1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề giải tích hình hoc 12_p3 ppt

2 233 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 67,29 KB

Nội dung

CHUYÊN ĐỀ 2 ĐƯỜNG VÀ PHƯƠNG TRÌNH ĐƯỜNG Các bài toán về phần đường và phương trình đường thường yêu cầu xác đònh quỹ tích các điểm trong mặt phẳng tọa độ theo những điều kiện cho trước, quỹ tích này là một đường mà ta phải tìm phương trình của nó dựa vào đònh nghóa: F(x, y) = 0 là phương trình của đường (L) nếu ta có : M(, ) ∈ (L) F( , ) = 0 M x M y ⇔ M x M y Nếu M ∈ (L) và M có tọa độ phụ thuộc tham số t: ( ) () xft ygt =⎧ ⎪ ⎨ = ⎪ ⎩ (t ∈ R) thì đó là phương trình tham số của đường (L). Từ phương trình tham số, ta khử t thì có thể trở về dạng F(x, y) = 0 Lưu ý việc giới hạn của quỹ tích tuỳ theo các điều kiện đã cho trong đầu bài. Ví du1: Trong mặt phẳng Oxy cho A(2, 1), B(–3, 2). Tìm quỹ tích điểm M để (MA + JJJJG MB J JJJG ) A B J JJG = 1 Giải Gọi (L) là quỹ tích phải tìm. M(, ) ∈ (L) M x M y ⇔ (MA J JJJG + MB J JJJG ) A B J JJG = 1 [ (2 – ) + (–3 – ) ] (–3 – 2) + (1 – + 2 – ) (2 – 1) = 1 ⇔ M x M x M y M y 5 + 10 + 3 – 2 = 1 ⇔ M x M y 10 – 2 + 7 = 0 ⇔ M x M y M( , ) có tọa độ thỏa phương trình ⇔ M x M y F(x, y) = 10x – 2y + 7 = 0 Vậy quỹ tích phải tìm là đường thẳng (L) có phương trình 10x – 2y + 7 = 0. 1 Ví dụ 2: Lập phương trình quỹ tích tâm của những đường tròn tiếp xúc với trục Ox và đi qua điểm A(1, 2). Giải Gọi (L) là quỹ tích những tâm đường tròn tiếp xúc với trục Ox và đi qua điểm A(1, 2). I( , ) ∈ (L) I là tâm đường tròn qua A(1, 2) và tiếp xúc với Ox tại M I x I y ⇔ ⇔ IM Ox tại M IM = IA ⊥ ⎧ ⎨ ⎩ ⇔ ()()()() 22 2 00 MI M MI MI AI AI x x và y xx yy xx yy −= = ⎧ ⎪ ⎨ −+− = −+− ⎪ ⎩ 2 – 2 – 4 + 5 = 0 ⇔ 2 I x I x I y I( , ) có tọa độ thỏa phương trình ⇔ I x I y F(x, y) = x 2 – 2x – 4y + 5 = 0 Đó là phương trình của quỹ tích phải tìm (Parabol). * * * 2 . CHUYÊN ĐỀ 2 ĐƯỜNG VÀ PHƯƠNG TRÌNH ĐƯỜNG Các bài toán về phần đường và phương trình đường thường yêu cầu xác đònh quỹ tích các điểm trong mặt phẳng tọa độ. hạn của quỹ tích tuỳ theo các điều kiện đã cho trong đầu bài. Ví du1: Trong mặt phẳng Oxy cho A(2, 1), B(–3, 2). Tìm quỹ tích điểm M để (MA + JJJJG MB J JJJG ) A B J JJG = 1 Giải Gọi. quỹ tích phải tìm là đường thẳng (L) có phương trình 10x – 2y + 7 = 0. 1 Ví dụ 2: Lập phương trình quỹ tích tâm của những đường tròn tiếp xúc với trục Ox và đi qua điểm A(1, 2). Giải

Ngày đăng: 08/08/2014, 09:22