Ngày tải lên: 07/11/2013, 21:44
Tính gần đúng đạo hàm và tích phân xác định
... tổng: ∑ = = n 0i in fhS 163 a b b A B y x CHƯƠNG 6: TÍNH GẦN ĐÚNG ĐẠO HÀM VÀ TÍCH PHÂN XÁC ĐỊNH §1. ĐẠO HÀM ROMBERG Đạo hàm theo phương pháp Romberg là một phương pháp ngoại suy để xác định đạo hàm với một độ chính xác ... có: ⋅⋅⋅−− ′ = − = 6 6 ha 64 1 )x(f 15 )2,2(D)2,3(D16 )3,3(D (14) Với lần tính này sai số của đạo hàm chỉ còn phụ thuộc vào h 6 . Lại tiếp tục chia đôi bước h và tính D(4, 4) thì sai số phụ thuộc h 8 . Sơ đồ tính đạo hàm theo phương pháp Romberg ... b=(y(x+h)-y(x-h))/(2*h); return(b); } §2. KHÁI NIỆM VỀ TÍCH PHÂN SỐ Mục đích của tính tích phân xác định là đánh giá định lượng biểu thức: ∫ = b a dx)x(fJ trong đó f(x) là hàm liên tục trong khoảng [a,b] và có thể biểu diễn...
Ngày tải lên: 01/10/2012, 15:35
Chương 12 - Tính gần đúng đạo hàm và tích phân xác định pdf
... }; 204 Chơng 12 : Tính gần đúng đạo hàm và tích phân xác định Đ1. Đạo hàm Romberg Đạo hàm theo phơng pháp Romberg là một phơng pháp ngoại suy để xác định đạo hàm với một độ chính xác ... 2 15 1 64 6 6 == (14) 205 Với lần tính này sai số của đạo hàm chỉ còn phụ thuộc vào h 6 . Lại tiếp tục chia đôi bớc h và tính D(4,4) thì sai số phụ thuộc h 8 . Sơ đồ tính đạo hàm theo phơng pháp Romberg ... 200492284.4 14 )2,2(D)2,3(D 4 )3,3(D 200458976.4 14 )1,2(D)1,3(D 4 )2,3(D 19995935.4 14 )1,1(D)1,2(D 4 )2,2(D 21 2 1 1 1 1 == == == Chơng trình tính đạo hàm nh dới đây . Dùng chơng trình tính đạo hàm của hàm cho trong function với bớc h = 0.25 tại x o = 0 ta nhận đợc giá trị đạo hàm là 1.000000001. Chơng...
Ngày tải lên: 10/03/2014, 05:20
Phương Pháp Tính chương 6 - TÍNH GẦN ĐÚNG ĐẠO HÀM VÀ TÍCH PHÂN XÁC ĐỊNH
... 200492284.4 14 )2,2(D)2,3(D4 )3,3(D 2 2 Chương trình tính đạo hàm như dưới đây. Dùng chương trình tính đạo hàm của hàm cho trong function với bước h = 0.25 tại xo = 0 ta nhận được giá trị đạo hàm là 1.000000001. Chương ... 6 6 ha 64 1 )x(f 15 )2,2(D)2,3(D16 )3,3(D (14) Với lần tính này sai số của đạo hàm chỉ còn phụ thuộc vào h 6 . Lại tiếp tục chia đôi bước h và tính D(4, 4) thì sai số phụ thuộc h 8 . Sơ đồ tính đạo hàm theo phương pháp Romberg ... x x x x b a x x n2 2n2 4 2 2 0 fdx fdxfdxdx)x(f Để tính tích phân này ta thay hàm f(x) ở vế phải bằng đa thức nội suy Newton tiến bậc 2: 0 2 002 y !2 )1t(t ytyP và với tích phân thứ nhất ta có : 2 0 2 0 x x 2 x x dx)x(Pdx)x(f ...
Ngày tải lên: 16/03/2014, 20:45
Ứng dụng đạo hàm và tích phân vào khai triển nhị thức Newton
... Ứng dụng đạo hàm và tích phân vào khai triển nhị thức Newtơn Người soạn: Vũ Trung Thành 1 Trường THPT Bình Giang LH 0979791802 BÀI GIẢNG – NHỊ THỨC NEWTƠN PHẦN A. Áp dụng đạo hàm vào bài ... thi đại học - Chuyên đề : Ứng dụng đạo hàm và tích phân vào khai triển nhị thức Newtơn Người soạn: Vũ Trung Thành 2 Trường THPT Bình Giang LH 0979791802 Đạo hàm 2 vế của (2) ta được: 0 2007 ... 2006C x 2007C x 2007x 1 x 2 Đạo hàm 2 vế của (3) ta được: Luyện thi đại học - Chuyên đề : Ứng dụng đạo hàm và tích phân vào khai triển nhị thức Newtơn Người soạn: Vũ Trung Thành...
Ngày tải lên: 12/04/2014, 23:14
Nội suy đa thức, đạo hàm và tích phân
... tục 2.2. Đạo hàm số của hàm rời rạc 3. Tích phân 3.1. Tích phân hàm liên tục 3.2. Tích phân hàm rời rạc Ví dụ Tìm hàm xấp xỉ bậc nhất và bậc hai của hàm số cho bởi bảng dưới đây: a) Nội suy đa thức b) Phương ... suy đa thức 1.1. Vấn đề nội suy 1.2. Nội suy bằng đa thức Lagrange 1.3. Nội suy bằng phương pháp bình phương tối thiểu Nội suy đa thức Đạo hàm và tích phân 2. Đạo hàm 2.1. Đạo hàm số của hàm liên ... dụng công thức nguyên hàm với trường hợp hàm nội suy đa thức. 3.Cộng các diện tích trên các khoảng lại. Nội suy bằng đa thức Larange bậc hai Ta xây dựng đa thức dưới dạng: Nội suy đa thức Đa thức...
Ngày tải lên: 13/05/2014, 21:22
chương 5 tính gần đúng đạo hàm và tích phân
... h xfhxf xf h )()( lim)( 0 ' f(x) f(x+h) x x+h Tính gần đúng tích phân: Công thức Simpson 1/3 • Thay n=2 vào công thức Newton-Cotes rồi tính tích phân, ta được: • (1) gọi là công thức Simpson 1/3 )1(,2,, )()(4)( 3 )( 210 210 bhaxhaxax xfxfxf h dxxfI b a Tính ... )1(,2,, )()(4)( 3 )( 210 210 bhaxhaxax xfxfxf h dxxfI b a Tính gần đúng tích phân: Công thức Simpson 3/8 • Thay n=3 vào công thức Newton-Cotes rồi tính tích phân, ta được: • (1) gọi là công thức Simpson 3/8 )1(3,2,, )()(3)(3)( 8 3 )( 3210 3210 haxhaxhaxax xfxfxfxf h dxxfI b a Tính ... ,,)( 12 1 2'''' Tính gần đúng tích phân: Công thức hình thang (Trapezoidal rule) • Với n=1, đa thức nội suy có dạng: • (1) gọi là công thức hình thang tính gần đúng tích phân ...
Ngày tải lên: 23/05/2014, 15:26
Tài liệu CHƯƠNG 6: ĐẠO HÀM VÀ TÍCH PHÂN ppt
... 349 Để tính tích phân tadùngchươngtrìnhctgausskronrod.m: clc,clearall %tinhtichphanhamf(x)trendoan[a,b] f=@f2; a=0; b=1; J=intgkronrod(f,a,b) §16.TÍCHPHÂNGAUSS‐JACOBI Tích phân Gauss–Jacobi,còngọilà tích phân Mehler,dùngđể tính tích phân dạng: Taxét tích phân: b a J (1 x) (1 x) f (x)dx αβ =− + ∫ Theo công thức cầuphươngGaus‐Jacobitacó: b n ii i1 a J f(x)dx ... 341 A(1,:)=ones(1,n); b(1)=1; fori=2:n A(i,:)=A(i‐1,:).*t;%Pt.(7) b(i)=(i‐1)*b(i‐1);%Pt.(15) end w=b/Aʹ; Hàm intglaguerre()dùngđể tính tích phân: functionJ=intglaguerre(f,n) [t,w]=gausslaguerre(n); fx=feval(f,t); J=w*fxʹ;%Pt.(10) Để tính tích phân tadùngchươngtrình ctgausslaguerre.m: clearall,clc formatlong f=inline(ʹ(x.^2).*cos(x)ʹ,ʹxʹ); n=10; J=intglaguerre(f,n) 5. Tích phân Gauss‐Chebyshev : Công thức tính tích phân Gauss‐ Chebyshev1códạng: [] n GC1 1 2 n i i i1 J t,t, ,t wf(t) = = ∑ K (20) Công thức (20)chota tính tích phân: + − = − ∫ 1 2 1 1 J f(t ... pháp Simpson.KhidùngcácphươngphápGauss,cáccdiểmchiađượcchọnđểđạt độchínhxáccaonhất.Dophươngphápnàycần ítlần tính giátrị hàm dươci dấu tích phân nênthíchhợpkhi hàm f(x)khó tính. §5.CÁCCÔNGTHỨCNEWTON‐COTES 1.Kháiniệmchung :Takhảosát tích phân b a J = f(x)dx ∫ (1) Tachiamiềnlấy tích phân [a,b]thành(n‐1)đoạnbằngnhaucó chiềudàimỗiđoạnh=(b‐a)/(n‐1)nhưhìnhvẽ và kíhiệucácđiểmchialà a b A B y x ...
Ngày tải lên: 23/01/2014, 06:20
Đạo hàm và tích phân c nâng cao và c++ chap 12
... diện tích các hình chữ nhật f(x i ).(x i+1 - x i ) khi số điểm chia tiến tới , nghĩa là : a a b A B y x 204 Chơng 12 : Tính gần đúng đạo hàm và tích phân xác định Đ1. Đạo hàm Romberg Đạo ... 3.14159265. 205 Với lần tính này sai số của đạo hàm chỉ còn phụ thuộc vào h 6 . Lại tiếp tục chia đôi bớc h và tính D(4,4) thì sai số phụ thuộc h 8 . Sơ đồ tính đạo hàm theo phơng pháp Romberg ... 200492284.4 14 )2,2(D)2,3(D 4 )3,3(D 200458976.4 14 )1,2(D)1,3(D 4 )2,3(D 19995935.4 14 )1,1(D)1,2(D 4 )2,2(D 21 2 1 1 1 1 == == == Chơng trình tính đạo hàm nh dới đây . Dùng chơng trình tính đạo hàm của hàm cho trong function với bớc h = 0.25 tại x o = 0 ta nhận đợc giá trị đạo hàm là 1.000000001. Chơng...
Ngày tải lên: 27/03/2014, 11:32
Các công thức tính Đạo hàm, nguyên hàm của hàm số một biến.
Ngày tải lên: 11/07/2014, 00:01
khái niệm khoảng, đoạn trong phép tính đạo hàm, nguyên hàm và tích phân
Ngày tải lên: 30/05/2014, 15:26
Chương 2: Nguyên hàm và tích phân - Bài 1 : Bài tập sử dụng công thức nguyên hàm, tích phân ppsx
Ngày tải lên: 11/07/2014, 07:20
Đạo hàm và vi phân của hàm một biến thực
... → cos(x) 2 sin(2x) Chương 3 ĐẠO HÀM VÀ VI PHÂN CỦA HÀM MỘT BIẾN THỰC 3.1. Đạo hàm - Đạo hàm cấp cao 3.1.1. Định nghĩa Cho hàm f xác định trên N δ (x 0 ). Ta nói f có đạo hàm tại x 0 nếu tồn tại giới hạn ... f(x 0 ) và ta có (f −1 ) (y 0 ) = 1 f (x 0 ) . 3.1.3. Đạo hàm các hàm sơ cấp Sử dụng định nghĩa ta có thể tính được đạo hàm của các hàm hằng (f(x) = C), hàm đồng nhất (f(x) = x), hàm sin, hàm ... x 1 ). 3.4. Công thức Taylor 3.4.1. Đa thức Taylor Cho f là hàm có đạo hàm đến cấp n − 1 trên khoảng (a; b) và có đạo hàm cấp n hữu hạn tại điểm x 0 ∈ (a; b). Lúc đó, ta gọi đa thức sau là đa thức Taylor...
Ngày tải lên: 23/10/2013, 14:20
Bạn có muốn tìm thêm với từ khóa: