1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài giảng kinh tế lượng phần 2

41 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 4,12 MB

Nội dung

CHƯƠNG IV HỐI Q ur VỚI BIẾN Gl Trong mơ hình hồi quy tuyến tính mà xem xét lừ chương trước biến giải thích đêu biến số lượng Các biến nhận giá trị số Chẳng hạn, tiền lương cùa cán bộ, doanh số bán cùa cửa hàng, chi tiêu cho quảng cáo, cung tiền, biến số iượng Nhưng thực tế có nhiều trường hợp biến giải thích (hoặc chí biến phụ thuộc) biến chất luợng Trong chương ta nghiên cứu hồi quy biến giải thích biến chất lượng 4.1 BẢN CHẤT CỦA BIẾN GIẢ- MƠ HÌNH TRONG ĐĨ BIEN g i ả i t h íc h LÀ BIẾN GIẢ Biến chất lượng nói ưên thường chi có khơng có thuộc tính đó, chẳng hạn nam hay nữ; khu vực tư nhân hay nhà nước Vấn đề đạt làm để lượng hóa thuộc tính Trong phân tích hồi quy người ta sử dụng kỹ thuật gọi kỹ thuật biến giả Kỹ thuật cho phép ta lượng hóa đuợc nhũng thuộc tính nhu Chặng hạn để giải thích cho việc số niên vào trường đại học, số khấc không, tạo rạ biến giả mà nhận giá trị niên vào đại học nhận giá trị khơng niên khồng vào đại học Chúng ta chì biến giả sử dụng phạm vi hồi quy để giải thích cho kiện có quan sát phạm trù (thuộc tính) cho gắn với tập tham số h'ổi quy quan sát khác ưong phạm trù thứ (hoặc thứ 3) lại gắn với tham số hồi quy khác Biến giả sử dụng mô hình hồi quy giống biến số lượng thơng thường Giả sử cơng ty sử dụng q trình sản xuất (kí hiẹu q trình sản xuất A trình sản xuất B) để sản xuất loại sản phẩm Giả sử sản phẩm thu từ trình sản xuất đại lượng ngẵii nhiên có phân phối chuẩn cí> kỳ vọng khác phương sai Chúng ta biểu thị t r ì n h sản xuất đ phương trình h i quy Y, = p, + PJ>, + u (4.1) Yi sản lượng sản phẩm gắn với trình thứ i biến giả nhạn giá trị: 83 sản lượng sản phẩm thu từ trình sản xuất A Di = sản lượng sản phẩm thu từ trình sản xuất B Mơ hình hồi quy giống mo hình hồi quy biến mà gập trước chi khác biến số luợng X thay biến giả D Cân vào mô hình biết duợc sản lượng trung bình q ưình sản xuất A có khác với sản lượng trung bình trinh sản xuất B tạo hay khống? Hệ số chặn Pi hồi quy tuyến tính đo sin lượng trung bình gắn với q trình sản xt B, đố độ dđc P2 dL\'rug ìj'0 i quy đo khác vồ sản lượng sinh việc thay đổi từ trình sản xuất B đến trình sản xuất A Điều nàý thấy cách lấy giá trị kỳ vọng vế cùa phuong trình(4.1) ứng với D| = D| = 1: E(Yj I Di = 0) =Pi E(Yi I Di = 1) =p! + p Kiểm định giả thiết Ho: pỉ = cung cấp kiểm định giả thiết khổng có sụ khác v i sản lượng.do trình sản xuất A B tạo Điều dẻ làm đuợc dã chi iruớc dây • Thù tục biến giả dễ đàng m í rộr>ir cho’ trường li'ip biến định tín;) có nhiều hen phạm lrù Chẳng hạn Uorig ilú dụ ò Irêa ta gi'ả thiết có q trìuh sản xuất khác sử dụng i sản xuất úi', pkíừn ngnời ta hv vọng giải thíc.1 cho vấn dề sản lượng duợc sản xuất cho q Irình xhơng Ẹhir Trong trường hợp ta đita v\o biến giả Di D2 Chúng ta xét mơ hình': Yi = Pi +P2D 11 +P.1D21 + Ụ (4.2) trọng dó : sản lượng sàn phẩm thu từ trình sản xiiất D] ■ O2 - ' sản lưọiig sàn phẩm.tlui từ q -á trìnl khác sản lượn3 ĩàn phẩm thu đuợc lir trình sả>.\ xu i: 'Jể I " uếu sản iuợr 2= 0, D, = Xi) = (Pi +P4) + p 3x> Thu nhập trung bình giảng viên nữ truờng đại học miền'Bắc E(Yi I D,= 1, D ĩ= 0, Ds = Xi) =(pẵ +Pj) + PsX Thu nhập trung bình của.l giản? viên nam truờng đại học miền Bắc E(Ỵ I D,= 1, = 0, D3 = 1, X,) =(P, +p2+ p4) + PsX, Thu nhập trung bình cùa giảng viên nữ truờng đại học m iln Nam E(Yi I D,= I >2 = 1, Dj = 0, Xị) =(p, +p3) + p 3X; Thu nhập trung bình giảng viên nam tniờng đại học miền Nam E(Y, I D,= 0, Dj = 1, D, = 1, Xi) =(p, + p 3+ M + p 5X, 4.4 SO SÁNH HAI H i QUY l ễT u tu d n g c b ả n Tất mơ hình hồi quy xét đến nay, đốu giả thiết ràng biến lượng ảnh hưởng đến hệ số cbặn khổng ảnh huởng đến hệ số góc hồi quy I'.áe»nhóin khác Nhung hệ số góc khác việc kiểm định tính* khác hệ số chặn có ý nghĩa Một khía cạnh khác tập số liệu mà sử dụng tập số liệu (fan liệu môt mô bình cho có thổ áp dụng cho hai tập số hay không? Chẳng hạn nghiên cứu mối q’lan hẹ giũa tiết kiẽm thu nhập trước sau chuyển đổi kinh tế cùa nước ta Vì cần phát triển phương pháp chung để ứm xem liệu hồi quy có khác hay khơng? Sự khác có hệ số chặn, hệ số góc híiy hai Thí dụ: Ta có hồi quy: Thời kỳ irước cải tổ: Yi = Xi + Xị X ì + Uii với i = (4.5a) l,n, Thời kỳ sau cải tổ: Yj = yi + Ỵ2*j + U i Cj = T T «7) (4.5b) t-ong X thu nhập; Yià tiết kiệm; Ưii, U i ĩihiẽu hồi quy Có khà xảy hồi quy này: I X| = x = 72, nghĩa hồi quy địng nhất, írên đồ thị chúng chồng khlt ìin nha-., điều ní.y hình /m 92 (5.4) (5.5) (5.6) (5.7) Giả sử X3| = XXĩi X sổ khác khơng, thay điều kiện vào (5.6) ta được: % _ ( Y , y , XỊ, ) ( ỳ-ÍẮ^y^^XẰỵ^xl) (5.8) ( ' ỵ ẵ* ỉ i ) ( À ỵ í x ỉ i ) - ( * i ' ỵ l x ĩ i ) i biểu thúc khổng xác định, -niơng tự ta chi jj3 khơng xác định Vì lại thu kết (5.8) Lưu ý đến ý nghĩa ậ giải thích điều p cho ta tốc độ thay đổi trung bình cùa Y X2 thay đổi đơn vị cịn x3khơng đổi Nhung Xj = XXì điều có nghĩa khơng thể tách ảnh huởng Xỉ X3 khỏi mảu cho Trong kinh tế luợng điều phá hủy tồn ý định tách ảnh hưởng riêng biến lên biến phụ thuộc Thí dụ: X31 = yi = , thay điều kiên vào (5.5) ta được: I + Pj(ÀX2 i) + Ci = ( P + xp3)xji + ei = ax ji + ei Trong ă = p + ^ p Áp dụng công thức tính ước lượng cùa phưcmg pháp bình phương bé nhít thông thường ta được: â = (p J + X p 3) = Jx 2i2 Như dù a ước lượng cách cững khơng thể xác định dươc P ệ>! từ phương tìn h ẩn 109 Như trường họp đa cộng tuyến hồn hảo, khơng thể nhận lời giải cho hẹ số hồi quy riêng, nhung ta lại nhận lòi giải cho tổ hợp tuyến tính hệ số Chú ý tiucmg đa cộng tuyến hồn hảo phương sai cấc sai số tiêu chuẩn uớc lượng P i , P ì vơ hạn 5.3 UỚC LUỢNG TRQNG TRUỠNG HỢP CĨ ĐA CỘNG TUYẾN KHƠNG HỒN HẦO Đa cộng tuyến hoàn hảo trường hợp đặc biột xảy Trong số liệu liên quan đến chuỗi thời gian, thường xảy đa cộng tuyến khơng hồn hảo XẾt mơ hình (5.5) Bây già thiết Xì X3 có cộng tuyến khơng hồn tồn theongỉũa: ' -V X31 = Xx2i + V| \ *■0, Vị nhiễu ngẫu nhiên cho X xjjV j = Trong trường hợp theo phương pháp bình phương bé ta dẽ dàng thu ước lượng P /?2 A (i> , xvK ^ J ằĩj+ỵr*)-ỊẲỵ$ylx2l ,ỉ = ( x ^ + > , 1) - ( ^ Z )2 (5.9) Trong truỉmg họp khồng có lý đo đổ nói (5.9) khơng ước luợng đuọc 5.4 HẬU QUẢ CỦA ĐA CỘNG TUYẾN Trong trường hợp có tồn đa cộng tuyến gần hồn hảo gặp số tình sau: lớn Phương sai hiệp phương sai ước lượng bình qn bé Chúng ta xét mơ hình (5.5), theo cơng thức tính phương sai hiệp phương sai ước luọng P i p ì (chương hồi quy bội) ta có: v" < f o • 110 ỵ ề = ĩ) (5' 10) và: COV(ậ2,p 3) = (l —r23)'V^'X2i j x3i Trong Ĩ23 hệ số tương quan X2, X3 (5.12) Từ (5.10) (5.11) ta thấy r 23 tăng dăn đến (nghĩa cộng tuyến tăng) phương sai ước lượng tăng dần đến vô hạn (5.12) ràng f23 tăng dần đến cov( P P 3) tăng giá trị tuyệt đối Khoảng tin cậy rộng Như ta biết chương tnrớc khoảng tin cậy 95% cho (32 p biết là: Â2 ± 1,96se( P2) p3 ± l,96se(p3) Trong đó: s e (  ) = Vvar(  ) - ~ f = T Cho nên ta viết lại khoảng túi cậy 95% cho p là: P i + 1,96 cho P là: y23 ■Ị (5.13) í xỉ, (5.14) P i ± 1,96 Í P (5 13) (5.14) chứng tỏ r23 gần tới khoảng tin cậy cho tham số rộng Do trường hợp có đa cộng tuyến gần hồn hảo số liệu mẫu thích hợp vối tập giả thiết khác Vì xác suất chấp nhận giả thiết sai tăng lên (tức tăng sai lầm loại n) 111 Tỷ số t m ất ỷ nghĩa Như dã biã, kiểm định giả thiết H o: Pj = 0, dã sử dụng tỷ số t = Pj/seijjj) đ a n so sánh gíà trị t dã đwjc c Iiwng với giá uị tới hạn t Nhung có đa cộng tuyến gần hồn hảo sai số tiêu chuẩn uớc lượng đuợc cao làm cho d số t nhỏ v í giá trị tuyé đối Kít làm tăng khả chấp nhận giả thiơ Ho R2 cao nhung tì số t it ỷ nghĩa Đế giải thích điều Ta xét mổ hình hồi quy k biến sau: Yj = Pi + + p3Xái + ••••• + PfcXid + y Trong trường hợp có đa cộng tuyến gần hồn hảo, chi trin, ta tìm hệ số góc riêng khơng có ý nglũa mặt thống kê sở kiểm định t Nhung R2 lại cao, nên bàng kiểm định F, bác bỏ giả thiết: Ho: P2 = P3 = = pk = Mâu thuẫn tín hiệu đa cộng tuyến s C ác ước lượng bình phuong bé n hát sai số tiêu chuẩn chúng trỏ nên r ấ t nhạy thay đổi nhỏ số liệu Dấu uớc lưọng hệ số hồi quy sai Khi có đa cộng tuyến gần hồn bảo thu đuợc ước lượng hệ số hồi quy trái với điều mong dại Chẳng hạn lý thuyết kinh tế cho hàng hóa bình thường thu nhập tâng, cầu hàng hóa lảng, nghĩa bồi quy thu nhập biến giải thích, biến phụ thc luợng cáu hàng hóa, xảy toọng đa cộng tuyến gần hồn hảó uớc luợng hệ sổ biến thu nhập mang díu am - màu thuẫn với dĩèu ta mong đợi Thêm vào hay bớt biỂn cộng tuyến với biỂn khác, mỡ hình se thay đổi v i độ lớn uớc lượng đấu chúng Tóm lại triệu chúng chù yếu đa cộng tuyến mà ta nói tăng sai số tiêu chuẩn Sai số tieu chuẩn cao có ngụ ý biến thiên bẹ số hồi quy từ mẫu đến mẫu khác cao thay đổi nhỏ số liệu hoạc mơ hình hồi quy (nhu thêm vào bớt di biến) gay thay đổi lớn hệ số Nhu biết đuợc sổ bậu đa cộng tuyến Nhung dù hậu quà diều quan trọng làm để thấy duợc (Ồn để ta ngăn ngừa bậu quà tai hại thủ tục ước lượng sử dụng mổ ỉủnh hồi quy đổ dự đoán, điều khiển hiểu tiình liên quan với Sau trình bày sổ phương pháp để phái đa cộng tuyỂD mổ tả ỉỉhững triệu chứng chủ yếu 112 5.5 PHÁT HIỆN RA S ự T N TẠI CỬA ĐA CỘNG TUYẾN Theo Kmanta ‘m vấn dề vè đa cộng tuyến vấn đê v í bậc khống phải yề loại”, nên việc phân biệt có ý nghĩa khống phải có hay khống có đa cộng tuyến mà bậc khác cùa chúng Vì đa cộng tuyến dề cập đến điều kiện cùa biến giải thích mà già định phi ngẫu nhiên, đặc điểm cùa mỉu khơng phải cùa tổng thể Do khơng kiểm định “tính đa cộng tuyến - mà muốn đo bậc mẫu bất kỳ.” Sau vài quy tắc để đo mức đa cộng tuyến R cao nhung tì số t tbấp Trong trường hợp R cao (thuờng R2 > 0,8) mà tỳ số t thấp Ỳ dấu hiộu đa cộng tuyến 2ẽ Tương quan cáp biỂn giải thích cao Nếu hộ số tương quan cặp giũa biến giải thích cao (vượt 0,8) thi cố khả cố tồn đa cộng tuyến Tuy nhiên tiẽu chuẩn thường khổng xác Có nhũng trường hợp tương quan cặp khổng cao nhung cố cộng tuyến Thí dụ, ta cố biến giải thích Xi, "Xì, X] nhu sau: X , = ( ,1 ,1 ,1 ,1 ,0 ,0 ,0 , Xi - ( ,0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 , ,0 ,0 ,0 ,0 , ,0 ,0 ,0 ,0 , ,0 ,0 ,0 ,0 ) ,0 ,0 ,0 ,0 ) X, = (1,1,1,1,1,1,1,14,1 0,0,0,0,0, 0,0,0,0,0) Rõ ràng x = Xĩ + X| nghĩa ta có đa cộng tuyến hoàn hảo, nhiên tuơng quan cặp là: Tiĩ = »1/3 ; r ,3 = rjj = ,5 Nhu đa cộng tuyến xảy xa mà báo trước tương quan cặp cOng cung cấp cho ta kiểm tra tiên nghiệm có ích 3ửXem xét tương q u an riêng ‘ Vì vấn dề dề cập đến dựa vào tương quan bạc khống Farrar Glauber (fô nghị sừ dụng hộ số tirong quan riêng Trong hồi quy cùa Y đối vói biến Xi Xì, x» Nếu tá nhận thấy ràng r2|,234 cao r2,2.34 ; r \ 3.24 ; r214,23 tucmg đổi thấp điều dó gợi ý rầng biến Xj, Xí, X* có tương quan cao biến thừa Dù tương quan riêng có ích khổng đảm bảo cung cấp cho ta hướng dẫn xác việc phát đa cộng tuyến 113 Hồi quy phụ Một cách tin cậy đuọc để đánh giá mức đọ cửa da cộng tuyến hồi quy phụ.HỒi quy phụ hồi quy biến giải thích X; theo biến giải thích cịn lại R2 tính từ hồi quy ta ký hiẹu R2| Mối liền hệ Fị R*i: p _ R? / (k -2 ) i= (1-R ?) / ( n -k + ) Fj tuấn theo phân phối F với k - n- k + bậc tự Trong n cở mẫu, k sổ biến giải thích kể hộ số chặn mơ hình R2; hệ số xác định hồi quy cùa biến theo biến Xkhác Nếu F| tính vuợt điểm tới hạn Fi(k2, n-k+1) mức ý nghĩa cho có nghĩa Xi có liên hộ tuyến tinh với biến Xkhác Nếu Fj có nghĩa mặt thống kê chúng, ta phải định liệu biến Xj bị loại khỏi mổ bình Một trở ngại củá kỹ thuật hồi quy phụ gáoh nặng tính tốn Nhưng ng&y nhiều chương trinh máy tính cổ thể đảm đương đuợc cơng việc tính tốn Nhân tử phóng đại phương sai Một thước đo khác tượng đa cộng tuyến nhân tử phóng đại phương s a i gắn với biến 35, ký hiệu VIF(Xj) VIF(Xi) đuợc thiết lập sở fiệ số xác định R2j hồi quy biẾn ■ Xj với biến khác sau: vnw = (5.15) Nhìn vào cơng thức (5.15) giải thích ỶIF(X) tỳ số phuong sai thục Pi hồi quy gốc Y biến X phuơng sai uớc lượng Pi hồi quy mà Xi Inrc giao với biến khác.Ta coi tình huđng lý tuởng tinh mà biếa độc lập khổng tương quan với nhau, VIF so sánh tình thực tình, lý tưởng Sụ so sánh khơng có ích nhiều khổng cung c ỉp cho ta biết phải làm với tinh dó Nố cho bi£t tình hỉnh khổng lý tưỏng ĐỒ thị mối liên hệ eủa R2i VIF ỏ hình 5.2 114 Hình 5.2 Như hình vẽ R2i tăng từ 0,9 đến VIF tăng mạnh Khi R2, = VIF vơ hạn Có nhiều chương trình máy tính cho biết VIF biến độc lập hồi quy Độ đo Theil Khía cạnh chủ yếu VIF xem xét đến tương quan qua lại biến giải thích Một độ đo mà xem xét lương quan cùa biến giải thích với biến giải thích độ đo Theil Độ đo Theil định nghĩa nhu sau: m = R2 - Ề ( R - R Ì j ) 1=2 Trong R hệ số xác định bội hồi quy Y biến Xj, x 3, Xk mơ hình hồi quy: Y j= Pi + p 2X2i + P3X 31 + + PkXki +Ui R^i hệ SỐ xác định bội mơ hình hồi qui tíiến Y biến X2 , x 3, ,X[ 1, X +1 X k ' Đại lượng R - J^2.| gọi "đóng góp tăng thêm vào" vào hệ số xác định bội Nếu X2, X3, Xk khơng tương quan với m = đóng góp tăng thỗm cộng lại R Trong trường hợp khác m nhận giá trị âm dương lớn Đổ thấy đuợc độ đo có ý nghĩa, xét trường hợp mơ hình có hai biến giải thích Xj x Theo ký hiệu sử dụng chương trước ta có: m = R - (RJ - r212) - (R2 - r213) Tỷ số t liê hệ với tưcmg quan riêng r2!2.3 , r2i3,2 Trong phần hồi quy bội ta biết: R = r R 12 + ( - ^ 12) 1^ 13,2 = r 13 + (1 - r 2ij) ^123 Xhay công thức vào biểu thức xác định m ta đuợc: 115 m = R - [r2i2 + (1 - r212) r213,2 - r^id - [1*13 + (1 - 1*13) r2i2j - r213 ] = R - K1 - r 212) I*1M + (1 - > , 3> r2!2,3 ] (5.17) Công thức (5.17) cho ta biết điều gì? Để thấy đíồu ta đạt - r *!2 = w2 ; - r2!, = w gọi tiọng số Công thức (5.17) viết lại duới dạn m = R2- [W2r2|},2 + W3 r*I2jl Như độ Theil bàng hiệu bệ số xác định bội tỏng có trọng số hệ sổ tương quan riêng Thí dụ: Giả sử hộ số tương quan biến Y Xì, Xì nhu sau: Y Y X í Xa ,0 0 ,9 ,9 * ,9 ,0 Xa ,9 ,9 ,9 ,0 Để tính duợc độ Theil ta phải tính đuợc R2 1*12,3 >r2!3,2 Theo cơng thúc biết chương hồi quy bội ta cố: Ị - ' - ịh iz ln h ú í (1 - rỉĩ)(1 - r ả ) fa » = S i ; R* = ĩ\i + (0.95-0,95 *0,97)2 ( - 0,9S2X I- 0.97 ) r^ế3 - (0.95)2 = 0,9025 (1 - I * , 2) 1* 13* = (0 ) * + (1 - , 2) , * 0,916 Vậy m = 0,916 - 2[1 - 0,9025]’0,14 = 0,888 Do độ đo cùa Theil mức độ đa cộng tuyến 0,888 Tuy nhiên trả lời dược câu hỏi ẵ‘tỉnh cộng tuyến có nghiêm trọng khững?” Nhu thảo luận số độ đo đa cộng tuyến nhung tất có ý nghĩa sử dụng hạn chế Chúng cho ta thổng báo việc lý tưởng Còn niột sổ độ đo nhung liên quan đến giá trị riêng thống kẽ Bayes khơng trình bày đá y 5.6 BIỆN PHÁP KHÁC PHỤC Vân dề đặt đa cộng tuyến nghiêm ưọng ta lằm gì? cõng trường hợp trên, khống cố biện pháp hồn hảo đa cộng tuyến vấn đề mẫu Tuy nhiên quy tắc ngón tay đuợc áp dụng đây, thành cống lại.phụ thuộc vào tính nghiêm trọng vấn dề cộng tuyến Sau ta xem xét số phuơng pháp: U6 Sử dụng thông tin tién nghiêm Một cách tiếp cận để giải vấn đê đa cộng tuyến phải tận dụng thông tin tiên nghiệm thông tin từ nguồn khác để ước lượng hệ sổ riêng Thí dụ: Ta muốn ước lượng hàm sản xuất q ừình sản xuất có dạng: Q, = AƯYkV * (5.17) Trong Q, lượng sản phẩm sản xuất thời kỳ t; L, lao động thòi kỳ t; Ki vốn thời kỳ t; ụ nhiễu; Ạ a , p tham số mà cần ước lượng Lấy ln hai vế (5.17) ta được: InQ, = lnA + ctlnL, +PK, u, Đặt ta lnQ, = Q \ ; InA = A* ; lnL, = L‘, Q* = A* + txL*, + Ị3K*, + Ui (5.18) Giả sử K L có tương quan cao dĩ nhiên điều dẫn đến phương sai ước lượng cùa hộ số co giãn hàm sản xụất lớn Giả sử từ ngùốn thông tin khác mà ta biết lằng ngành cơng nghiệp thuộc ngành có lợi tức theo quy mơ khơng đổi nghĩa a + p = Với thông tin này, cách xử lý thay p = - a vào (5.18) thu đuợc: Q’| = A* + a L \ + (1 -a)K*, + u, Từ ta dược Q* - K*| = A* +

Ngày đăng: 19/12/2021, 22:46

HÌNH ẢNH LIÊN QUAN

Trong các mô hình hồi quy tuyến tính mà chúng ta đã xem xét lừ các chương trước  cho đến nay  thì  các biến giải  thích đêu  là các biến  số lượng - Bài giảng kinh tế lượng phần 2
rong các mô hình hồi quy tuyến tính mà chúng ta đã xem xét lừ các chương trước cho đến nay thì các biến giải thích đêu là các biến số lượng (Trang 1)
Bảng 4.1 - Bài giảng kinh tế lượng phần 2
Bảng 4.1 (Trang 3)
Hình 4.1 - Bài giảng kinh tế lượng phần 2
Hình 4.1 (Trang 4)
Trong mục này ta sẽ xét mô hình hồi quy chì có một biến lượng và một biến chất vói  sổ phạm  trù  nhiều  hơn  hoặc  bàng  2 - Bài giảng kinh tế lượng phần 2
rong mục này ta sẽ xét mô hình hồi quy chì có một biến lượng và một biến chất vói sổ phạm trù nhiều hơn hoặc bàng 2 (Trang 5)
Hình 4.2 - Bài giảng kinh tế lượng phần 2
Hình 4.2 (Trang 6)
Hình 4.3. Thu nhập của một cán bộ giảng dạy đại học trong mối quan.hộ với tuổi ngh'ê và vùng mà anh ta giảng dạy. - Bài giảng kinh tế lượng phần 2
Hình 4.3. Thu nhập của một cán bộ giảng dạy đại học trong mối quan.hộ với tuổi ngh'ê và vùng mà anh ta giảng dạy (Trang 7)
Mô hình hồi quy là: - Bài giảng kinh tế lượng phần 2
h ình hồi quy là: (Trang 8)
Tất cả các mô hình hồi quy đã xét đến nay, chúng ta đốu giả thiết ràng biến lượng  ảnh  hưởng  đến  hệ  số cbặn nhưng  khổng  ảnh  huởng  đến  hệ  số  góc  các  hồi  quy của I'.áe»nhóin con khác nhau - Bài giảng kinh tế lượng phần 2
t cả các mô hình hồi quy đã xét đến nay, chúng ta đốu giả thiết ràng biến lượng ảnh hưởng đến hệ số cbặn nhưng khổng ảnh huởng đến hệ số góc các hồi quy của I'.áe»nhóin con khác nhau (Trang 10)
hình 4.4b - Bài giảng kinh tế lượng phần 2
hình 4.4b (Trang 11)
Để thấy được ứng dụng của mô hình (4.8) ta lấy kỳ vọng có dĩèu kiện cả hai vế cùa phương trình này với già thiết  E(Ụ) = 0 chúng ta thu đurợc: - Bài giảng kinh tế lượng phần 2
th ấy được ứng dụng của mô hình (4.8) ta lấy kỳ vọng có dĩèu kiện cả hai vế cùa phương trình này với già thiết E(Ụ) = 0 chúng ta thu đurợc: (Trang 13)
Ung với mỗi giả thiết, mô hình được xem xét cũng khác nhau. Để thuận tiện trình bày, ta xét: - Bài giảng kinh tế lượng phần 2
ng với mỗi giả thiết, mô hình được xem xét cũng khác nhau. Để thuận tiện trình bày, ta xét: (Trang 15)
Nhu vậy viộc phân tích thời vụ có thé sử dụng 2 mô hình (4.11) và (4.12). Tuy nhiẽn mô lủnh  (4.12)  tổng quát hơn,  để  tránh sự khổng  thích hợp  ta nên  sử dụng  mô hỉnh (4.12) - Bài giảng kinh tế lượng phần 2
hu vậy viộc phân tích thời vụ có thé sử dụng 2 mô hình (4.11) và (4.12). Tuy nhiẽn mô lủnh (4.12) tổng quát hơn, để tránh sự khổng thích hợp ta nên sử dụng mô hỉnh (4.12) (Trang 16)
Nhung vấn dề sẽ như thế nào nếu mô hình có nhiều Ihay đổi vê cấu trúc ứng vái to và t|, thi mô hình thich hợp sẽ là: - Bài giảng kinh tế lượng phần 2
hung vấn dề sẽ như thế nào nếu mô hình có nhiều Ihay đổi vê cấu trúc ứng vái to và t|, thi mô hình thich hợp sẽ là: (Trang 17)
• ú ớc lượng mô hình trong suốt thòi kỳ 1950-1986 Ordinary Least Squares Estimation Dependent variable is  TOT - Bài giảng kinh tế lượng phần 2
c lượng mô hình trong suốt thòi kỳ 1950-1986 Ordinary Least Squares Estimation Dependent variable is TOT (Trang 19)
• ứ ớc lượng mổ hình trong suốt thời kỳ 1973-1986 Ordinary Least Squares Estimation - Bài giảng kinh tế lượng phần 2
c lượng mổ hình trong suốt thời kỳ 1973-1986 Ordinary Least Squares Estimation (Trang 20)
• ứ ớc lượng mô hình trong suốt thời kỳ 1950-1972 Ordinary Least Squares Estimation  - Bài giảng kinh tế lượng phần 2
c lượng mô hình trong suốt thời kỳ 1950-1972 Ordinary Least Squares Estimation (Trang 20)
f. Hệ số chặn của mô hình trong những tháng nhập bình mới và bình cO có thực  sự khác nhau không? - Bài giảng kinh tế lượng phần 2
f. Hệ số chặn của mô hình trong những tháng nhập bình mới và bình cO có thực sự khác nhau không? (Trang 23)
Hình 5.1 - Bài giảng kinh tế lượng phần 2
Hình 5.1 (Trang 26)
Chúng ta xét mô hình (5.5), theo công thức tính phương sai và hiệp phương sai của các ước luọng P i  và p  ì (chương hồi quy bội) ta có: - Bài giảng kinh tế lượng phần 2
h úng ta xét mô hình (5.5), theo công thức tính phương sai và hiệp phương sai của các ước luọng P i và p ì (chương hồi quy bội) ta có: (Trang 28)
Hình 5.2 - Bài giảng kinh tế lượng phần 2
Hình 5.2 (Trang 33)
Thông tin tiên nghiệm đã giúp chúng ta giảm số biến độc lập trong mô hình xuống còn 1  biến z \ - Bài giảng kinh tế lượng phần 2
h ông tin tiên nghiệm đã giúp chúng ta giảm số biến độc lập trong mô hình xuống còn 1 biến z \ (Trang 35)
Giả sử trong mô hình hồi quy của ta có Ylà biến được giải thích còn X2, Xa,.... là các biỂn giải thích - Bài giảng kinh tế lượng phần 2
i ả sử trong mô hình hồi quy của ta có Ylà biến được giải thích còn X2, Xa,.... là các biỂn giải thích (Trang 36)
Mô hình h'ôi quy dạng (5.23) thường làm giảm tính nghiêm trọng của đa cộng tuyến vì  dù x2  và Xj có thể tương quan  cao nhung không có lý do tiên nghiêm nà&lt;&gt;-  - Bài giảng kinh tế lượng phần 2
h ình h'ôi quy dạng (5.23) thường làm giảm tính nghiêm trọng của đa cộng tuyến vì dù x2 và Xj có thể tương quan cao nhung không có lý do tiên nghiêm nà&lt;&gt;- (Trang 37)
Bay giờ sẽ xem xét kỹ hon vắn dề này. Ta sẽ ước luợng lại mô hình (5.24), (5.25) và (3.26) sau khi bỏ di hai quan sát cuổi cùng - Bài giảng kinh tế lượng phần 2
ay giờ sẽ xem xét kỹ hon vắn dề này. Ta sẽ ước luợng lại mô hình (5.24), (5.25) và (3.26) sau khi bỏ di hai quan sát cuổi cùng (Trang 38)
hình này không? - Bài giảng kinh tế lượng phần 2
hình n ày không? (Trang 39)
b. Cho mô hình [1] - Bài giảng kinh tế lượng phần 2
b. Cho mô hình [1] (Trang 39)
Nếu nghi ngờ mô hình [1] trên có hiện tượng đa cộng tuyến, hãy nêu một cách kiểm  định. - Bài giảng kinh tế lượng phần 2
u nghi ngờ mô hình [1] trên có hiện tượng đa cộng tuyến, hãy nêu một cách kiểm định (Trang 41)

TỪ KHÓA LIÊN QUAN