... ra photon). Năng lượng photon E trong hệ này bằng bao nhiêu? Năng lượng photon detector E trong hệ quy chiếu phòng thí nghiệm bằng bao nhiêu (tức là năng lượng photon đo được trong đầu ... là hệ các nuclon xếp chặt Trong một mô hình đơn giản, một hạt nhân nguyên tử có thể được coi như một quả bóng gồm các nuclon xếp chặt với nhau [xem Hình. 1(a)], trong đó các nuclon là các quả ... src=" /ly5 dOn36tKura7dvT//+/TMyMkJDQ729vRMSEjw9PXv16oVqgo6CB1jdFPcOfXTY2tpqa2sbGRkZFxfXQxdCfvny5fDhw4cPHx4REcGHUxz+rLS0NH19/VOnTi1atAjR6Fhr1qypqanBJE7fw4c9vlatWpWTkxMaGoo5KjqPvb39pEmT5s+fj1D8QGFh4dChQ+l0enx8vJaWFldt27t370aMGGFvb+/v74/LNugouG/BC1auXEkQRGxsbA9NUQiCMDQ0jI+PFxUV9fT0xIHgP504ccLLywtn9M6wffv2V69epaenIxRAEEROTk50dPT58+eRonT23QEvL6/MzEyE4ntev37t6uq6dOnSzMxMbktRCIJQU1PLyMioq6ubNGlSYmIi6guQpQBBEMTBgwefP3/+8OHDnr4m3ZAhQ+7fv//q1asdO3agWn/g06dP0dHRBw8epFAoiEaHExERmT59+uTJk1ksFqLB5+h0+pQpU5ydnbHyYGeztLScNGkSnmF+T2BgoKGhobOz85YtW+Tl5blzI6WkpC5cuFBbW2tiYvL8+XPUGiBL4XdZWVnr16/38PDgmft8y5cv37ZtG+5k/8CRI0dMTU1xZ7fzWFlZ5eTkoBFCQEDAq1evbG1tEYousGvXLozA/qbs7OzZs2fr6+svXryYyzdVSEjo1q1bVlZWe/fuRcUBshS+xmAwvLy8/vrrr2nTpvFMoZydnXfv3r169eqWlhZU8TdPVwcPHpw9ezZC0Xl0dHQWLVr0zz//IBTfxGQy+eE53rt379asWePt7a2np4dK7wJKSkrGxsY7d+5EKD5XWVm5cOHCbdu2RUdH94jZZWg0Wnh4OJVKnTNnDlaggt+EwUDdFPeOGIbl4eFRXl5+7do13ouPm5ubkJCQv78/nhh8Yfv27QkJCWFhYYhMZ98CGDx48KtXr6hUTIT4f7DZbBcXl6SkpISEBN4ePc+5tR8REYGJp7pMTEyMhYXF48ePeX7xjXZqamoaMmSInZ3doUOHetaWV1VV6ejoCAgIpKen9+7dG5dt8Gtw8O2RWltbPTw8rl69um3bNp4s4ObNm8PDwxcsWIBFbT/HYrHu3r3r6+uLFKWzCQgIWFpabt++HaHg2zT11q1bZ8+eRYrSlUxMTBwcHObPn19TU4NoEASxZcuWfv36bdy4scdtuaSkZEJCgpGRkbe3N+oRkKXwl3v37vn5+d28eVNbW5snC6ilpRUWFnbhwoXw8HBUd5vQ0FAFBQU1NTWEogs4Ozvv2rXr1atXCAUfOnPmjJaWloaGBkLRxXcH/v3336qqqrt37yIasbGxt2/fvnfvnrS0dE/cfiUlpeDg4NjY2Dt37qA2AVkKH7lx48aiRYtMTU15uIxDhw5dtmxZaGgoqrvNsWPHTExMEIeuYWRkJCwsjLX8+FBrayv2te4iISExd+7cuLg4Po9DXV3d3LlzXV1de/QYMBKJNH369EWLFjU0NKBtA7IUvvD8+fOMjIz9+/fzfEl379799u3b2NhYVDpBENevX4+Ojh4/fjxC0TXExMQ2b97877//FhcXIxp8ZevWre/fv58wYQJC0S02btz49OnTxsZGfk5RbGxsaDTasmXLenpZFixYoKqqeuTIETRsQJbC+5qbmx0dHd3d3XvEXB+/SUhIaN68eY6OjhUVFXxe70wmc9WqVZaWloMGDcJe0GVWr16toKDw4MEDhIJ/lJeX7927d82aNYqKiohGt5CQkBgyZMjJkyf5NgKXL1/Oy8vruX29PicuLn7nzp2AgIDm5ma0bUCWwuPi4+PLy8vHjh3LJ+W1sbGpqqry8fHh83rPy0pO9zAAACAASURBVMsrLCycO3cudoGuRKFQ5syZ8/LlS4SCf6SkpHDqHaHoRkZGRv/88w/fTql09+7dPXv2yMrK8kZxevfuPXz48KNHj6JhA7IUHvfPP//s2rVLRUWFT8qrqKh46NAhX1/fzMxMfq73yMhIIyOjKVOmYBfoYsuXL09MTMQElHx1gbhmzRplZWWEohuNHTs2Ozv7xYsXfFj2Bw8e1NTU8Fie7OHhsW3btuDgYLRtQJbCs+rr61+8eLF+/Xq+KrWnp6etrW1QUBA/V31UVNSGDRsEBQWxF3QxSUnJ3r1783mSzG/7Wk+c+JXHqKmpTZo0iQ9n+mpubnZzc3N3d+exKbBNTU0dHBzc3d3r6urQvAFZCg9is9menp729vZ8uFbG4cOH7927x2Kx+LPqWSxWVlaWvb099oJuYW5uvmfPHsSBH8THxysqKvLDqD/ut3nz5piYGH4r9Y0bN3r37u3o6Mh7RTt27JiSktLVq1fRtgFZCg+KiYkJCAjgzz4/qqqq8vLyDx8+5M+qf/HiRd++fYWEhLAXdIuRI0cGBgZiJk1+sGvXLgsLC8SBG2hra1dXV/PbTF9Xr149fPiwhIQE7xVNTk7u1KlTyFIAWQpvCggI6N27t46ODn8W38jIKCAggD/Lfv/+/f79+2MX6C4aGhoMBuPdu3cIBW9ramqKiIjg1aVye6L+/fvfv3+fr4qck5PDw4/NTU1Ni4uLmUwm2jYgS+EpJSUlV65c2bZtG992RbC1tQ0JCSksLOS3gjc3N/v7+w8dOhR7QXfp16+fgYFBYmIiQsHbnj9/zmazR4wYgVBwCXNz84MHD/LP3BXnzp0zMjKiUqk8e8VJJpuZmWHtFECWwmtiYmKkpKR4YIGnX2ZsbKygoMCH3ZQjIyPz8/OHDBmCvaC7cOalTU1NRSh4W2Ji4rhx4yQlJREKLjFs2LDY2Njk5GR+KCydTv/rr79sbW15u5i2trbbt2+n0+lo3oAshaeylLVr1woICPBtBEgk0oYNG/gwS7l27ZqcnJyqqir2gm40ceLEjIwMxIHns5TFixcjDtxDW1tbRkaGT5Z3PHv2bHl5ubm5OW8X09TUlMFgxMfHo3kDshTekZycvHDhQj4Pgru7e0pKCl8Vmclk3rhxw8HBAXMQdy8VFZWqqirEgbfl5eWNGTMGceAewsLC06ZNCwoK4vlb72w2+++//x49erSioiJvl1RWVnbixIlxcXFo3oAshUewWKyWlhYajcbncRASEmKxWK2trfxT5MrKyurqanSU5waioqI1NTWIA69qaWmhUqk8tkgFDzA1Na2vry8rK+PtYlZVVb19+9bGxoYf6tTGxiY3NxdtG5Cl8Ii4uDh1dXXEgSAIdXX1p0+f8k95OfNK4f4uN1BVVX327BniwKsiIiI0NDQQBy68opWQkEhPT+ftYqampnIeHPFDnU6ePPnNmzdo24AshUcEBQXx7QTEX9DW1uarRejz8vL69++PQSncQE1NLSIiAnHg4cOsrq4u4sBtJCQkbGxsXr9+zdvFTE9Pt7Cw4PnuXhxiYmKtra0YQA/IUnhEUlJSv379EAeCIPr16/fixQv+KW95ebmuri6JRELVdzs5OTmev6HLz5KTk/nkGrHHGTZsWGlpKW+Xsbi4mK969kpJSRUUFKBtA7KUHu/Tp0+pqalqamoIBUEQampqaWlpHz9+5JPy8tupi8sz5NTUVNz/40klJSWZmZk4zHInKysrnl9Tld9mblBTU4uMjETbBmQpPV5SUlJjYyP6/LQd2pqbmxMSEvikvB8+fBg8eDDqnRv06dOnvLy8uLgYoeA90dHRra2tyFK4k66u7ocPH3i7jKWlpXy1KJaKigpfDTEFZCk8KzU1VUBAQE5ODqEgCEJWVlZISIh/5iMuLy/X09NDvXNJlsJms1+9eoVQ8GSWIi0tjcMsdxIQEGCxWCwWi4fL2NraKiwszD91qqCgkJKSwmaz0bwBWUqPz1L69OnTq1cvhIIgCBqNpqio2ElXikwmMzAw8O3bt9xT3sbGRhkZGdQ7N+BURHZ2NkLBe5KTk3V1dfl52Vwu17t37+rq6p/6CIPBePjwYU8pIIVC4asKlZOTy83N7aQOtJxTOSY7RpYCXeHjx4+ysrIYP91GVla2k8alxMfHT5s2TU9P7/79+1xS2NbWVlw5cQlBQUEREZHKykqEgve8e/cOvWq5mbi4eH5+/k995OzZs3Z2dsuXL+f+9VhZLBa/neJFRUUbGhqam5s771Suq6vLPadyQJbCs96/f48Jvj6nrKz8/v37zvjmAQMGzJ07V0JCYuLEia6urvwz+gXag0KhyMnJdVLbg25UV1dXWVlpYGCAUHCtPn36/GxH37Fjx44ePdrX11dZWXn9+vXcPLLl48eP/NZdonfv3gRBdNLUbZ+fyqdNm3bp0qWmpibsRMhSoFOUl5fLyspy4YYxmcySkpK4uLhLly6dOnXq9OnTwcHBsbGxP/tc/mfJycl10rMUWVlZf3//wsJCOzu7oKCgUaNGbdq0qb6+vhsjjGdo3INEIikqKiJL4T2VlZVMJlNbWxuh4FpycnKZmZk/9RF1dfUHDx4EBAT06tXLx8dHRUUlNDSUO0tXX1/Pb8/MBQUFOQXv7FN5YGDgjBkzxo8f342ncvgdVISAyzU1NYmIiHDDlrDZ7A8fPqSkpDx58iQpKam+vr53794SEhJSUlJCQkJsNrupqam2trasrKypqalXr15GRkZWVlZmZmbi4uIduBnCwsKNjY3Hjx//doOmUslk8o+PjN8kICDQ9sEJEyZQqdTbt2/v3Lnz+PHjy5cv//PPP6Wlpbs+S6FSsYdykV69en369Alx4DE1NTUEQeCRNTfr3bv3vXv3vjjsUyiUL4ZzkMnkL46ZZDJ5+/bt/v7+CQkJU6dOdXBwGD9+/JQpU2g0GveUjsFg8Nu4FM7ZNiEh4Xt9Fr6uyi/O19+7hff1qfzBgwcRERHKysrddSoHZCm8jMFg/ODauiuvmNetW3f48GEqlbp06dJz584pKyt/7zDBYrGKi4uPHTvm5OQkJSV15MiRyZMnd9QFN5VKZTAYy5Yt65qCV1VVbd++/cCBAyEhIWPHju3imONZClfhZMiIw+d3LnigFLW1tRQKpW/fvqhQriUmJhYXFxcXF/c7X9LS0hIcHBwcHPzw4cOLFy9yT+mEhIRaW1v5qkKZTCZBENHR0VevXu3KU/nBgweDg4O7+FQOyFJ4maCgYLcvJPf27VtXV9ecnJxdu3ZNnz5dWVn5x+8nk8lKSkr79u3z9PT08vKaOnWqnp7etWvXtLS0OiRtI5PJ48aN++Zfm5qafnC4b2xs/N50lo2NjZzjZpuioiJOZ1YpKamAgAAbG5suDjuLxfrBcyHgz50ROlxjYyOVShUTE0MouJaoqCiNRhs9evTnL9Lp9JaWli+OmV/fR6DT6VVVVW19NVVVVb29vbntwMLb8yx/L0sZOHCgg4PD997wg1tCPziVf30NUFFRwXkGLiUlde7cua4/lQOyFF5Go9EaGhq669ffvHlz6dKl+/fvT5kypT35yRcUFRUDAwPXrVv35MmTmTNnWllZeXl5ycvL/84mNTQ0iImJ3b59u/NKHRYWdvjw4by8PG1tbXt7+yVLlnTXcm+YTp6rkEgk1AjvaW5ulpCQwB0BbiYsLCwpKfkLh/2cnJzw8PATJ04QBDF+/HgvLy9TU1Nu6J7wORkZmW48y3cLTnmXLl36m9cD7TmV5+fny8rKzpkzpxtP5YAshWd13sS7/+nu3bsODg6DBg16+PChgoLCr30JmUw2MjIyMjKaPXv2uHHjIiIiYmJifmf5qoqKis5bQiQnJ2flypVhYWEEQaxcufLgwYPdWPW4bOI2LS0tQkJCiAOPYTAYoqKiiAM3ExAQ+IXOlr6+vsuXL+ekAXfv3rW1teXO0gkJCfHbQ9ra2loajSYhIdFJ35+dnb1y5crw8HCCILS1tW/fvq2uro79qCfCZRC3k5KS6pYlGurr6z09PadNmxYXF/fLKcoX6VZ0dDSbzba1tf2decA+ffrUSaPfcnJyBg8eHBYWJiwsvH///n379nXzzkkm4849V6HT6dx2FxZ+H5PJRLVyOQqF8kXnrv/04MEDLy8vgiDExMSCg4O5NkXh4LceX7W1tXJycp00s1lOTo6BgUF4eDjnVJ6cnIwUBVkKdBYVFZXCwsKuPIS1trYeO3ZMX19//vz5Fy5c4Mxr3iFERERCQ0NlZWUHDx4cFRX1C9/AZrMLCwtVVFQ66TwxYsSIefPmxcfHr169utsnXaFQKF8MlYHu1djYiJvuPJml4BEZ72UpbDZ70qRJwcHBRUVF5ubmXF5Azqww/FOhHz580NfX76T+Al+cyrF392jo8cXt9PX1L1++3NDQ0IHZwo8FBgZ6eXmdO3du5syZHf7lioqK165du379+rx589LS0n52kuWmpqaioqI5c+Z0RsG1tLQiIiK46ryFLIWrlJeXd8gMEMBVyGQyX10g9kQsFutn77uPHTu2B03lJCkpmZubO3DgQD6p0MLCwmHDhnXSl3PbqRx+6/iMEHA5Q0NDJpPZZevmZmRkHD16NDIysjNSlDZTpkyZPXu2iYlJcnLyT32wrKyMTqcPGTIEDQO6GJPJLCsrU1JSQih4jKCgICaY5nJ0Op23H2Oqq6s/fPiQfyo 0Ly/ P2toaDRuQpfR4w4cPFxISKigo6ILfqqqqMjc3nzlzppmZWWf/1oYNG2g0mqWlZXl5efs/lZ+fT6VSR44cyS/7J5nMb/Pocy0Gg1FVVYW1/3iPgIAAZ85x4Fqtra28naVoaWndvHmTfyq0qKjI0NAQDRuQpfR4NBpNTU2trKysC37rzp07zc3Nrq6uXfBbFArlwoULFAqFM6FWO5WXlysrK/PPygZUKhULdHAJztSZcnJyCAXv7WX8Ng9sT7xH8LPdg3sWJSWlly9fNjc380NtcsbZdtRCz4AsBboTiUSyt7fPysrq7B9qbW318/O7deuWrKxs1xRNQ0MjPDw8ICCg/cMiMzMz7ezs+GeKXhkZmS6oemgPTq9LfX19hILHiImJNTU1VVRUIBRcq7a2lrcfY+rr69fU1Ny4cYMfajMiIgLrlgCyFN7h4uKSnp7e2b/yzz//9O3b18rKqiuLNnLkSA0NDc6SW+2RkZExZcoU/ql6eXn5V69eYRfgkixFVFS0f//+CAXvZSksFqukpASh4Fp1dXWKioo8XEAVFRVdXd2TJ0/yQ22eOnXK2NgYrRqQpfAIQ0PD9+/fd+rSGenp6evXr3dzc+v60s2YMWPr1q3tuURgs9nv3r0zMTHhn6pXUFBISkrCLsANSkpK+vfvLy4ujlDwGE6dFhYWIhRcq6amRllZmbfL6OXlFRsb2zVjULtRWVlZWFgY/wwuBWQpvE9AQKCze/5s3LiRQqHY2dl1fenGjBkjIyPTnulNCgoKxMXFf2fd+h5HRUUlMjISuwA3yM/P5/5VF+AXSEtLUyiUjIwMhIJrffz4cdCgQbxdxhkzZigpKUVHR/N2MWNiYmg0WudNQwzIUqAb9O/fPzw8vJO+vKGh4eHDhy4uLj9Yx5DFYnXSBpDJ5KlTp7anX9OdO3f4rb+NvLx8dnb2zy5nBp2hvLxcT08PceA9oqKioqKiPH8Pu0errq7upMV8uQeVSnV1dX358iVvFzMlJcXJyQlD5wFZCk8ZNWrU33//XV1d3RlfHhsbS6VS16xZ8703NDY2Tpky5ejRo5z/0ul0f3//by4eX1JS4u/vX1NT81Mb4OnpmZiY+OP3 0On0 gwcP8tvNbHV1dTqdzvN313qEd+/ejR49GnHgPSQSSV9fPyUlBaHgWmVlZTo6OjxfzNWrVz99+pSHZ59nsViPHz/evHkzmjQgS+EpFhYW79+/9/Pz64wvT05OdnR0/EGv30uXLpHJ5LaZtRobG+fPn+/v7//1OzMzM+fPn/+za1DKy8uzWKwfTwb68uXLd+/eWVhY8FW9q6io9OrVKzQ0FLsAN1wnaWpqIg48ydDQMD09HWsTca36+noJCQmeL6a0tLSamlpQUBCvFvDRo0fS0tJYGxeQpfAaOTk5IyOjf/75hzPReMcqLCz88TKOd+7cOXLkSGcX8Mf9wlNSUrS1tfv27ctX9S4gIGBgYBAbG4tdoHvR6fQf9IfkN0wmk8eioaOjU1dX10kPq+E3cc56JBKJHwo7YsSIv//+uzNO9N2OzWYfOXKEr+a/AWQpfOTQoUO5ubkJCQkd/s0FBQV//PHHN//EYDA2bdo0cuTI37yPxWazf3zY1dDQiIiI+HGmdPjwYT6sd86gnY8fP2IX6EYPHjzAgxQezlLGjBlDEMS7d+9QuVwoNze3y1bx6naTJ0/Ozs7+8dmwh9q/f39UVJSLiwuaNCBL4UGjRo1yd3cPCQnp8G+ura1VVVX95p/Wr18fGBi4fPnyX/7yN2/eTJgwQUVFRUNDY/Xq1bW1td98m5KS0g+GppSVlRUXF1tbW/NhvXOO6V2wYA78wKVLl3R1dREHXtW/f39lZWVkKdwpMjLye2co3qOsrLx9+/aAgAAeK1dhYeH69evXrFmD2z3wUzDNQk+yY8cOW1vbxsZGUVHRDvxaFov1zQk38vLyfH19hwwZMmvWLCaTmZKS4uLicurUKc4AlZaWlk+fPn2d8Hz+37CwsIULFxoaGs6ePZvFYt28efPp06d3796VlJT84oOSkpLfm2OnpaVlwYIFEydO5M9Kl5OTmzx5cmJiIoZud5eampqwsLAFCxYgFF8gkUi80Q+HRCKNGzcuMzOzC36LxWJVVVUVFBSUl5c3NjYyGAyCIHr37i0rKystLa2oqCgkJISm1YbNZoeGhtrY2PBPkZcuXXrt2rXY2FheWlTk+PHjLi4u69evR5OGnz4EQNf75cjPnz9/y5YtHbsxZmZm33ydyWTW/09ZWZm1tXV9fT3nFPvjRpWZmclmsz9+/CggIODs7Nz2hQwGQ01Nbc6cOV//1tWrVzU0NL65Gfv27SORSLm5uXzbWp48eTJlyhTsNd0lKiqKTCZXV1cjFJyum46OjgMGDCgrKysqKiopKamurqbT6SwWq0eXKzIy0sXFpVN/orCwcOXKlXJycpwbPYKCgvLy8ioqKioqKm03nqSlpefNm5eSkoKWxlFVVSUgIPDo0SO+KvW5c+fExcULCgp4ozgVFRX9+/dnMBj8edkGvwM9vnoYc3Pzo0ePNjU1dcFvkclk2v+IiopSKBQajdb+W6dpaWkMBuPzWbmoVOrw4cNv3LjR/gVAOBMQW1hYqKmp8W2lDx8+HAtjd6Pc3FwdHR2sOs/bDAwMfnZywvZraWnx9vbW0NA4ffr0qFGjfHx8Xrx4UVtb+/79+7y8vLy8vMrKytevXwcHB9vb21++fNnExGThwoXPnj3jXBvxs8TERAaD0a9fP74qtYODQ3Nz859//skbDWD9+vVWVlZYIwV+5UIUIehZJkyY0K9fv3PnznXx7woKCs6YMePzV6ZPn970lbt377a9IS8vjyCI0NDQhZ95/fp1TU1NcnLy19kIjUb7+nfPnz8vJSV17tw5Ppng5ZtERETExMSysrLQ/rtFdHT02rVrEQfeJi4u3tLS0rE3gNhsdkhIiL29/eDBgxsbG0NDQ4uLi69fv7569eohQ4YICQlRqVTOJO/CwsLa2tqTJ08+f/58dXX1nTt3pKSktmzZYm1tfe7cubKyMr6tl8uXL/fp04ff7lLJyMiEh4cnJSVdvHixp5clJCQkNDR05cqVOMjAL0Bq28OIiYmFhoY6OjouWbKkoy7cOY/VfvxtgoKCbm5un79CoVCEhYW/flvbvznnexaLVVdX1/aijo6Ojo7O1x+sra39+m4Zm80+fvz4zZs3+Wfo5PeYmpoePHiwkxbMgR9LTU09e/Ys4sDzBgwY8ODBgwkTJnTIt3369Gn69OnJycl+fn6Ojo5t6039J0FBwdGjR3PGoUVEREyZMmXx4sWcbIffaqSlpeXKlStLliz5/MzCJ8aMGXP//n1HR0cXF5eeO1SJyWRu3LgxNDRUS0sLRxj4BXiW0vOoqamZmpouXry4ubm5Q76QRqOVlpZ2+HZy5o5cuHDhlc/s2rVr69atX68iXFJSYmBg8PkrdDrdy8vL2Nh4wIABqHQLC4vLly+/efMGoehiDx8+VFNTw2Ip/MDY2PjEiRO//z2tra137twZP378oEGDEhISJk6c2P4U5etL1YKCgosXL+7Zs2fVqlXl5eV8VSPJycksFmv+/Pn82SB1dHRmzZplaWnZeX0RO1VWVtbYsWMdHR1HjBiBwwsgS+Eja9as8ff3//PPPzvk25SUlKKjozt8I42MjEgkUnh4+OcvzpgxY+TIkZxpbT6Xl5f3xRxW69atO3bs2Lp161DdBEGYmZmJiopu3LgRoehKbDZ71apV/DkFNh8aOnTogwcPKisrf+dLGAyGk5OTg4PDihUrDh8+/PtdlcTExJydnW/evPn48WN3d3e+GqmSmJhoYWHx9V0t/rFhwwaCILZs2dLjtrysrMzExOTDhw/btm3DsQWQpfAXDQ2NRYsWnT17tkPGKigqKnbGYpHq6uqjRo26fv36/fv3OVMDnTp1KiEhwdPT8+shKKWlpYMHD277b25u7tGjR93d3TG3OoeAgMDUqVPDw8Pr6+sRjS6TkJCQnp5uaGiIUPCDAQMGUCiU33xiee7cubCwsJ07d06ZMqUDt01GRiYqKiorK2vHjh38UyNv3rxxdHTk8yN/cHBwWFhYRkZGz9ry06dPCwoK3rhx4+sO3gDIUnjf4cOHvb29169fz2Qyf/OrDAwMAgMDq6ur29toyGR5eXkxMbGv/8SZW5PTPYZMJt+6dcvNzc3V1ZWzDsDmzZtXr1799QOBxsbGpqYmGRkZzn9ZLJa3t/eKFSt8fX1R0W02bNggIyPz+fwE0KkYDMbq1asHDx48ZMgQRIMfSEtLT506NTIy8tc+zmazr1+/7u/vn5CQsGHDhg6f8ENMTOz69esXLlywtbXlh/H0LBYrOTl5zpw5fN4s+/bte/jwYUtLyx07dnRUN+9O1djYePjw4fv37ycmJuI+I/wuTMbcoyfetre3X7du3W9+yYcPH8hkso+PTycVlslkfvz4saSk5HsrKpw8eXLevHlt/922bZu1tTUaydcCAgKmTZuGOHSN2NhYgiBiYmIQCn5YL4UjMzPzjz/++LXPcvrNch4dd57a2lojI6OlS5fyfEtLTU21s7PDHsfx4MEDUVHRbdu2cfl21tXVGRgYCAgIpKen47INsF4Kv5s3b97+/ftfvXr1O18iJydnYGBw+fLlznpgRybLyMgoKCh87+bixYsX9fX1Of/OyMjYvn373LlzUblfc3V1TUtLwxIKXSMuLm748OGmpqYIBf/Q0tIqLy9nsVi/8NkLFy44ODj88ccfnbqFvXv3vnXrVnh4eE1NDW/XxeXLl7W1tdEmOaytrcPDw48fP56WlsbN23nkyJE3b95cvnyZn0cTQUdeQCIEPdqECRMOHDiwfPnyjx8//vKXkEik/fv3Z2ZmxsXFdX0RXrx4kZiYaGNjQxBEZWWlh4fH7t27nZ2dUblfExERMTQ0PHXqFELR2dhsdmho6KlTp/h5oR7+NGTIkF+YeDo0NDQ7O/vKlSu/PJ1X+/Xt23fp0qWWlpZVVVW8WgsfP348efKkra0tGmQbS0vLEydO2Nrazps3r7i4mNs2r6ysbNmyZU+ePHn16lXHDsoCZCnQY+uPTPby8jIyMho6dOi7d+9++XusrKyWL1/eeY9TfuDKlSvu7u4DBw4sKioaNmyYvr7+2rVrMfHr90ybNs3T0/N3klJoj/v374uIiHwxOzbwAzs7uw0bNvzUNBVpaWlTp0719PTs1atX12zkn3/+WVlZeenSJV6thcePHwsLC1tYWKBBfs7JySkpKSk3N9fR0bGhoYF7NqylpcXJySk+Pj44OBiLBwCyFPg/tm7dOmbMGDMzswcPHvzyl2zatOn58+fZ2dldueUFBQUxMTG7d++OiIgYPny4mZkZZi38z3xy+PDhFy5cQCg6T2Vl5fz5893d3REK/tzFOBN4tLNrZW1trbOz8+jRo8eNG9dlGyksLBwWFhYYGNja2sqTtXD79m0fHx8BAQE0yC8oKChERERMnjxZR0fn7Nmzv9Y7sQOVlJSsXbtWW1vbysoqNjZWQkICdQQdCUNzeGYY1v379+Xl5bOzs3/5G/bt2zdw4MCWlpauCUJzc7OhoeHOnTvz8vL69Olz+/ZtNIz2eP/+vaGhIeLQeU6dOqWoqEin0xEKfhs9z3Hw4EHOPZT2vPnq1atiYmLl5eVdv50uLi7nz5/nvTZWX1+vq6uLfe3HcnNzVVVVzczMXr161V3b8PbtW01NTSMjo27cBoyex+h56BlsbGwmTpw4atSoX178xNHRMTs7+/79+12zwRs3bkxJSRk6dOioUaPGjRvn4OCASmwPRUVFUVHRbhlExCcePHiwceNG3MflW3PmzJGQkIiPj2/Pm+Pi4hYsWCArK9v122lqaurr68t702lcvnz58+Wz4JvU1dWDgoJevXplbGx848aNrt+A+/fv6+vrq6urx8bG6unpoUagMyBL4SkHDhxYuHChk5PToUOHfuHUpaWldePGjb17975//74LzkPnz59ftmzZtm3bZs2adeTIEVRf+3l4eLi6ur5+/Rqh6HARERGVlZWLFi1CKPiWlJTU8ePHr1692p43JyQkrF279nt/ZbPZt27dioqK6ozttLW1TU5ODgoK4qXgv379+q+//sIEKu0xbNiwoqKiK1eunDhxYuzYsUFBQS0tLZ39o4WFhQcPHrS3t9+zZ8/Zs2dv3LghKCiIuoDOgsdJvPfosKqqauDAgZMnT25sbPyFj2/eNY+kwAAAIABJREFUvLlPnz6/03PsP+Xn50tJSXEWyzt79izaw89qbW3V1tbu379/l3XP4xOFhYXi4uIXLlxAKPi5xxeHkZFRXl7ej9/z5s0bGxubH7yB80DG1dW1rS9TaWlpXV3d11H98OFDaWnpT/UzZLFY5ubmAwcO5JngM5lMIyMjZWVlBoOBfe2n3LhxQ0FBQVpaev369ZWVlZ3xEwUFBVu3bqXRaLq6uoGBgby3y6PHF3p8QVeQkJC4e/eumJjYuHHjIiIiGAzGT318zZo1kyZNsrS0vHnzZodvW0NDw5YtW4yNjRsaGrS1tR89eoSlUX4BhUK5efOmiIiIn58fotFRKioqbG1tjY2NJ02ahGjAzJkz3dzcfjzbr5+f37Bhw773VyaTefLkyT59+rS9cvz4cQUFhUOHDn3xzsbGRmVlZQUFhTdv3rR/C0kk0rJlyzIzMwsKCngj5vfv38/NzQ0KCqJSqWiBP2XixInp6emHDh2qq6uztrZ2dnbeunXr48ePOSnx75yyo6Kidu7cOWbMGGdn59LS0hs3brx69Wrq1KmYpR3wLAVJ+W/5559/SCSSrq5uYWHhz372xYsXMjIyQUFBHbtJ8+fP55xcT58+jWbwm96/f9+/f3/cdOwoe/fuHThwYENDA0KBZylsNruiokJISGju3Lk/CEW/fv1+cJDctm3bnj17dHR02p6l+Pj4EATx9Qri9fX1nG4zqampP7WRDQ0NYmJi4eHhvBHzKVOm4NTw++h0emho6PTp00VERAQFBR0dHQMDA7Ozs1tbW9vz8dbW1tzc3MOHDw8bNkxISEhYWHjy5MkvX77EZRuaVtfD7QpeNnv2bBEREU9Pz8mTJ9++ffvzW3r/aciQIZ6entOnT09ISPDx8fn9O1tMJnPbtm0BAQHy8vIHDhxwc3NDBf0mRUVFLS2to0ePrly5EtH4fTdu3PD19RUVFUUogCAIaWnpefPm+fn57dq165sHz48fP5aVlX3vuFpcXLx37960tLSLFy923kaKiopqamqWlZXxQMCbm5tTUlIwzfrvExAQcHR05EyHc+bMmatXr966dYtEIg0YMGDEiBEGBgbq6urS0tKSkpLCwsIEQTQ1NdXV1eXn52dkZLx79+758+c5OTkkEklPT2/x4sULFy7U1tZGVKFbIEvhcS4uLvb29qdPn7a0tLS0tJw/f76BgUE7Uw5vb28dHZ2LFy+OHTvW09PT2tpaRETkF7ahtrY2JibmwIEDOTk5Pj4+S5YsodFoqJoOsWnTJhsbG0NDw9GjRyMav6yhoWH16tWDBg0aM2YMogFt9u3b9/79+xMnTmzfvv3rv6akpDAYjH79+n3zsz4+PpcvX9bQ0Pi1n2YwGDExMQ8ePCgrKxMWFjYzM3N1df3mcrcmJiZcuBL5z6LT6a6urq6urpzrZugQAwYM2L9//549e4qKikpLS/Py8oqKit69e5ecnNzY2Njc3MxZb0dQUFBAQEBCQkJaWlpbW9vGxkZNTa1///7y8vKIIXQzPE7ik0eHTCZzxYoVBEEoKSk9fvz4pz579epVCoUybNiwzMzMn/3dixcvcm5Oe3h4MJlMVH2Hu3DhgpmZGeLwO12YnJycBAQEfqFjJHp88XCPL47GxkZNTc2mpqav/+Tr60sQRE1Nzdd/Ki0t7dOnz6RJkyZNmiQmJtavX7+DBw+2v8dXS0sLZ9l1VVXVWbNmmZmZkUgkBweHb/bY8fX19fLy6ulxDg8PJ5PJxcXF2MUAl23QBqPn+QWZTD506FBgYKCcnJy9vf2ff/6ZlpbGbt+gOmdn59evXzMYjEGDBo0cOTI6Oro9n3r27Nno0aNnzZo1YMCAS5cuHTt2jExGe+t4bm5utbW19+7dQyh+TWJiYnBw8Lp165SUlBAN+IKIiIiRkdHevXu//lN1dTVBEN+890+lUk1MTNoubr4+Nu7/v44cOcJkMtve8OjRo6ioKBkZmaioqPPnz8fExCxZsiQsLOzZs2dff5ukpGQXzD/b2W7evDlv3ry+ffuiyQHA/z+WIgT8g0QiTZ06derUqdHR0aGhocuXL6fT6WZmZubm5sOHD5eWlv5BFqGlpfXs2bO4uLiUlJT9+/evWLFCXl6e07dVQkJCUFCQzWY3NTXV19cXFRXl5OQUFRWJiora2dlt27bN3Nwcwe/Uaj1w4ICLi8umTZtWrFiBVPCnNDQ0rFu37tixY0uWLEE04JtWr15taWlpbW1tamr6+euc3jLf3ONkZGTaFtrT1dXV09P7fPAYp9//5+9nsVgsFqvtvyEhIaKioo8ePVJWVua8smHDhtOnT4eGhn59OCWTyZ9/tieKiop6/fr1o0eP0NgAAFkKvzM3N+ec6goLCw8cODBr1qzq6moNDQ1Ot+ABAwZ8c9VtERERKysrKysrzuk2IyMjMjLy3bt3qampycnJbQtBSkhITJ8+fc+ePaamprhi7hrW1tZHjhxxd3fX0tKyt7dHQNqJyWS6uLioq6svW7YM0YDvMTIy2rlz5549e8LCwj5/nfMUpbW19ccj/WxsbNqSDQ4vL6/Nmzd/kS1LSUnR6XTOf1+/ft27d++goKC2FRvZbLaoqGhmZubX39/c3PzN8So9RXZ29rhx4/z8/H5t3CMAIEsB3qSsrHz06NHdu3e/fPkyLy8vPT19zZo1FRUVZDK5V69e8vLyMjIyIiIiNBpNWFiYMzk6nU5vamqqqampqKgoKytrbGxkMpl6enqurq56enpqamoGBga9e/dGbLvY7NmzpaSktm7dqqmpOWDAAASkPXbu3FleXn7q1CmEAn5s+fLlDx8+PHDggJeXV1tKoKioSBBETU3Njwd8f706yn/iJB5v3779/EVbW1sdHZ2v3/z+/XsxMbEeGti8vLwxY8Y4Ojo6OTmhmQEAshT4Uq9evUaNGjVq1KjPz5FVVVWpqak5OTmfPn0qKSmpra1lsVgkEolGo0lKSg4YMMDBwUFfX19CQgJTsnCJ8ePHZ2VlDRs2LCsrC3Oz/Kd79+5dunQpLS1NSEgI0YAfI5PJ27ZtMzY2ZjAY3t7enBc5OUNZWVmH7269e/cmkUhXr15tz5tfvXo1cuTIHhrYffv2DR069PLly1giEACQpUC7CAsLKygoKCgo2NraIho9yNy5c/ft23fs2LGdO3ciGj8QHx8/derUTZs2IUWBdjIyMrK3t9++ffvMmTM5sw+rqakJCQl9/Pixw39LUVExJCQkNze3bSLj5uZmOzu7KVOmeHh4fPHm169fOzo69sSQVldX37t3LyEhASkKAHwThg0A8A4pKamXL19GRUXt27evsbERAfmm27dvOzo6enh4YDgK/JTAwMAFCxasWrWKM1pdQkLCzMzsm2NFfpOLiwudTh8/fnx0dHRjY2NFRcXWrVsjIyO/fnCdkZGRnZ2tqanZ44IZFxdnamrq6emJB78AgCwFgC8oKiqeOXNm06ZNFhYWSFS+lpubu2DBgtu3b+/evRudFeGn9OrV6+jRo9XV1bt27eK8MnPmzJSUlA7/oYkTJ548ebKgoMDCwoJGo8nKyu7bt2/58uXu7u5fvPPSpUsEQejq6vasSBYWFlpaWiopKXl6eqJdAcD3kNq5YgZ0cNxJiDx0ovT09D179jQ3N//zzz+YzKDNrVu3Fi5cePDgQTc3N0Tj17DZ7IkTJ2ZmZsbExNDpdAqFIioqKioqSqVS+aTfTmpqqp2d3d69e2fNmlVXV2dtbR0bG9vO+QwLCwvz8vJUVVVVVVU/f53JZD59+pTNZhsbG/fq1YvzYlVVVVRU1IcPHwQFBfX19Y2Njb/4trq6Ok1NTQeH/8fenQdYOTcKHH/OzDRStE+NaCNZK5XQJmrw1lCo0OSNVLZXyHJzLWWyhMK178S91ZWsryZqWlDSIikJSZumyaSkbcycmXP/eO47d+6UhNJMfT5/nXnOc86cec45c57v+T3L2c8991wZWvi5ubk9evQ4+uij77zzzooVK3pPYbUNleLlzn6nd+/ec+fOfeeddxo2bGhpzJo1q0uXLm+//fYpp5xiaaiUP2P58uVt2rSZOXNm3bp1u3btevPNN7dt2/avfxgTJ04855xzvv322zJ0QtLCwsLzzz//wAMPHDNmjHcTVtvYOVt8wT5ryJAhWVlZ7du3X7169X6+KN59990zzjijd+/eEoU/r379+l27dj3//PN/+umnpk2bPvnkk3vlYcydO/f0008vQ4kSltU777yz/TEAALbnGF+wzzriiCO+/PLLp5566sILL3zwwQdPOumk/fBYOgUFBffdd9+LL744ePDgcHf5hQsXzpw5s2iGHj16VK1aNbw8a9ast99+OzU1tcRZxqGE9PT0vn37Nm/ePD09/YEHHhg5cuSll176Vz6AaDQ6fvz4V155pQwttFmzZt1+++1vvvlmYmLis88+WzS9W7du1atXnz9/fmZmZl5eXr169c4777wKFSp4mYFKAfZZtWvXvuuuu5566qlWrVqNHTu2e/fu+9Wf/+OPP/79739fvXr1F198UXRm69GjR993331F87Ru3TqslA0bNqSkpGzevDkpKalNmzYbN278+OOPd3i3cXFxp59+emJiohfYfispKemdd9655557HnzwwZ49e/bv3/9vf/tbcnLyX/YAhg8fXr9+/aJDFZd+r7zySt++fZ999tmuXbv279//+eefL7qqZcuWWVlZzZs3L1++fCwWy83NHTp06B133JGTkzN37twgCBo0aHD00UcXzb9u3bo5c+YEQXDsscfWq1dv69atH3zwQRAEderUKXMHEgBUCuzXrrjiisWLFw8cOPDkk08uW9uH/Blr165t06bNypUrp02bVpQoQRBkZ2dXqVLltttuC/d4LlqzfOuttzZv3lw021dffdW5c+cd3nNiYuLq1atr1KjhpbWfu+222zIyMn744YcKFSpMmDBh+2Nw7SE//fTTsGHDnnrqqbKyoD7//PN+/fq1aNEiPHBFdnZ2w4YNr7rqqvDaQw89NCMjIxaLjRw5slWrVi1atPj000+DIJgzZ05qamoQBB07dszMzCy6t08//TR8bz766KMDBgxYvXp1+OPll1/+zDPPeFnCPsN+KbAfvM/j4h599NH09PTWrVv36tXrm2++2bf/3vz8/LFjx3bp0uWCCy5YvHhxiTNzL126tGHDhjVr1jz00EOvuOKKMDZ+/PHHhx566Iwzztj+3sqXL1/j/6tevfouHtOJfd7IkSM3bty4devW4cOH//DDD3/NLx02bFirVq3OO++8MrGI5s6d279//4ceemjq1KnhCOTSpUuPP/74KlWq1K9ff8CAATVr1gwPRVhYWLhp06aDDz64UqVKxe9h2rRpxbcQKyESiSQmJiYmJiYk+OIV9i0x9gZLnr1i48aNl1xySe3atRcuXLgP/5nXX399QkLCe++9t8Nra9euHZZbEARHHnnkli1b8vPzTzvttHPOOeeFF14IguChhx6KxWKffPJJ+E+yb9++XjlFCgsLu3Tp0qhRo7Vr165atSorK+unn37Ky8srLCzcn5fJ7bffHolEmjZtmpubu6d/3axZsxo1apSfn18mFs706dPj4+Offvrpoinbtm0LxzbD92D79u3z8vKi0Wjfvn2LvhdYvHhxLBYbP3588RQpeke/99574cRHH300XP5bt27dunVrXl6edyhW2/Ylvg6E/UilSpVGjhw5fPjwCy64YMCAAWvWrNmX/rr169cPHz78lFNO+eGHH7766quzzjprh9/L3HHHHTNmzNiwYcM999yzZMmS1157rVu3btOnT//HP/6xbdu2IAhyc3Pz8vJ28ZeOHz/+0ksvTU1NPe+88wYPHrx8+XIvs/1NJBK566677r///kWLFt1www177nCleXl5d999d2pq6ogRI0r/uEF+fv6rr7567bXXvvjii/369SuaXlBQMHz48M8///ynn3664YYbPvjgg7vuumvatGmvvvrq5ZdfPnTo0CpVqjz88MPbv3MvvvjiHb6/cnJyBg4cOHDgwLFjx3o1grEURDllW0FBQc+ePQ844IDrr79+69at+8BftGrVqqZNm9arV+/dd9/dxZuEW7pfcskl2/9jfO6553ZlLGXcuHHx8fHFb9isWbN9e1TBWMpOZGRklC9fvl+/fnvoS/1hw4YdcMABvzZIWKr8/PPPp556aiQSmTJlyk5mC8+akpqaeuONNwZBsHr16lgsdueddyYnJxcfSzn00EPDC4MGDdp+LKVoE9bLL7/cixCrbcZSgLItLi7umWeeOf/88x999NG+fftGo9Ey/edMmzbtuOOOO+igg+bPnx/ubvtrvvzyy+OOO27RokVBEPz4449BEFSvXr3Cv4QbzZfYwD0jI+P0Yop2BtiyZUu/fv0KCgrq1q377LPP3nfffZFIZP78+W+88YYX2P6pU6dOAwYMeP7553v27Lnrw3G76Ouvv3744YfHjRu3w0HC0mbo0KGzZs169tlnTz/99BJXvffee8cff/ymTZuCIFi3bl0QBIcffnh4kPTw8BVr164tsd9X0Zs6/A7CKw2MpSDK2fctX778+uuvb9iw4cUXX/zBBx+UrQefk5Pz1FNPde/evXXr1iNHjty8efNv3iQvL+/EE0887LDDevfufeSRRzZv3jw7Ozv6L88991wQBA8++GBhYWHRWEoJSUlJ4V29/fbbYeSsW7cunDJixIggCBo2bLht2zZjKfunX3755dlnnz3xxBP/9re/ffHFF7vlPvPy8u6///46deq8+uqrpX8JLF68uGvXrl26dFmxYsUOZ1i/fn2jRo2OPvroPn361KlT56yzzlqzZs3kyZPLly9/yimndO3aNTExMRwVKRpLefzxx++///74+PhIJDJw4MCMjAxjKVht2x84IAbs1+rVq/fwww+np6c/8sgjZ511VkpKyhNPPFG3bt1S/rALCwvHjx9/9dVXx2KxW2+99Yorriix5dWvKVeu3IQJE+6///4lS5ZcdtllgwYNKn6my5YtW95zzz1t27YtPrFdu3bFjzBbvnz58ELRutHQoUPDC+HgzLfffrtw4cKWLVvuq6+Z/Pz8cuXKee/sUGJiYv/+/fv169ejR4/jjz/+ySefLDre7h/7GnHSpEkDBgxITExctGhReCCs0mzhwoVnnnlmly5dnnjiiV/bc6Zq1aqZmZnDhg3Lysr693//93D5JCcnf/PNN3fffff69esfeOCBq6++uvhNIpHIv/3bv61du/ahhx56+OGHK1as6JUG+wOVAgSVKlW64447evToMWrUqG7dujVs2LBNmzapqakNGjQoVY8zNzd31qxZc+bMefPNN6tUqXL//ff36NHj964x16hRY/jw4Tu8qmnTpk2bNi0xsVGjRjs8D0a4SU9ubm7xM9mHcZKfn78Pv1pisVjximN7kUjk5Zdfbt++/X333Tdq1KjTTjutR48eTZo02cXlVlhYuGzZstmzZ48aNeqnn37q06dP3759S3mizJkzJz09/csvv3zwwQfT0tJ2PnOdOnWefPLJ7Sfu/Gwn995779SpUz/77LPiZ4QE9mH2SwH+19FHH33XXXd9/PHHp5566tNPP33MMcf06dNn5cqVpeGx5efnT5w4sWXLlh06dBg3btwTTzwxfvz4tLS0vfilfrVq1YIgqFu37ux/mTVrVnihxBla2A9VrFhxwIABEydOXLFixT333NOsWbNWrVq9++67O98HLD8/f8aMGeecc0540sM+ffpMnz79lltuSUpKKrV/aUFBwfPPP9+hQ4cTTzxx8eLFv5kof1h4tI8gCLKzs73AQKUA+51y5cpdddVV8+fPv+eee8aOHduiRYshQ4aEW9jvrXWgF1544cgjjzzrrLMqV678ySeffPzxxyeccMJeX1D16tULgmDZsmVZWVnhlCFDhpxxxhnDhg3Lzc31QiIIgqOOOmr+/PmXXXZZEASzZ8/u0qXLEUcc0b179yeffPKTTz5ZsmTJypUrV65cOXv27BdeeOHmm28+4YQT2rZtu3jx4hdeeGHZsmXdunUr5X/gunXrOnfu3L9//0GDBt15550HHHDAHv11nTp1KtrkEtjn2eIL2NG/hoSEG2+88Yorrpg8efKUKVOuv/76TZs2NW3a9Mgjjzz55JObNm1auXLlPfSrw336586du2TJktmzZ3/33XfNmjVLT08//vjjmzZtWnpOE3HqqaeeeuqpH374YcuWLVNTUyORyEsvvRSLxVJSUqxIUaR69eovvPDCeeedN2LEiNWrV7dr165BgwaLFi2aOnXq1q1bw6GVihUrJiUl1ahR4+abb27cuPFxxx1X+l9Ca9eufemll1577bUOHToMHjz4rxk/TEpKev3117t16+aLAFApwH7toIMO6tq1a9euXYMgWL9+/ejRozMyMm677bbCwsJ27dqlpaWdeOKJjRs33i3lsHnz5kWLFo0bN27MmDFZWVmVK1dOSUm54YYb2rVrVzr3gqhYseKUKVM6d+48ceLE8OBgQRAMHDhw0KBBXjmUcPbZZ5999tlPP/30VVddlZyc/Nprr7Vt27aM/i2xWOz999/v169f5cqV33nnnSOOOOKv/O2dO3fu0qWLEzjC/iDi 0ON7 Z7lHLHnKqq+//nr06NGvvvrq119/HQTBIYcc0rFjx3bt2rVo0eLwww+vUqXKLkZFLBb7+uuv582bt3Tp0kmTJs2cOTMajZYvX75Dhw69evXq3r17ePaSvWXDhg0ffvhhEAT16tXbyQZmmzdvHjNmzOLFi3/55ZfTTz/93HPPLf0nBf+Ta6idO3f+/vvvJ0+enJeXFx8fH55qJiEhwS71u2LSpEm33nrrkiVLHnzwwUsuuaTMvVpWrFjRu3fvjz76qHv37v/5n/+5RzfxWrt2bXhA8CZNmhQ/kse3334bnvKocePGhx9++JYtW8IztNavX3/7o1+A1TaVgpc7+5dYLLZmzZo1a9YsXbp06dKlq1atWrNmzYYNG7Zu3Rq+wsuXL5/wL+H84TlJtm7dGp5bIxKJJCUlHXLIIVWrVm3QoMERRxxRq1athg0bHnTQQRavStm3l2FGRsbzzz//5ZdfduzYsWfPnqecckopP7hzQUHB+++/Hwb5Oeec06FDhzZt2pQ49yJYbWP3ssUX8Af/ZdeuXbt27dotWrTY4XrYxo0b8/LycnNzf/nllyAI4uPjExMTK1SoUKVKFSs37OfvndTU1NTU1Gg0euutt7Zv375169aPPPJIs2bNSuFb4+eff3700UdfeumlH3/8cciQIc8///ye3kUe4H//W0pDUQ6wi4yl7HYrVqx48803//nPf2ZnZ7dr1y4lJaVdu3a1atXaiw+psLBw/vz5U6ZMWbBgwcKFC0866aQTTzwxNTW1du3ani+stqFSvNwBVMp+JC8v7+GHHx42bFh+fn6PHj3OPvvszp07V6hQ4a98DLm5uS+//PKIESOWLVvWvn37nj179urV68ADD/TsYLXNattfz3YXALD3JSYmDho0aNWqVTfeeOO4ceN69OjRtGnTBx544NNPPy0oKNjT8TllypQePXocdthhV199dc2aNSdMmDB58uR+/fpJFGCvxaE0FOUAu746ayzlL5CXl7dixYpPPvlk1qxZy5cvz8rKqlKlyrHHHtuwYcNatWodccQRderUqVGjxh/Y537Tpk1r1qzJyclZunTpd999l52dvXjx4k2bNjVo0KBFixbhCZHq1q3rKQCrbSrFyx1ApfAbVq5c+cYbb0ycOPHzzz/Pzs4uLCw88MADjzvuuMMOO6xu3bp16tSpXr16tWrVKlSoULFixXAv/M2bN2/evHndunWrVq1at27dd999t2DBgqysrCAI4uLiGjZs2LFjxyZNmnTp0sUOJ2C1TaXg5Q6oFP6UnJyc1atXh4cC//nnnzdu3Lhx48Zt27Zt27YtPz8/Pz8//Hw54IADypUrV6FChUqVKoWH16tVq9YhhxxSu3btatWqVa1a1ZIEq22lmSMRA0BZkpSUlJSUtJOTjQLsA+w9DwAAqBQAAACVAsDuFYvFbKgNgEoBAABUCgAAgEoBAABUCgAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABQKRYBAACgUgAAAFQKAACgUgAAAFQKAHtWNBpNSEiwHABQKQCUFoWFhZFIxHIAQKUAUOpE/sWiAEClAAAAKgUAAEClAAAAKgUAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAACVAgAAqBQAAACVAgAAlCkJFgFlwuLFiy+++OKiHyORSGJiYmJi4mGHHda8efO+fftWrlw5CIJt27a1a9cuFovt8E5OPvnkJ598srCwsG3btr/88ssO57nyyiv79+8fBEEsFps6dep77733wQcfLFu2LDc3t3Llyo0aNerWrVv//v3LlSsXzv/GG2/cc889JR5YfHx8rVq1Tj755PPPP/+II44IgmDhwoWXXnrpTv7Ajz/++IADDvBEA+xGCxYsuOyyy2KxWGpq6tChQ4tf9dBDD40aNWqHt6pSpcrjjz9e/EOnhLi4uIyMjKSkpN69ey9atGiH81StWnXSpEmRSOSxxx4bOXJk8asOOOCAChUqNGrUqFevXm3atPE0gUqhDNuyZcu8efN2eNWoUaPWrFkzfPjwIAgKCgrmzZv3a5VSrVq18MJnn32Wm5u7w3nWrFkTXhg7duxFF11U/KpNmzZ9//33U6ZM+e///u/x48cffPDBQRDk5OT82gN7/fXXhwwZsmzZslq1au3k8YcKCws9ywC71y233PLpp58GQfDDDz+UqJTvv//+1/4tV69efevWrTv5px3SPiPjAAAgAElEQVQXF5eXlxcEwVdfffVrsyUlJYUXVq9evcN5Jk+e/NRTTz355JNXXXWVZwpUCmXeRRdd1KBBg3C1fvbs2VOnTg2CYOLEiWGlFDnqqKPOOOOMErc96qijiv9YtWrVXr16lZjnpJNOCi88/fTT4YV69epdd911tWvXnjNnziOPPBKNRj/66KMrrrhi9OjRxW/Yrl27pk2bhg8sKysrIyMjLy9v27ZtU6dOLV47xxxzTMeOHXfwVkzwZgTYnVauXDl58uSiVFi4cGHjxo23n+2SSy4Jv3UqUrFixZo1a15zzTXhj4WFhc8880xBQUG9evXOOeecIAgikUjFihWL5m/WrNn2QyIHHXRQiSn9+vUrX758EAS5ubkZGRlZWVlBENxxxx39+/f3EQA7EGNvsOR/rzlz5oSv2Pfff79oYn5+fuvWrcMPg3DKpk2bIpFIEAS9evX6tbsqKCgIPyeOOuqoX5vnlVdeiY+PD4Lg1FNPXb16ddH0pUuXhh9ykUhk2rRpsVisKGb+4z/+o/g93HvvveH022+/PRaLzZw5M/yxT58+nk3KrsLCwg4dOjRr1mzt2rWrVq3KysrauHFjXl5eYWGhhUNpe61eeOGF4cBI+N1Wx44d8/LyimYYOHBg+G952bJlO7+r3NzccIvcTp06lbiqZcuWQRDceOONO7n5oEGDwl+0bt26oonbtm07/vjjw+lff/2158tqG9uz9zxlWHx8/NatW4MgqFmz5u5N9yFDhhQUFBx44IHjxo2rXbt20VWHH354nz59wnmKvqLboaKxfgD+eqtWrRo7dmz4ZdOtt94aBMHkyZNff/31UvLwypcvX7Vq1fBy+OUaUIIRRsqYFStWhLsqFhQUZGRkzJ8/P/wQ2v7z6a233ioxsVmzZvXq1SteI1u2bCnxsRGWz/Lly4MgaNGixfaxEe4NHwRBOFj/a6ZMmRJeqFu3bvHpK1eu3P6BNW/evMRsAPwZn332WfgVeJMmTc4777x//OMfeXl5L7zwQokdDoMg2LZtW/HPgvj4+HC8fdd9++232/9jb9OmzU6+rvrmm2/Cz69y5coV/y4MUCmUVZdffnmJKcnJyddee22JiR9++OGHH35YYuLzzz/ft2/foh+XLFkSHhmsyNtvv52amrphw4bws+2EE07Y/gEUjdusX7+++PRhw4Y988wzQRDk5uZu2rTpxx9/jI+PP/30088777zis02ePHn7QZiXXnpp50cAA+B3ee+998ILKSkp1atXb9u27ZQpU6ZMmfLll18ee+yxxecssbNKx44d33///d/1u95+++233367xMTJkyd36NCh+JTWrVuH2xJv2bIlKysrGo0ec8wxw4YNK76LC6BSKKuqVKmSmJiYn5+fm5ubn58fjUazs7P79Okzb968uLj/24KxatWq249OFB3jq8gOjwa2i4fbKjHb2rVr165dW/Tj2Weffd999x133HHbP4Y6der85gMD4M+YMGFCEARJSUmtWrUKguCMM86YMmVKYWFhRkZGiUr5tcNC7rqkpKTtx0O233v+m2++Kf5v/9Zbb73hhhts7gUqhX3Eq6++euaZZ4aX169f//TTT99xxx2ff/75bbfdNmzYsKLZOnfu/F//9V87v6uGDRsW7ZQfCr/QqlatWrly5fLz82fPnl1YWFg8foIgWL16ddHHUvHpt99+e1pa2sSJE2+66aZoNJqVlbXD2unateuLL77oeQTYc8aOHbty5crwv/rf//73IAi+//778Krx48ffdNNNxWeeP39+8W+1/sDhtnr37j1ixIjfnG3OnDnRaDQzM/Pee+/96aef1q1bJ1FgJ+w9TxlWrVq1gQMHhkeQfOedd373qz8urvL/F344HXTQQeGhw2bPnr39IP60adPCCyW+jatRo8Yxxxxz3XXX3XnnnUEQzJs3r3Xr1l9++aWnCeCvVFhYeNNNN4UjJMuXLx8zZsyYMWM++uij8NqPPvqoxF6FBx98cPEPgj23/VWDBg1OOeWU8CutwsLC+++/v8TZHgGVwr5jyZIlmzZtCnb3RlO9e/cOL9xwww0///xz0fTNmzcX7SIZnh1lezfffHN4bMrNmzdfeeWVf35bAgB23dKlS1etWhUEQZ06dY4vJjx6SkFBwcsvv7x3H2F4iORYLHbTTTcVjc8DJdjiizLmueeemzRpUnh548aNb775ZmFhYUJCws0331x8tnnz5pWYEgTBwQcfPHjw4F2slFGjRk2ZMmX58uUdOnQ499xzK1Wq9P33348aNSorKys+Pr5Pnz7t2rXb4W0TExP/+c9/tm7d+rvvvvvoo4/GjBmTlpZWdO2cOXO2f2BBEFx33XWHHXaY5xfgTwr3m69cufK8efNq1KhRNP3nn38++eSTv/rqq4ceeujKK6/cjb/xgw8+2OE/9kGDBhV/AEU6dux48803jxgx4scffzzrrLM+/PBDeyeCSqHMGzdu3PYTL7zwwi5duhSfsnjx4sWLF5eY7ZBDDtnFSklISBg5cuTJJ5+8Zs2aTz/99NNPPy26qnz58qNGjTr//PN3cvNatWrdcMMN4XmLhw8fXrxSvvjiiy+++GL7m1x00UUqBeDPC/ebb9WqVYlCqFSp0tChQy+44IJ169ZNnTp1N/7GuXPnzp07d/vpV1xxxQ4rJS4u7oEHHvjwww9nzZq1aNGil19+uegUk4BKoYw55JBDbrvtthITy5UrV7Vq1fr166ekpIRTEhMTw7N37VC4B0skEhk0aFA0Gt3hh0eROnXqLF26dMaMGVOmTFm2bNm2bdsqVarUqFGjrl27Fj9sZfPmzcMHdtJJJxW/ee/evXNycqLRaCQS+e677w499NDtH3+JP9CzDPAnxWKx9u3bN2/efIfD3eeee256enpeXt7BBx+ckpJSoUKFIAiqVKnyG6tKCQm33HJLNBpt1KhRiav69OlTdECX7YUjJB06dAh3ejzwwAOLXztixIhw2Cf8bAJKiNhofu8s94glD5TJVcCUlJQNGza89957eXl58fHxFStWPPDAAxMSEhytCLDaxm5k73kAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAACVAsAflp+fn5iYaDkAoFIAKC1isZiFAIBKAQAAVAoAAIBKAQAAUCkAAIBKAQAAUCkAAIBKAWAfF4vFwkMSOzAxACoFAABQKQAAACoFAABQKQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKBSAAAAlQIAALArEiwCAHZd1apV8/PzI8VYJgDsdpFYLGYp7IXlHrHkgbInFotFo9G8vLytW7fm5+fHx8dXqFChfPnyCQkJcgWw2sZuZCwFgN/3aR0XF1euXLkgCOLi4uLj4/UJACoFgL2ZKJFIJD4+vly5cnFxcUWVIlQAUCkA7M1QiYuLS0hIiIuLC4tFogCgUgDYm8I4iYuLC7fSDn+0WABQKQDsTeEmXmGlSBQAVAoApahVLAQAVIoPeAAAUCnsSQ68DQBQ+vlmea+IswgAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAAD2UwkWwd4SiUQsBAAA2MGqciwWsxQAAIDSwxZfAACASgEAAFApAACASgEAAFApAACASgEAAFApAACASgEAAFApAACASgEAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKBSAAAAlQIAAKBSAAAAlQIAAKBSAAAAlQIAAKBSAAAAlQIAAKBSAAAAlQIAAKBSAAAAVAoAAKBSAAAAVAoAAKBSAAAAVAoAAKBSAAAAVAoAAKBSAAAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAUCkAAIBKAQAAUCkAAIBKAQAAUCkAAIBKAQAAUCkAAIBKAQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAQKUAAAAqBQAAQKUAAAAqBQAAQKUAAAAqBQAAQKUAAAAqBQAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAAJUCAACoFAAAAJUCAACoFAAAAJUCAACoFAAAAJUCAACoFAAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAFQKAACgUgAAAFQKAACgUgAAAFQKAACgUgAAAFQKAACgUgAAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFApAACASgEAAFApAACASgEAAFApAACASgEAAFApAACASgEAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAgEoBAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABQKQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAACoFAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAABApQAAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKgUAAAAlQIAAKBSAAAAlQIAAKBSAAAAlQIAAKBSAAAAlQIAAKBSAAAAlQIAAKBSAAAAVAoAAKBSAAAAVAoAAKBSAAAAVAoAAKBSAAAAVAoAAKBSAAAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAVAoAAIBKAQAAUCkAAIBKAQAAUCkAAIBKAQAAUCkAAIBKAQAAUCkAAIBKAQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAUCkAAAAqBQAAQKUAAAAqBQAAQKUAAAAqBQAAQKUAAAAqBQAAQKUAAAAqBQAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAQKUAAACoFAAAAJUCAACoFAAAAJUCAACoFAAAAJUCAACoFAAAAJUCAACoFAAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAJUCAACgUgAAAFQKAACgUgAAAFQKAACgUgAAAFQKAACgUgAAAFQKAACgUgAAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFQKAACASgEAAFApAACASgEAAFApAACASgEAAFApAACASgEAAFApAACASgEAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAFApAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAKgUAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAEClAAAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgDAvuDxxx9//PHHLQe2F4nFYpYCAAB7YU00EgmCwOoo2zOWAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAqBQAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAACVAgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAoFIAAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABUCgAAgEoBAABQKQAA7G05OTlpaWk5OTkWBSoFAIC9acaMGeGF7OzsMWPGNGnSRKigUgAA2GtycnK6d+8eXm7cuPFjjz2WnZ2dlpYWjUYtHFQKAAB/tWg0mpaWlp2dXTTlmmuuSU9Pz8zM7NSpk1BBpQAA8FfbsGFDZmbmtddeW3zi4MGDe/bsmZmZeeONN1pERGKxmKUAAMBfafny5fXr149EIkEQFK2ORqPRTp06ZWZmpqenDx482FJSKQAA8Jevif7/SglDpU6dOtnZ2ePHj+/cubNFtN+yxRcAAKVFQkLCggULkpOTU1NTiw4Cxv5YsMZSAAD4C4QHGk5KSvq/NdHtxlKK5qxZs2YQBMuWLatfv75Ftx8ylgIAwB63cOHCmjVr3n333bsyc1JS0vTp04MgaNWqlZOo7J+MpQAAsGcV7W1SYmzk18ZSQhkZGampqcnJyatWrUpISLAY9yvGUgAA2LN69+6dnZ09atSo37X5VufOndPT07Ozs51EZT9kLAUAgD0oHBJJSUmZNGlSyTXRnY6lhIYOHTpkyJAd3px9mLEUAAD2oJYtW6anp7/11lt/7Oa33nprSkpKZmbm0KFDLcz9h7EUAAD20proLoylBMXO9vjYY49dc801lptKAQCAvVwpQRDk5OQ0adIkOzt7+vTpbdq0sej2ebb4AgCgtEtKSgrP9ti2bVtne1QpAADwu+Xk5Jxxxhm7NyeSkpImTpwYBEH37t2dREWlAADA7xCNRsP93StVqrR777lx48bTp0/Pzs5u0qSJUFEpAACwq2688cYFCxakp6c3btx4t995mzZtHnvssezs7LS0NCdR2YfZex4AgN2m6OwoEyZM+M0Txu/63vMlFJ1EZVd+C2WRsRQAAHab7777LgiC0aNH79F4GDx4cLhR2b333muZ75OMpQAAsNts2bKlYsWKu7om+kfHUoJiJ1FJT08fPHiwJa9SAABgd6yJ/olKCUOlTp062dnZ48eP79y5s+W5L7HFFwAAZVJCQkJ4EpXU1FQnUVEpAADwf6LRaEZGxl751UlJSTNnzgyCoG3bto5NrFIAAOB/derUKTU1dfny5Xvlt9evX3/69OlBEDiJikoBAIAgCILHH388MzOzZ8+e9evX31uPoU2bNuPHjw/P9ugkKvsGe88DAPAHLVy4sEmTJsnJyatWrfoDhx7+k3vPl+AkKvsSYykAAPxBF198cRAEM2fOLA1VMHjw4GuvvTYzMzMtLc1TU9YZSwEA4A+aMWNGpUqVGjdu/AfXRHfrWEoQBNFo9PDDD1+1apWTqKgUAAAoFZUS3me1atXWr1//2GOPXXPNNRZyGWWLLwAA9hHhrvOnnXZacnLygAEDnERFpQAAwF72/fffB0HQrVu38GyPbdu2XbhwocWiUgAA2MelpaUdcsghpfOxvfLKK0EQ1KtXLykpady4cUEQnHnmmU6iUhbZLwUAgF01evToXr16paSkTJo0aTesie7W/VK2bNly0EEHNWnS5PPPPw+nzJgxo23btsnJyQsWLEhKSvL0lSHGUgAA2CU5OTm9evVKTk5+6623SuHDe+mll4IgGDZsWNGUNm3aPPbYY9nZ2Wlpac72WLYYSwEA4LdFo9EWLVosWLBg+vTpbdq02T1rortvLGX58uUNGjTY4fklne2xLDKWAgDAb0tISFiwYEF6evruSpTdaMuWLa1atQqCYOLEidt3yODBg1NSUjIzM++9917PY5l5vVkEAADsitK5DU40Gj333HOzs7NHjRr1a+eXnDBhQqdOnYYMGRJGi6ey9DOWAgDAzuTk5Fx33XWlc7+OnJycFi1aZGZmXnvttWlpab82W0JCwoQJE5KTk4cMGZKRkeE5VSkAAJRtc+bMefTRR2fNmlXaHtjChQubNGkSbof2yCOP7HzmcIu15OTk1NRUZ3tUKQAAlGEZGRlbt24NgmDFihWl51FFo9GhQ4c2adIkOzt7/Pjxu7gRV1JS0syZM4MgaNu2rZOoqBQAAMqkGTNmpKamjh07NgiCUjKWEo1GR48eXadOnSFDhoQnQuncufOu37x+/frTp08PgqBJkyZCRaUAAFDG5OTkdO/ePQiCJ554IgiCaf/T3v3H1Fnm+f+/OmF2jKcdteNh7qYlLUocreWuLjqkgNsP8QZTSrZVG8w5zJIY7aYoHLaSzWxrAj24pTGmY+DQ0qS6TbpyWNm6I5mWrvQ42gwHQ2Y62vuMTLNL5DZg5pbbVDfTO5lM70y/f1xf7z0LtKXA+f18/EVvKOf0Pkdzvc77ut7vDz9M7fOxbTscDpeUlNTX1wsh+vr6pqamrndc/gbKy8vPnDljmqaqqgxRIaUAAAAgYziO4/f75X4qr9cbDAZ1XU/JcQ7btqPRaFVV1cqVK+vr6+UplImJCb/fv+jhJzU1NcFg0DTNbdu2EVTSE1MdAQAAMJsckhgIBOSpdNu2V65cqarqxYsXl3MlOmeqo+M409PTQojR0dGxsbGBgQHTNOW3NE3bu3dvdXX1ck1mbGlp6e7u9vl84XCYV5yUAgAAgHRn2/b58+fjI4Hf7+/v71/GwfNuSpmZmZHn4Of+gKIolZWVtbW1O3bs8Hg8y/tvdBxn27ZtkUgkGAwyRIWUAgAAgMxjWVZ+fr48sO71epc3pbS0tLgXa2trhRDr169/6KGHlj2ZXC+ohEKhpqYmXmVSCgAAADJMNBqtqKhQVfXChQvLsu1q7o6vlKQvWclZ3jIRlojT8wAAAPhfNzhNXl5eLo/Rb9u2zbbt7Pj3er1eOe2xoqIiFovxBiClAAAAII0YhrFixQo5HeV62traAoFAJBIpKirKmnkjXq/31KlTQojq6mqGqJBSAAAAkC4cx9myZYsQ4qYTSLq6ukKhkGma+fn5Q0ND2fHPLy8vHxkZkUNUCCqkFAAAAKSFhoYG0zRDodBC5iQ2NTXJCe7bt2+vqqoyDCM7gopMX36/nyEqpBQAAACk2NDQUH9/v6ZpC+9zVV5ePjMz4/P5IpFIYWGh3+/PghJEU1NTMBiMRCJMeySlAAAAIMW++eYbTdPefffdW/pbXq83HA5PTk6qqtrf35+fn19VVTU0NJTRB+vb2to0TYtEIp2dnbwxUohOxAAAAFiqaDR65MiR/v5++Uefz1dbW1tcXPzAAw/coGdxOnQinotpj6QUAAAAZA85sX7fvn26rrsXVVV98MEHvV5vaWmpvFJVVSXnQqZnSpFBpaCgwDTNM2fO1NTU8MqSUgAAAJANceWzzz6LxWKnT592CyzxueXixYvpnFIE0x5JKQAAAEjJKry3t7exsVGWNZKQW9zj9V6v1+PxpHlKEUIYhlFYWCiEmJmZSc5dAikFAAAgdzmOU1JSout6atffaZ5ShBDRaLSiokJRFF3XCSrJRI8vAACAnNPa2qrrejAYZOV9Y+Xl5X19faZpappGb+KkJlhqKQAAADlF1gdUVb1w4cINGnAlYyWa9rUUqaOjo729XdO0s2fPpvaO5Q5qKQAAALnlyJEjQohIJMKCe4Ha2toCgUAkEmloaOBuJCnBUksBAADIKbFYTFGUdNjrlSm1FMEQFVIKAAAAcmUlmjkpRcS1HOjr6/P7/bx8pBQAAACQUlKPIZJItQYAACAASURBVCpJw7kUAACAnGAYBjdhibxer67riqJUVFTEYjFuCCkFAAAAi1dVVSUHFGLpQeXUqVNCiOrqandOJUgpAAAAuDU9PT2RSMTn83ErlkV5efnIyIhpmqqq2rbNDUkEzqUAAABks1gspqqqoihTU1Pp1no4486lxGOICikFAAAAi7RmzRrTNCcnJzds2JB2K9FMTikElYRixxcAAEA2q6ysPHPmTBpGlCzQ1tamaVokEuns7ORuLHOCpZYCAACA1KxEM7yWIpj2SEoBAAAAKSUN2bZdVFTEEJXlxY4vAAAAYPE8Ho87RCUajXJDlifBUksBAADIMj09PUKIpqamdF+JZkUtRTIMQ06kmZmZ8Xq9vAmXiFoKAABAVhkaGmpubv7v//5vbkUybdiwYWRkRAihqirTHpchwVJLAQAAyBqWZeXn5yuKout6+n+in021FCkcDtfX16uqeuHCBXoTLwW1FAAAgCzhOI6maUKIU6dOsekoJfx+fzAY1HV927ZtjuNwQ0gpAAAAuW56elrX9WAwSKepFGprawsEApFIpKGhgbuxaOz4AgAAyBKO40xPT69bty5T9hpl344v94VgiAopBQAAAJm5Es3SlCKDSklJia7rfX19fr+f15qUAgAAAFJK6lmWpaoq0x4Xh3MpAAAAmc0wDNu2uQ/pxuv1utMeY7EYN4SUAgAAkCui0WhhYeHg4CC3Ij2DyqlTp4QQ1dXVDFG5Jez4AgAAyFS2bRcVFZmmmaHzzrN7x1d8kqyoqFAUZWJiwuPx8L5dCGopAAAAmWrnzp2maZ45c4bpKOmsvLw8GAyaprlz506GqJBSAAAAstnQ0FAkEvH5fDU1NdyNNNfW1hYMBiORCNMeSSkAAADZ7I477ggEAidPnuRWZEpQ0TQtEol0dnZyN26KcykAAABI0Uo0N86luJj2SEoBAAAAKSXtuA0PGKJyY+z4AgAAAJLE4/G4Q1Si0Sg3hJQCAACQ8QzD8Pv9hmFwKzKX1+v96KOPhBAVFRUMUbkednwBAABkBsdxCgoKMnc6yjwr0dzb8eVyh6jouk4j6bmopQAAAGSGhoYG0zRDoRCL2ixQXl7e19dnmqamafQmJqUAAABkpHA43N/fr2laU1MTdyM7+P3+YDCo6zpDVEgpAAAAGen06dOKorz77rvcimzS1tYWCAQikUhDQwN3Ix7nUgAAADKAbdsejyfbVqI5fC7FxRAVUgoAAABIKekYVEpKSnRd7+vr8/v9vDFIKQAAACClpJ5lWaqqMu2RlAIAAJDubNs+f/58TU0NKSVHgkp+fr4QYnJycsOGDbf0F03TjMVily9fHh0dnfsDtbW1QoiysjKPx5MpDeJIKQAAAOnIPa5w9erVvLw8UkouWPgQlVgsdv78+dHR0f7+/lt6CEVRKisra2trq6qq0jmxkFIAAADSUUdHR3t7eyAQ6OrqytZ/IynlBkFlYmJibr8EwzBOnjzZ29trmqa8oqrq008/XVRUVFxcvGrVqnXr1s3KtI7jTE9Pf/HFF59//vnY2NiHH36o63r8321sbEzDuEJKAQAASNOlqqqqFy5cyNZCCinlxgFV07SzZ8/KV99xnOHh4X379smAoShKY2Pjk08++cADDyzi7WHb9ieffDIwMNDd3S2vaJp24MCBtDoPQ0oBAABIO2vWrDFNc2ZmJrvHzJNSFhJUBgYGWltbZfEkEAg8//zzxcXFy5iHjxw5IreNqap69OjRNMkqpBQAAIC009PTs3Xr1mVcjJJSMot7Kik/P39mZkYIEQwGW1tbEzQzx7btw4cPt7e3CyE0TTt+/PgtHd8npQAAAICUkhMp5e/+7u/+7d/+TQhRWVn5i1/8IgkzPW3b3r17t6yrhEKhPXv2pHC3ISkFAABgSQu7wcHB06dPu1e6urrcbVpDQ0MFBQWrVq1K+SfTpJQMYhjGli1bTNOsrKyMxWJfffVVMoeoxGKx6upq0zQ1TQuHw6nac0hKAQAAWCjLsm6//fb4T7V7enqam5vjf8YddmEYRmFhoXvd5/N1dnYSV0gpNyYbJwghQqFQU1NTSqY9Oo7T2tra3d29kJ7IpBQAAICUhZO33377+PHjssPSn//85+9+97vudw3D8Hq9827IMQxjdHR0YmLiV7/6VSQSkevO6z2K3+8XQoTDYVJKjkcURVGGh4fdU0mxWExV1eQHhqGhoe3bt6cqqJBSAAAAbiQcDtfX18uvl7HDkuM4nZ2dRUVFdXV1eXl5sibj8/lIKUSUualg4dMek/aUSCkAAACpdObMmb6+vhdffLG0tHQZDxM7jlNQUGCapqIo//RP//QP//APiqJMTU1l8XQUUspS8oBMy8kfoZOqoEJKAQAASA3HcQYGBl566aUvv/xSCDE2NvbjH/84p+4AKeWWksDcaY9ZHFS+w/8gAAAAXD09PStWrBgZGUnCY+Xl5fn9/o8//lgI8aMf/Sj+qD1yh23bu3btEkLcNAO0tbX5fL5IJNLa2prMZ1heXj4yMmKapjw6RUoBAABI6mKxqqqqublZUZSHH344aY+7Zs2aa9euXbp0KbvHzON69u/fb5pmX1/fQt4AJ0+e1DStu7u7o6MjyUElEAhEIpGknZtixxcAAIBw+736fL6TJ0/m1OGQFGLHl+zfpWnauXPnFvhXHMcpKSnRdb2vry+ZxQ3btouKikzTnJmZSUKippYCAAAgzp07Jz/PDofDKY8ohmGsWLEiyR+WI/kcx6murha32H4 6Ly8 vEokoilJfXx+NRpP2bD0ez5tvvim+bZlNSgEAAEg4v99/7dq1ZH4yPTQ0ZBjGvN/yer2KorS3txNUstuxY8dM0wyFQrdamvB6vXJ0T0VFxfXeRYlQU1MjD8YkIR2RUgAAAJJNzss7efLkvN/1eDy6rhNUst7BgwcVRdmzZ88i/q7X65U9HrZs2WJZVtKec1dXlxDiyJEjiX4gzqUAAAAklWVZ+fn5N+3r6h6VmZyc3LBhQ1beilw+lyJPpASDwba2tkX/ErdH8MTEhMfjSc4z37x5s67rV65cSegjUksBAAA5qqWlJRAIJPlBHcfRNE0IcerUqRvv85G7ehbY+gkZ54033hBCNDQ0LOWXlJeXB4NB0zR37tzpOE5ynvmhQ4eEEIODgwl9FFIKAADIReFwuLu7W36Wn0wDAwO6rgeDwfLy8pv+sNfr9fv9SfuMHMkMq93d3aqqLr1K1tbWFgwGI5HItm3bkvPkt27dKoR49dVXE/oo7PgCAAAZz7Zty7IWvuBz91wlc5+M+1QHBwfr6upodixyeMeX3Km1XK2EHcfZtm1bJBJZ4v6xhWtpaenu7k5oS2JqKQAAIOMNDg4WFhYu/KC5XBq++eabyS9TeDwev99PRMlxn3/+uRCirKxsWX5bXl7e2bNnNU1LWruF0tJSIYRpmol7CFIKAADIeFVVVQvviGXbdiQS8fl8NTU1GfRvbGlpSdrYbyTa2NiYEGIZCxF5eXnvvvuu/K8gCW2Ci4uLhRCxWIyUAgAAcF3yoPkCg4rH45mcnLxeF+C09eGHH9bX1yfthDQSSvYOXt5SntvAuqKiItFBZdWqVYm+RaQUAACQc0Flw4YNydxzFYvFVqxYscSF4+7du8W3n8Ej033wwQeKoiTiv4Lh4WEhxFNPPXXs2LFoNJqgWLtu3TohxOnTp0kpAAAAyxlUksa27erqaiHE2rVrl/J7nn32WSHEgQMHeKGzgGmalZWVifjN99xzT0lJyczMTGNjY0VFxdq1axNRV0lCyCelAAAAgkoC7dy50zTNvr6+Jfac9Xg8mqZFIhHbtnmhcT0nTpy4cOGC+8eZmZmnnnoqQRWVhM68J6UAAIAcCirhcDiZRzt6enrkSf1laTh7/PhxTdO+973v8SpngQQt8V955ZVZV2ZmZhK0UTCh80ZJKQAAIFeCimEY9fX1AwMDSXsmly9fVlV1uU7qb9iw4dy5c3QxzgI+ny8SiSTiN+fn5yfh+RuGIYS4//77SSkAAAC3FlQmJibcCRKyfjI6Oiq+baKaHG1tbRcvXiRXYF6JKOvt27dv7sX3338/Ec+/qKiIlAIAAHBrPB6PO+pu27Zt7oowCU1UgRurra0VQkxPTy/7b66rqwuFQu4fKysrN27c2N7evrzDdmTgX79+PSkFAADglrkzuSORyLZt237xi1+Ib5uoAil05513CiG++OKLRLznm5qarl69quv6zMzML3/5yw8//FBRlPr6+mVs9jUxMSGu37aupaVlxYoVS3yIFdeuXeONAgAAspjjOA0NDf39/YqimKaZ6MWPZVlvv/12U1NTgn55b2/v/v37s2MXmVzL5uBy1LKs/Px8TdPOnTuXtIcTQkxOTi6x15y0Zs0aIcQf/vCHud/q6Ohob29f+j+NWgoAAMhyeXl54XA4GAyapnn33XcntH2q4ziqqjY3NyfoUXp7e9vb27/++mte1ozm9XqT2Vfa6/WOjIwIIbZs2bL0d2Y0GjVNs7Gxcd5vtbe3K4py9uzZJT4KKQUAAOSEtra2YDD41VdfqaoqOxQlQkNDg2maoVAoQU1aL126JBLcARbJsXfvXiHEiRMnkvNw5eXlIyMjpmmqqrrEaCS75M1NKdFotKKiQlEUXdeXXutjxxcAAMghIyMjjz32mPyivLx8eX/50NDQ9u3bE7qNZ/PmzTMzM/PutMlEObvjSwjhOM53v/tdVVUvXryYtAd1t2OdPXt2cUHCtu2VK1fOfdqGYRQWForl21RGLQUAAOSQioqKkZERRVEqKip6enqW95c/99xziqIsbzOlWXRdr6ys5HXMAnl5eYFAQNf1WCyWtAeVFUXZTGJxv2FwcFAIcejQofiLlmVt2bJFhv9liSiCWgoAAMgptm17PB7LslRVNU0zGAwu40n0aDR63333JXQ71po1a+rq6rq6urLj5cjlWor4tv6gKMrU1FTS2iE4jrNt27ZIJBIMBtva2m7p78pT+LOesPtf0/LWJ6mlAACAXOE4zr333tvT0xM/8zF+lMoSlZeXJ/rEyMTERNZEFGzYsCEUCpmm2dramrQHddtzy4Gnt/R3/X6/EGJ4eHhuRAmFQsu7hZJaCgAAyCHxHVTjOxTrus6R9OTL8VqKfBOWlJTouq7renFxcdIe17btoqKiWyqAhMPh+vr6QCDg5mT3lyyiLHNT1FIAAEAOaWxsNE1TjreTHYrlh9n5+fmLnnmXnGayyEp5eXnypEd1dfVy1fQWwuPx6LouD2gt5J1vWVZ9fb2iKJ2dnW6+2rlzZ4IiCikFAADkXEoR37ZSlZqamuQoiUWcp3ccp6qqqqioiBuLRXP3fS3j5sOF8Hq9w8PDQohdu3bdeIiK3NYlhDh16pTH4xFLO9xCSgEAAJhnZaaqand3d/zF8vLymZkZRVGam5v9fv/CV4qdnZ2RSKSuri4JzzwajSazGRSSqampyW29lcygUlxc7A5RuV5QiW81IfeGWZaV6IgihBDXAAAAcsnMzEwoFJp7/erVq5qmCSEURZmZmbnp75EVGFVVr169mujnPDk5KYTw+XxZ9lqwHI0XDAaFEJqmJeEdFS8UCl3vcWV6F0IEg8HrXUnUe4M3BAAAwKwVmxDizJkzN/ixK1euyLXaQvLMEl29elXut9F1nZRCUEna46Ywoly7do0dXwAAAP9n740c+7h9+/aWlpbrbb/xeDybNm0aGRlJQmewY8eO6boeCASS2QMKKeFOXSwoKDAMI5mP+8wzz0QikUceeSQajTqOE41G8/Pz4w/Hx2/9SuBGr2/RiRgAAGA2y7L8fn8kElFVNRKJpLBJ8bxz9LIGnYjn1dPT09zcLITo6+urq6tLwutuWdamTZtmZmbiLyqKcurUKfcsiowofX19cmpKolFLAQAAuRtFWlpa5j007PV6z549GwwGdV3Pz88fGhpK1ZP0er2BQOCjjz7KvoiC62lqapJtguvr60tKSpLQNaGlpWVWRFm5cqWu6zKiuHWVkZGR5EQUQS0FAADkLMMwCgsLbzzSMRqN7tq1yzTNQCBw+PBhosIyr0SppVyf4zidnZ3t7e1CCJ/P19nZuWHDhkQ8kG3bK1eunHt9ZmbG6/VGo9GKigohxMLnPy4LaikAACBHbdiwIRgM3rgNa3l5ua7rmqZ1d3cXFBTs3bs3HA5z65AEeXl5bW1tk5OTPp+vv7+/sLCwqqpKHhpZ3ix0/vz5eeP37bff3tHRUVFRoSjK5ORkMiOKoJYCAAByXEdHR3t7u6IoExMTcmLdvCu5Y8eOyaMCW7du/fDDDxP6lBzHmZ6eXrduXdaXbqilLJBhGPv37+/v7xdCKIrS2Nj45JNPPvDAA4t+hziOMzY2NjAwMGt2kKu9vf3rr7/u7u6+cbGRlAIAAJAoPT09o6OjXV1dN1iKye1h3/nOd/7yl79omhYOhxO0bnOnek9OTiZohw8pJUPZtn3ixImDBw+apimv+Hy+srKyrVu3Kopy0zekYRhffPHFxx9/PDg4GIlE5EVVVX/605/u2LHjxIkTr7zyijyd8vLLL4+NjUUiEU3T3n333euld1IKAABAKjmOU1BQYJrmb3/729dee01+pJ2IZkeWZWmaJveYnT17lloK5hWLxc6fP3/8+HFd1+OvK4pSWVk59+flOzaepmnPPvtsVVXVrGxjGMb3vve9v/7rv075WSxSCgAAwE3IA8ShUKipqUkIMTQ09Nxzz5mm6fP5jh8/vlyfNMdiMTm9MRgM7t+/PxdO6pNSlp6fp6enR0dHJyYmLl269Omnn87KLZKqqg8++GBZWdnq1avLyspuUKNzz8q77/aUvTd4WwAAAMQ7ffr0888//6c//amkpKSjo6O0tFQIMT09Hb+2s2179+7d/f39iqK8+eabNTU1S3/cnp6egwcPuhMqcgEpJa3IM1oi6e28SCkAAAA3YVnW/ffff/nyZffKDSZtxxdVbnysBaSU5L+TF/6GtG17586d6TDG1EUnYgAAgP/V29sbH1GEEO3t7bZtz/vDNTU1ExMTslFsfn7+LTUpjkajLS0tSRjYh1wTjUY1TcvPz//hD3/Y0dFx087FhmEUFRVFIhGfz3fhwoU0CdvUUgAAAOLWRitWzL1404PyblFF07Tjx4/fYN+/YRgnT57s7e2VbZrSYWtNyu82y9HljSjyYInL5/PdID+Hw+H6+nqRBgdRSCkAAADX5W7Nj3flyhX3iHxLS8v4+Phjjz32+OOPr1271g0ktm3v379fTp+43vF3d8i3HHnR2NiY45vESCnLTlXVuQW6ebtau7u8FEUZHh4uLi5Or/cGbwsAAACXYRiPPvroV1995V4JBAJdXV3XizGqql64cMENJOfPn9+5c+c333xz22233X777ZcvX9Z1PX79F41Gv//976fbipCUkmW3dJYzZ87MavAQi8Wqq6vlkaqTJ0+mYUM5UgoAAMDsoPL66693d3dv2rRp3759dXV1c9dwhmGMj49/9tlnq1evjt8MNmu/zfr16//zP//z/vvv566SUpJj3mLg1atX3few4zitra2y6JeImT+kFAAAgLRgWVZvb+/Ro0c3bdr00ksvVVdX5+XlWZbV0tIip+nlzvwTUkrK2bb94x//eHx83L0SH0UMw9ixY4eu66qqDg4O3uAAFSkFAAAgsyPKgw8+aFmWe6WpqSkUCsmvo9Horl27TNNcxrEqpBTcmOM4w8PDb731VllZ2TPPPCPPPjmOc+zYsebmZiFEKBTas2dPmsdmUgoAAMDizbvBJv6wsuM4AwMDso2SqqpvvfUWh1JIKUnmllDS86D8vJiXAgAAsHhzI4oQYnR01P0 6Ly/ P7/dfuXIlEAjInTZ+v98wDG4dbpVt20NDQ7c0Y8dxnI6OjsLCQl3Xg8Hg1NRUpoRkUgoAAMDiBYPBuRfLyspmXfF4PF1dXZOTk3IEZGFhYUdHx/WGRQJzw0ZLS8vKlSu3b9+uqmpxcfFCsko0Gi0oKGhvb1dVdXJysq2tLYMOR7HjCwAAYPFufC7lemvHF154Qdd1GXJaW1vdYSy5hh1fC+TOXnRt2rTpBkHFtu3du3fL5g0ZcQqFlAIAALD8QWVuj6+b/i13XL2iKIcPH5633zEpBZKiKF9++eWsiyMjI+Xl5bMuxp+D8vl8XV1dGTo5lJQCAACQGnJB2dramrNZhZSyvCklm3rKcS4FAAAgNeTB+qmpqb6+PiFEfX19QUFBOBx2HIebg3g/+9nPZl3ZtGlTfEQxDKOqqqqiosI0zVAoNDU1leltr0kpAAAA6ZhVOFsPV11dXSAQiI8o4XBYfm3btt/vLywsjEQiPp9vZmamqakpCypy7PgCAABIF/F7wEQOnK1nx9ctsW37/PnzBQUFspuwbduHDx+WvbDTf5Y8KQUAACDbskpDQ0M2LUBJKUuPK/H55OjRo3OP0ZNSAAAAkJCsMjY25vYs9vl8L774YpYtRkkpi8gnJ06caG5uFkJkd8cFUgoAAEBai0ajBw4ciEQiQghVVQ8dOrTAZseklCzLJ279JBc6wpFSAAAAMoBhGCdPnnQXqY2NjY2NjRk6CoOUQj4hpQAAAGTVgvXEiRMHDx6UR1YyfRsYKeWm0XT//v1yhHyWldFIKQAAAFkofhtY5pZWSCnzmnUkKVvPx5NSAAAAspNlWb29vb29vbK0omna3r17M+jjdlLKLHNrZZ2dnVnZ3o2UAgAAkOXkR+9HjhyRW4OEEIFA4Pnnn5dTNUgpGSEajbqvoCyOZfeoHFIKAABArpCfxB8/flzuFJKL3SeffDJt4wopxbKst99+2y2eyM1dpaWlOXL4hJQCAACQQ2RDMHcnWNrGlZxNKXKK/Ouvvx5/sihbZ3eSUgAAAPB/xGKxn//852kbV3Itpczdmye7tFE8IaUAAAAQV4SiKHV1dXV1dQ899FAKDz/kSEqxbfuTTz4ZGBjo7u6WV2Sfg61bt+byyRNSCgAAAP5PXHnnnXfk2RW5Yn722WerqqqS38g4u1OKZVm//vWv3W1dQghVVXfv3v3MM89k+jhOUgoAAAAStYY+d+7ciRMn3DW0LLA88cQTSfuMP/tSiuM4v//978+fP+/2MEhtDiSlAAAAIFMX1mNjY++//767H0wIoarq008//cgjjzz66KOJW1tnTUoxDGN0dPT06dPugRMhRCAQSGbkI6UAAAAgO8lNSu+9997AwICbWGSNpbS0tKysbHmbUGV0Spk3mWiatmPHjq1bt6b/sBpSCgAAQAJXil6vl8+qk5ZY5EL8sccee+SRRzZu3LjE0JJZKcWyrP/6r/96//33f/WrX7nb5MS3dafHH388ta0I0oRt25ZlLT3NklIAAEAG27x5s67rfX19fr+fu5HQpecnn3zy8ccfDw4Oxi/QZWjZuHGjrLTcamJM85RiGMb4+Phnn302OjoaXzAR39ZMHn74YZJJvKGhoeeee840zaW/pqQUAACQwWKxWHV1tWmaPp/v5MmTDJ1I5vL9N7/5zaVLl2Yt34UQPp/P6/WWlpauX79+7dq169atu97rkj4pRVYA3EzywQcfxJeP3DD2xBNPLL2ClJUcx2ltbZWtlkdGRsrLy0kpAAAgp9m2vXPnzkgkoijKRx99xAoy+SzLMk0zFouNjY2Nj4/PKra4q3yv11tWVrZ69WqZXoQQhYWFyUwpjuNMT08LIcbHx7/55puJiYlLly59+umnbjMul6IolZWVZWVl99xzD7FkIal1x44duq5rmhYOh5el3QIpBQAAZIOenp7m5mYhRCgU2rNnD0WVlEdHy7JGR0eFEKdPnxZCzC25zM0wQghZhIn/VnFx8apVqxbyoPLhXGNjY5Zlya9v/OgLL/5grnA4XF9fL4QIBoP79+9frltHSgEAAFnCMIwtW7aYprmMH+hi2V8j8W0p4/LlyzJXWJY1b/llGbkpqLa2Vghx5513bty40ePx8CZZYhZ1y5jDw8PL29aMlAIAALJH/OZ4jtRn6MLXLYBIsyokNzCr6kLzt4RyD8r7fL7jx48v+60mpQAAgGwTjUZ37dpFUQVIUJLcvXt3f3+/oihvvvlmTU1NIh7lO9xoAACQZcrLyycmJnw+XyQSyc/PD4fD3BNgWQwNDRUVFfX39/t8vomJiQRFFFIKAADITh6PJxwOnzlzRlGU+vr6qqoqeSICwOJYluX3+7dv3y6EOHPmTDgcTuiGOlIKAADIWjU1NRMTE4FAIBKJFBYW9vT0OI7DbQFuVTgczs/PT0IJxcW5FAAAkP3c4Y+qqr711lvL24wIyGLuLJSEnkKZi1oKAADIfsXFxVNTU6FQSNd1VVX9fr9t29wW4AZs225paSksLNR1PRAITE1NJS2iCGopAAAgpxiGsXv3bjmdo6+vr66ujvl9wFzhcLi1tVWWHwcHBzds2JDkJ0AtBQAA5JANGzacO3fOPVVfUlISjUa5LYArFott3rxZjpPv6+u7ePFi8iMKKQUAAOSimpqaqampYDCo63pFRYXf76cDGGDbtt/vV1VVbvGamJhI4VxUdnwBAIDcZVlWS0tLf3+/ECIYDLa2tjKtHDnIcZzOzs729nYhhKZpx48fT0n9hJQCAADwv6LR6AsvvKDruhAiFArt2bOHwyrInXwyMDAgj6AoinLq1Kny8vJ0eGLs+AIAALmuvLz84sWL8rBKc3NzQUFBOBxmsgqy3tDQUEFBgXsEZWpqKk0iCikFAADg/ycPq/T19Qkh6uvrCwoKhoaGuC3IStFodPPmzdu3bzdNMxgMTk1N+f3+tCohklIAAEAG8Pv9a9asSXQ/rry8PL/fPzExEQwGTdPcvn375s2baQKG7MsnFRUVuq4Hg8ErV660tbWl4RZHUgoAAMgAP/nJT0zTrKio6OjoSPReLI/H09bWduXKFbcJGFkF2ZpPEtouwnEcwzAW9x8sp+cBAEBmsCxL0zRd6bD1vQAADnhJREFU1zVNC4fDXq83CQ9q2/bhw4dl7yNVVX/6058yCBKZmE/c/hBJ62UXi8Wqq6tN05yZmVnEf63UUgAAQGbwer0XLlwIBAKRSCQ/Pz85h0Zm1VXkeRXO1iMjOI4TDofXrFmTzPqJ1NPTo6qqaZp9fX2L+0CBWgoAAMgwQ0NDzz33nGmaPp/v+PHjSZtwIusqvb29smdrY2Mj81WwvKFieHj4jjvuWHqjLdu2T5w4cfDgQdM0RXJnAdm2vXPnzkgkoijKRx99tOi5K6QUAACQeeJXQsPDw8XFxclcSrrzJYQQgUBg7969KR+BhywQDofr6+s1TTt37tyif4llWb29vXKPoqIoL7/88rPPPpu0LB3/CcLJkyeXsjeSHV8AACDzeDyec+fO9fX1maapqmpLS0vStmDJPmBTU1MjIyOqqnZ3dxcWFlZVVUWjUbaBYSnpt7W1VQjx2GOPLe43RKNRv9+fn5/f3t6uqqqcf9LU1JSciOI4TktLi2xtfObMmXA4vMTjW9RSAABABrMsy+/3p6SoIsVisUOHDvX394vl+Ojatm3LstatW8cB/VwjCylCiCtXrtzS+8e27cHBwVdffVUejtc07cCBA0kezugelF/GzhakFAAAkD0rvCSfVIlfKbpHVuTTePHFF92VYjQa/fzzz4UQY2NjlmXF/0UZb2bRNO3s2bMEldzhOE5BQYEcsNjW1rbwbPDGG290d3fLPwaDwcbGxuT0vot/5q2trfI5hEKhpqam5frNpBQAAJAN4osqb775Zk1NTUrWmsPDw/v27ZOfarulFcuyCgsLF/57bmmpimyK2QsppMwqnqSwQbZbQlFVdXBwcHlPZ5FSAABAVq325Ln2ZM5UmcswjJMnT8oTzEIITdPuuuuuf//3f3d/QAaY1atXFxcXr1q1yr3u8XhS9ZyRKvMWUoaGht56663a2lq/3+/+2NjY2JEjR9z6WzAYbGhoSEnnBtu29+/f75ZQ9uzZs/wZ6RoAAEAWuXLlis/nk+ucUCh09erVVD2Tq1evjoyMaJo27xpMVdWRkRFeL4RCIRlc5Xs1/g0cCASuXbsmR50oiuK+c86cOZPCN/aZM2fkk9E0bXJyMkGPQi0FAABkIXcviqIop06dSvJh4rkfPJ84ceJnP/vZ5OSkECIvL8/tBqaq6tGjR1P79JDa98bKlSuFEH19fX6/3y0GCiGeeuqp8vLy1157Tf5RjuhJ/smTeJZltbS0yGKOfMKJeyxSCgAAyE6O4xw7dqy5uVkI4fP5Ojs7Uz7VpKam5uzZs9/5znf+8pe/xF9XVfWtt95KfoMypFxHR0d7e7scgLh79+5IJCKE+P73v/+DH/xAZlohRDAYfPLJJ1P79pj1X1NXV1eiwxIpBQAAZLP4T3+TOYH7ek8mPz9fCPHCCy/88Ic/7OnpiW/5tW3btqNHjzIgMne4hRRVVeVR+HiBQKCurq60tDTl3d6i0eiuXbuSXJlkqiMAAMhmXq83HA7ruq6qant7e1FRUTgcTtX4Ra/X29fXJ4Q4evRoQ0PDzMyMrut79+697bbbhBBnz54tLCz80Y9+dOrUKQZE5oLXXntNfhEfUQKBwMjIyNWrV7u6usrLy1MbUQzD8Pv9FRUVpmmGQqGpqamk7U6klgIAAHKC4zgDAwNy038KD6s4jlNSUiJT08WLF93r//Ef//HCCy98+eWX7pXKysrnn3++qqqKrl9ZxrKsc+fOvfHGGx988IF7ceXKlc3NzYZhzPpJuQdMURRd15P5TpAjgGSfuuRs8SKlAACAnM4qnZ2dcu2VqpPrhmHI8Slzzx9Ho9G///u/Hx8fj7+oKEpdXd0TTzyxdevWFG5XwxIX/Z988sn777/vjv68VbquJ+doSnyeT+GJKVIKAADIxSWjO+1B07Tjx48n+TRIS0uLfPR5p/hFo9EXXnhhZmbm1VdfNQwjfl2rqurTTz/9+OOPP/TQQySWTEkm77zzjrunS2bOv/3bv9U0TVGUysrK+L9SVla2evXqWVdEEgfpxB9BOXz4cEqGRZJSAABATjMMY//+/fJgfZKbgLmD/Hw+XzgcvunPW5b161//+r333pPZxk0s/+///b8nnnji0UcfZVdYmpCv1G9+85v4ZCLfYLW1tem8f09mY/mcg8Hg/v37U3skhpQCAADIKinIKkNDQ9u3bxdCjIyM3NKuM8MwxsfH33vvvYGBgfi9Q3IdXFxcfM8991BmSRrbtj/77LNYLHb69Gl3Knz8K1JWVpbmfdsMw9ixY4ebT1LbB4+UAgAAcN2ssm/fviTsxff7/f39/beaUuJd75N7uZWotrZ2/fr19913H5WWZWRZlmmaMpZ88MEH8UEx46pbKSwnklIAAAAWs2hLztl6y7LuuuuuZdla4zjO9PT06Ojo2NjYrDKLXIPef//9RUVFZNGUYỄN...
Ngày tải lên: 01/04/2014, 12:24
... tượng quang dẫn. Trong hiện tượng quang dẫn, ánh sáng kích thích sẽ giải phóng các electron liên kết thành electron chuyển động tự do trong khối bán dẫn. Mặt khác mỗi electron bị bứt ra lại tạo ... với hạt nhân mẹ, hạt nhân con ở vị trí tiến 1 ô và có cùng số khối. * Thực chất của phóng xạ là trong hạt nhân 1 nơtron (n) biến thành 1 prôton (p) cộng với 1 electron (e-) và phản neutrio () ... một con lắc đơn dao động điều hoà với chu kì T, khi chiều dài con lắc giảm 4 lần thì chu kì con lắc A. tăng 4 lần B. không đổi C. tăng 2 lần D. giảm 2 lần Câu43 Tại một nơi xác định, một con...
Ngày tải lên: 26/02/2014, 09:53
Lý thuyết và bài tập vật lý ôn thi đại học
... bình T: Trong các hạt sơ cấp có 4 hạt khơng phân rã (proton, electron, photon, notrino) gọi là các hạt nhân bền. Cịn các hạt khác gọi là hạt khơng bền và phân rã thành các hạt khác. Notron có 932Ts= ... nhau. Trong q trình tương tác có thể sinh cặp hoặc hủy cặp. 4. Phân loại hạt sơ cấp: a. Photon (lượng tử ánh sáng): khối lượng nghỉ bằng không. b. Lepton: Gồm các hạt nhẹ như electron, muyon ... nhiệt độ Nếu toàn bộ năng lượng electron đập vào đều làm nóng đối âm cực thì tWnQ đe = e n Số electron đập vào trong 1s; t là thời gian electron đập vào đối âm cực TIÊN ĐỀ BOHR –QUANG...
Ngày tải lên: 07/06/2014, 23:46
Tài liệu lý thuyết và bài tập vật lý ôn thi đại học docx
... cùng m ộ t n ơ i con l ắ c đơ n chi ề u dài l 1 có chu k ỳ T 1 , con l ắ c đơ n chi ề u dài l 2 có chu k ỳ T 2 , con l ắ c đơ n chi ề u dài l 1 + l 2 có chu k ỳ T 3 ,con l ắ c đơ n chi ề u ... thành các dãy khác nhau: - Trong miền tử ngoại có một dãy, gọi là dãy Lyman. - Dãy thứ hai, gọi là dãy Banme gồm có các vạch nằm trong vùng tử ngoại và 4 vạch nằm trong vùng ánh sáng nhìn thấy ... lên trên (ví dụ: con lắc đặt trong thang máy chuyển động nhanh đều đi lên hoặc chậm dần đều đi xuống ): g’=g+a. 10.2. Gia tốc a hướng thẳng xuống dưới (ví dụ: con lắc đặt trong thang máy chuyển...
Ngày tải lên: 20/06/2014, 14:20
bài tập vật lý ôn thi đại học
... dau con lai noi voi mot chat diem co m1 = 0.5 kg.chat diem m1 duoc gan voi mot chat diem thu hai co khoi luong m2 =0.5 kg.cac chat diem co the dao dong khong ma sat tren truc x nam ngang huong ... 10 5 V/m trong không gian bao quanh con lắc có hướng dọc theo trục lò xo trong khoảng thời gian nhỏ Δt = 0,01 s và coi rằng trong thời gian này vật chưa kịp dịch chuyển. Sau đó con lắc dao động ... động thứ nhất có ly độ 3(cm) và đang tăng thì dao động tổng hợp A,có ly độ -6căn3 (cm) va đang tăng B.có li độ -6(cm) và đang giảm C.có ly độ bằng không và đang tăng D.có ly độ -6(cm) và...
Ngày tải lên: 15/07/2014, 11:54
bai tap vat ly 10-dong hoc-tu luan
... không. Tính quãng đường đi được của viên bi trong thời gian 3s và trong giây thứ ba 14. Một vật chuyển động nhanh dần đều với vận tốc đầu 36 km/h. Trong giây thứ tư kể từ lúc vật bắt đầu chuyển ... tính bằng cm và tính bằng s. 1. Tính quãng đường vật đi được trong khoảng thời gian từ t 1 = 2s đến t 2 = 5s và vận tốc trung bình trong khoảng thời gian này. 2. Tính vận tốc của vật lúc t 1 ... s 2 = 64m trong hai khoảng thời gian liên tiếp bằng nhau là 4s. Xác định vận tốc ban đầu và gia tốc của vật. 17. Một vật chuyển động nhanh dần đều đi được những đoạn đường 15m và 33m trong hai khoảng...
Ngày tải lên: 26/09/2013, 21:10
Tích cực hoá hoạt động nhận thức của học sinh qua dạy học giải bài tập vật lý chương động học chất điểm vật lý 10 chương trình nâng cao
Ngày tải lên: 19/12/2013, 09:57
Lý thuyết và bài tập Vật lý 10-Động học chất điểm pdf
... đứng trong buồng thang máy trên một cân lò xo. Xác định gia tốc của thang máy trong trường hợp cân lò xo chỉ trọng lượng của người là: a) 588N b) 606N c) 564N 3. Một con lắc đơn treo trong ... điểm thấp nhất. Biết bán kính cong của đoạn đường võng là 50m, g = 10m/s 2 . 3. Một ô tô khối lượng 4 tấn chuyển động đều trên mặt cầu cong vồng lên. Bán kính cong của mặt cầu là 50m. Hỏi khi ... cũng vận dụng cách xác định tầm bay xa, vận tốc tại thời điểm bất kỳ như trong ném xiên. ü Thời gian vật rơi chạm đất trong ném ngang bằng thời gian vật rơi tự do ở cùng độ cao. ü Đối với bài...
Ngày tải lên: 18/06/2014, 18:20
Bài tập vật lý lớp 10 học kỳ 2
... lực song song cùng chiều tác dụng vào một vật rắn là một lực , với hai lực và có ñộ lớn bằng của hai lực ñó. A. Song song, ngược chiều, tổng. B. Song song, cùng chiều, tổng. C. Song song, ... lực là: A. Hai lực có giá song song, cùng chiều, có ñộ lớn bằng nhau. B. Hai lực có giá không song song, ngược chiều, có ñộ lớn bằng nhau. C. Hai lực có giá song song, ngược chiều, có ñộ lớn ... V p =const C. p.V= const D. p V =const Câu 10 : Biểu thức nào sau ñây không phù hợp với nội dung của ñịnh luật Sáclơ ? A. p = p o (1 + γt) B. const= T p C. 2 2 1 1 T p T p = D. p.T = const...
Ngày tải lên: 27/06/2014, 11:09
MỘT số bài tập vật lý DÀNH CHO học SINH THCS
... !"#$%$&!'! ()*+,*(+-( ./0120/345.!$6$7$869!$:;!$866<9=2>1$?!@./016<$862.!$A/$86BCDE3.FG/9H@. /01F./HIJ6@#5K!L$6M!$866N1B ON/ F7!6P6@Q!R!$G2.6$74LS!BT!6UF<!B C%V6$W"#$%$&!'XY1Z[/:!;E\!:$<!X;S[/W!$$]V$&!;S V/?FY/$A; XXXXXXXXXX^__^XXXXXXXXXXX " .-" VG/20//:7!!`Va;I!!?;6$;Eb!G!2Y20!/c6-[/:7!!`Va;I!!9V;6$;Eb! G!2Y20!/c6(Bd!$20!/c6/:;!@e!$6U;20/f/:&!6Ua;I!!g @$VE6P6/]ha;I!!i/:7!6D;V@j!6P6/]hL$7U!/$V!ibJ6@./7P!L$P6:# Ug 679P!$20!/c6/:;!@e!$/d!$k76/:7!$V6D;V2.@B .(" G/!lmQ1/:&!a;I!!'B-*na;I!!?;2Y20!/c6-oLF*$[-*na;I! !/S1/$m72Y20!/c6-(LF*$2.7Q!!6M!3Q2Y20!/c6ZLF*$Bd!$20!/c6/:;! @e!$6RV!f/:&!6Ua;I!!'B .n" G/H/H6$;Eb!G!/:&!!`V7Q!!?;2Y20!/c6-oF*9B$?!!6M!3Q[lm6$;Eb! G!2Y20!/c6)oLF*$/:7!!`V/$V!?;2.-oLF*$/:7!!`V/$V!9V;Bd!$20!/c6 /:;!@e!$6RVH/H/:&!6Ua;I!!IB .)" G/!lmQ1I)LF2Y20!/c6-(LF*$[9V;f!NE5]!3Qb6$pVlm/:7!)+1$q/ :#/S1ZLF2Y20!/c6ZLF*$B Vd!$20!/c6/:;!@e!$6U;!NE/:&!/N/6Ua;I!!IB @\#/$%20!/c66RV6$;Eb!G!/$m7/$V!B 6\#/$%@b;5r!6$;Eb!G!6RV!NE/$m7/$V!B .o" G/6V!H6$QE/]@S!'S!@S!:#/:=2>'/:&!FG/5M!9H!Bs!Y66$QE!$V!$$VE6$UE 6$0F/$e20!/c6/:;!@e!$6U;6V!H/:7!9;c//$V!2>9\3Y!$<!g0!/c6:&!6RVH/H L$H!tB .u" G/$.!$L$P6$l;c!$S/6?;/$V!FPEV!6$;Eb!G!6v!6$>;FN/-1$q/BS;!f " .-" d!$!$A/G6D!@j!6U;!Y6L$1$V(3d/!Y6Z++2.7n3d/!Y6=(++/:7!(/:!$J1" Vsa;V9k$V71$d/:7!a;P/:e!$/:;E>!!$A/ @A;9;N//:V7t!$A/3.(+•B S/!$A/5;!:&!6RV!Y63.)(++†*L„[L$c3J!:&!6RV!Y63.-+++L*FnB .(" Cbl`34/$f6c!@j!1$<!1$P1hn9H(3Q!$i[!/V!DF!f2.72Q!Y66$wVn1$?!!Y6 9H$MV2Y(1$?!!Y63Q!$BIElP6%!$!$A/G6RV!Y6hn9H(3Q!$i!S;!$A/G6RV!Y63Q!$ !jF/:7!L$7U!-o+S!(++BS/!$A/G9H3.-+++B .n" Cb6f(+3d/!Y6=nu+[!/V/:G!!Y6(++2.7!Y6-+++Bd!$/$b/d6$!Y6Fz37QBsa;V 9kFN/!$A/2.!Y6y-*6FnB .)" $V!Y62.7:J;/V/$;J6$z!$J16fL$c3J!-ZZ=!$A/Gn++Bd!$L$c3J!!Y62. :J;I1$VBS/!$A/G@V!?;6RV!Y62.:J;3.Z++2.(++[!$A/5;!:&!6;V!Y62. :J;/<!w!3.(o++†*L„2.)(++†*L„Bsa;V9k@VE$<2.9kFN/!$A/B .o" f$V@e!$6P6$!$A/[@e!$'k!o3d/!Y6=u++[@e!$k!-3d/!Y6=(++BOf/FG/d/!Y6/] @e!$'9V!@e!$[9V;L$@e!$6D!@j!!$A//V3Q:f//:=3Q/]@e!$9V!@e!$9V76$73J!!Y6 =Fz@e!$c!!$@V?;Bq6f!$A/G6D!@j!6U;!Y6`@e!$'3.o++BsI:f/@V7!$&; !Y6/]@e!$!89V!@e!$LVB .u" Cb7!$A/G6U;!Y6[!/V!$q!2.7!Y6FG/!$A/LS[L$6D!@j!!$A/[!$A/LS6$W nu[++Bs!$A/G/$k66RV!Y63.@V7!$&;gS/!$A/5;!6RV!$A/LS3.y-[|†*G2./:Y6L$ !$q!2.7!Y6!f6$W(+[++BY66?!76fL$c3J!-+VF .," CtFG//$eV!Y6!f!2.7!$A/3J!LS[!$A/G6RV!f/...
Ngày tải lên: 09/07/2014, 23:19
Bài tập vật lý lớp 10 học kỳ 2
... trong ống cao hơn trong chậu. B. mực thủy ngân trong ống thấp hơn trong chậu. C. mực thủy ngân trong ống bằng trong chậu. D. mực thủy ngân trong ống cao hơn hoặc thấp hơn trong chậu. Câu 32: Hai ... ống thủy tinh có đường kính trong nhỏ vào trong chậu nước thì mực nước trong ống A. bằng với mực nước trong chậu do nguyên tắc bình thông nhau. B. thấp hơn mực nước trong chậu vì ống có đường kính ... Mariotte: A. pV = const. B. p 1 V 1 = p 2 V 2 . C. 1 2 2 1 p p V V = D. 1 1 2 2 p V p V = Câu 18: Trong hệ tọa độ (p,T) đường đẳng nhiệt là A. đường thẳng song song trục Op. B. đường cong hyperbol. C....
Ngày tải lên: 31/07/2014, 13:35
Bài tập vật lý lớp 10 học kỳ 1 năm 2015
... lực không song song: ba lực đó phải đồng phẳng và đồng quy, tổng 2 trong 3 lực cân bằng với lực thứ 3. Cân bằng momen: M 1 + M 2 + + M n = 0. Quy tắc hợp lực: + Hai lực không song song: dùng ... không song song: dùng quy tắc hình bình hành. + Hai lực song song cùng chiều: F = F 1 + F 2 ; 1 2 2 1 F d F d = (chia trong) + Hai lực song song ngược chiều: F = |F 1 – F 2 | và 1 2 2 1 F d F ... chạy trong bến.D. Viên đạn đang bay trong không khí. Câu 3: Trong trường hợp nào dưới đây có thể coi chiếc máy bay là một chất điểm? A. Máy bay trong quá trình cất cánh. B. Máy bay trong quá...
Ngày tải lên: 03/08/2014, 08:40
bài tập vật lý phần ĐỘNG học CHẤT điểm và ĐỘNG lực học CHẤT điểm
Ngày tải lên: 29/08/2014, 12:27
phương pháp giải nhanh các bài tập vật lý dành cho ôn thi đại học cao đẳng
... thức số (2) chủ đề (8) Khi con lắc ở nơi có gia tốc trọng trường g: Cơ năng của con lắc: E = 1 2 mgl α 2 . Khi con lắc ở nơi có gia tốc trọng trường g ′ : Cơ năng của con lắc: E ′ = 1 2 mg ′ lα ′2 . Áp ... λ 0 , electron quang điện bay ra theo phương vuông góc với điện trường ( E). Khảo sát chuyển động của electron ?106 Chủ đề 12. Cho λ kích thích, bước sóng giới hạn λ 0 , electron quang điện ... (λ min ) của các dãy Lyman, Banme,Pasen? 109 Chủ đề 5. Xác định qũy đạo dừng mới của electron khi nguyên tử nhận năng lượng kích thích ε = hf? 109 Chủ đề 6. Tìm năng lượng để bức electron ra khỏi nguyên...
Ngày tải lên: 08/03/2014, 18:51
Lý thuyết & bài tập vật lý 12 ôn thi đại học
... ng. vuongvyly@yahoo.com Ly Thuyeỏt & Baứi Taọp Vaọt Ly 12 Gv Tr n V ng V - 01267809178 Trang 7 25. iu no sau õy sai khi núi v súng õm? A. Súng õm cú tn s nm trong khong 200Hz ... cao. D. nghe mc bỡnh thng. vuongvyly@yahoo.com Ly Thuyeỏt & Baứi Taọp Vaọt Ly 12 Gv Tr n V ng V - 01267809178 Trang 9 53. Trong trng hp no sau õy thi õm do mỏy thu ... thng v tn s ting cũi khi xe ng yờn. Cho bit tc truyn õm trong khụng khớ l 340m/s. vuongvyly@yahoo.com Ly Thuyeỏt & Baứi Taọp Vaọt Ly 12 Gv Tr n V ng V - 01267809178 Trang 2 I.2...
Ngày tải lên: 10/06/2014, 19:43