fvzjH4/s57CqCwBGMYu6BqMSFnWpLgAY3SzqGoxKWNSlugBgFLOoazAqZFGX6gKAUcyirsGokEVdqgsARjGLugajQhZ1qS4AGMUs6hqMClnUpboAoNJlMplUKrVv376btlvU1V9XV1d9ff2xY8du2l45i7pUFwBUrlwul0qlFi1alE6nt27dmslk+l9aXNSVz+fH+KKubDabSqWSyWRnZ+cXvvCFXC7X/9LKWdSlugCgoq1evfrrX//6jBkzQgjr1q3rf1FxUdfEiRO16erVq3fv3v2Zz3zmv//7v7/85S/3v7S4qOuBBx6ohLsaKRQKXtMAw/rOG4mEELz9MhjZbLb4xZQpU0IIhw8fTqVSxS2rVq36xV/8xbVr165Zs2aMTymTydTU1GSz2dra2hDCd7/73b6Z1NfXb9iw4Yknnqirqxvx+2lfFwBUrpr/d/jw4RDCpk2bih3Wt6jrkUceMaVEIhGLxRKJxDe/+c0QwubNm4ufM/Yt6po9e3Yl3E/VBQCjQCqVWrlyZQihsbEx9FvUVVNTYzh9nn322WQymc1mt2zZEv5/UdcnPvGJaDSqugCAwWptbQ0hnDx5srW11aKuAUWj0aNHj4YQ0un0sWPHKudIXaoLAEaT/p8zHjx48Iknniiusqe/vs8Zf/M3f7N4pK6lS5eqLgDg7qRSqeLRPjs7Oy3qupVnn322rq7uhz/8YUUt6lJdADDKpNPp4hcWdd1KNBr9h3/4h+LXlbOoS3UBwChTU1PT2dm5YcOGCRMmmMatJBKJs2fPfuELX6ioe+V4XQDD/s7reF0MWS6X+6d/+qcnn3zSKG6ju7s7l8vNmTNHdQGoLmAM8QkjAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKC6AABUFwCA6gIAQHUBAKguAADVBQCA6gIAUF0AAKguAADVBQCgugAAUF0AAKoLAADVBQCgugAAqlmkUCiYAgBAudnXBQCgugAAVBcAAKoLAEB1AQCoLgAAVBcAgOoCAEB1AQCoLgAA1QUAgOoCAFBdAACoLgAA1QUAoLoAAFBdAACqCwBAdQEAoLoAAFQXAACqCwBAdQEAqC4AAFQXAIDqAv6vnTt2hf+PAzj+Vjc5gwwSA4OZTBIlxSJlU8dkNTAYlOnOYLOxKLFcZruS4v4AZVDqDESuLO4GnbrvoJ9B/Xzdx+e+9/H9Ph7j1V2ve7/fd5+nDwEA1QUAoLoAAFQXAACqCwBAdQEAoLoAAFQXAIDqAgBAdQEAqC4AANUFAIDqAgBQXQAAqC4AANUFAKC6AABQXQAAqgsAANUFAKC6AABUFwAAqgsAQHUBAKguAABUFwCA6vqoUqmcn58n5I29vr4mZ5gQws3NTaVSMQMAqK4YpNPppaWlwcHBJOROKpXKZrMJGeZNW1vbxsZGc7snCTN8iGOTJHYSIxnmLzs20HzFYrERL5vJZGr1yOfzjXuPk5OT1Wq1rnkauuZnZ2dfn6RBG3RxcVFLgEwmk8/n692dRhgYGEjIJLlcLpfLlcvlWmIkcKTJycmE7FetVjs7O8tkMsViMQnDJOckLy8v5/P5RB0baLqWarV6e3sb17V8ZGQkhLC3tzc9PV3XEyuVSqlUijcsZmdnHx8ft7a25ubmUqlUXc+9ubmJd5i7u7uxsbFMJrO5udnX11fXz4txbVChUFhYWIgwQwihVCqtrKzEHn+Xl5cXFxddXV0RtqlSqRwdHcU1yf7+...

Ngày tải lên: 26/06/2014, 23:20

56 3,5K 49
Chuyên đề giải tích hình hoc 12_p1 doc

Chuyên đề giải tích hình hoc 12_p1 doc

... vectơ : =[ n JJG a J JG NB J JJG , ] = (− 15; −11; 17) Phöông trình (P) laø: − 15( x–1) – 11(y+2) + 17(z+1) = 0 ⇔ 15x + 11y – 17z – 10 = 0 b) A( 5, 0, 5) ; B (12, 0, 10) ⇒ = (0, −10, 0) OA,OB ⎡ ⎣ JJJG ... Vấn đề 5 KHOẢNG CÁCH Bài toán 1 : Tính khoảng cách từ điểm M(x 0 , y 0 , z 0 ) đến mặt phẳng α : Ax + By + Cz + D = 0 ắ Phương pháp : dM Ax By Cz D ABC (,)α= +++ ++ 000 222 Bài toán ... và song song với (D). Khi đó (Δ) chính là giao tuyến của α và β. Vấn đề 3 HÌNH CHIẾU Bài toán 1 : Tìm hình chiếu vuông góc H của điểm A treõn ủửụứng thaỳng (d) ắ Phửụng phaựp : ...

Ngày tải lên: 08/08/2014, 09:22

18 326 1
Chuyên đề giải tích hình hoc 12_p2 pot

Chuyên đề giải tích hình hoc 12_p2 pot

... =1 c) ABCE laø hình thang có đáy AB và E nằm trên Ox. ⇔ E y = 0 CE ⎧ ⎪ ⎨ ΑΒ ⎪ ⎩ JJJG JJJG // ⇔ E EE y = 0 x - 4 y - 2 = 0 - 2 3 + 1 ⎧ ⎪ ⎨ ⎪ ⎩ ⇔ hay E (5, 0) E E y = 0 x = 5 ⎧ ⎨ ⎩ d) H ... điểm E để ABCE là hình thang có một cạnh đáy là AB và E nằm trên Ox. d) Tìm tọa độ trực tâm H, trọng tâm G và tâm I đường tròn ngoại tiếp ABC. Δ e) Chứng tỏ H, G, I thẳng hàng. Giải a) D là điểm ... ⇔ BABA CACA x - x y - y x - x y - y = 0 . Với việc tìm góc của hai vectơ ta có: - Góc hình học tạo bởi hai vectơ a G , b G được suy từ công thức: cos( n a, b G G ) = 11 22 ab + ab a.b G G ...

Ngày tải lên: 08/08/2014, 09:22

5 280 0
Lý thuyết và phương pháp giải toán hình học tọa độ oxyz lớp 12

Lý thuyết và phương pháp giải toán hình học tọa độ oxyz lớp 12

... diện (P) cần tìm. VẤN ĐỀ 7: GIẢI BÀI TOÁN HÌNH HỌC KHÔNG GIAN BẰNG PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Việc sử dụng phương pháp tọa độ trong không gian giải các bài toán hình học không gian là một ... (d’) VẤN ĐỀ 3: HÌNH CHIẾU 1. Tìm hình chiếu vuông góc của 1 điểm M trờn mt mt phng )( ã Vit phng trỡnh ng thng d i qua M v vuụng gúc vi )( ã Gi H là hình chiếu của M trên )( α )( α ∩=⇒ dH 8 Chuyên ... trên SA ứng với trục Oz.  Với hình chóp có đáy là hình thoi tâm O ta thường thiết lập hệ trục tọa độ dựa trên AC và BD ứng với trục Ox và trục Oy. 12 Chuyên đề: Phương pháp tọa độ trong không...

Ngày tải lên: 17/08/2013, 08:07

11 34,7K 25
Phát triển tư duy sáng tạo cho học sinh trung học phổ thông qua dạy học chuyên đề “giải toán bằng phương pháp vectơ và tọa độ”

Phát triển tư duy sáng tạo cho học sinh trung học phổ thông qua dạy học chuyên đề “giải toán bằng phương pháp vectơ và tọa độ”

... c. Lớp 12 chuyên Lý - Năm học 2011-2012 - Sĩ số : 35 học sinh. - Giáo viên dạy : Thầy giáo Nguyễn Hoàng Cương - Học sinh trong lớp có trình độ học tập môn Toán tương đối đồng đều. Đa số học ... a. Lớp 10A2 - Năm học 2011-2012 - Sĩ số : 45 học sinh. - Giáo viên dạy : Cô giáo Nguyễn Phương Hạnh - Học sinh trong lớp có trình độ học tập môn Toán tương đối đồng đều. Đa số học sinh đều ... 2.2.3.2. Một số bài toán hình học phẳng giải bằng phương pháp vectơ và tọa độ *) Dạng 1: bài toán hình giải tích thuần tuý (chứa đựng sẳn các yếu tố về hình giải tích) Bài toán 1 a. Công thức...

Ngày tải lên: 09/02/2014, 14:58

17 1,6K 1
Các bổ đề hình học toán lớp 9

Các bổ đề hình học toán lớp 9

...    BD là phân giác góc   . 8 .5.      III. CÁC BỔ ĐỀ VỀ ĐƯỜNG TRÒN 1.  ...           ABOC là hình vuông        . ...                     5.   ...

Ngày tải lên: 23/06/2014, 22:38

13 6,4K 9

Bạn có muốn tìm thêm với từ khóa:

w