Tuyển tập bất đẳng thức
[...]... theo vế các bất đẳng thức trên, ta có: √ √ √ ab + 1 + bc + 1 + ca + 1 ≥ a + b + c Đẳng thức không xảy ra, do đó: √ √ √ ab + 1 + bc + 1 + ca + 1 > a + b + c Chứng minh hoàn tất Bài 34 Cho a, b, c > 0 Chứng minh rằng: 1 a3 1 a + 3 + b3 ≥ + + b 3 a b a b Lời giải: Áp dụng bất đẳng thức AM-GM ta có: 1 3 +1+1≥ 3 a a a3 3a +1+1≥ b3 b 3 b + 1 + 1 ≥ 3b 1 a + +b≥3 a b Cộng vế với vế các bất đẳng thức trên, ta... + b)(a + b + 2c) ≤ 2 8 (3a + 3b + 2c) Đẳng thức xảy ra khi và chỉ khi a + b = 2c http://boxmath.vn/ 19 Bài 19 Cho x, y, z là các số thực dương thỏa mãn x2 + y 2 + z 2 = 3 Tìm giá trị nhỏ nhất của biểu thức: 1 1 1 + + P = xy + 2 yz + 2 zx + 2 Lời giải: Theo bất đẳng thức Cauchy-Schwarz ta có P = 1 1 9 1 + + ≥ xy + 2 yz + 2 zx + 2 xy + yz + zx + 6 Theo bất đẳng thức AM-GM ta có: x2 + y 2 + z 2 ≥ xy +... x y z Phép chứng minh hoàn tất Đẳng thức xảy ra khi và chỉ khi a = b = c Bài 8 Cho a, b, c là các số thực dương Chứng minh rằng: (1 + a3 ) (1 + b3 ) (1 + c3 ) ≥ (1 + ab2 ) (1 + bc2 ) (1 + ca2 ) Lời giải: Áp dụng bất đẳng thức Holder ta được: 1 + a3 1 + b3 1 + b3 ≥ 1 + ab2 3 1 + b3 1 + c3 1 + c3 ≥ 1 + bc2 3 1 + c3 1 + a3 1 + a3 ≥ 1 + ca2 3 Nhân từng vế của 3 bất đẳng thức trên ta được 1 + a3 1 + b3... 2 c + ab ab ab + c+a c+b √ Cộng vế theo vế các bất đẳng thức trên, ta được √ bc 1 ≤ 2 a + bc ab ab bc bc ca ca + + + + + a+c b+c a+b a+c b+a b+c = 1 2 Phép chứng minh hoàn tất 1 Đẳng thức xảy ra khi và chỉ khi a = b = c = 3 Bài 10 Cho a, b, c là các số thực dương Chứng minh rằng: √ √ b 1 √ a c √ +√ ≥√ a+ b+ c +√ a+c b+c a+b 2 Lời giải: Cách 1 Bất đẳng thức cần chứng minh tương đương a b c 1 P = √ +... 2a + 2b2 + 2c2 + 10ab + 10bc + 10ca 2 4(a + b + c) Chứng minh hoàn tất Đẳng thức xảy ra khi và chỉ khi a = b = c Cách 2 Ta có a b c P =√ +√ +√ = (a+b+c) a+c b+c a+b http://boxmath.vn/ √ √ √ √ 1 1 1 +√ +√ − b+c+ a+c+ a+b a+c b+c a+b 12 Theo bất đẳng thức Cauchy-Schwarz ta có (a + b + c) 1 1 1 √ +√ +√ a+c b+c a+b ≥√ Theo bất đẳng thức AM-GM ta có: √ √ √ a+b+ b+c+ c+a≤ 9.(a + b + c) √ √ a+b+ b+c+ c+a... c 3−a 3−c 3−b 2 4 2 2 Phép chứng minh hoàn tất Đẳng thức xảy ra khi và chỉ khi a = b = c Bài 11 Cho x, y, z là các số thực dương thỏa mãn x + y + z = 6 Chứng minh rằng: 8x + 8y + 8z ≥ 4x+1 + 4y+1 + 4z+1 Lời giải: Cách 1 Đặt a = 2x , b = 2y , c = 2z → abc = 64 Bất đẳng thức đã cho được viết lại như sau: a3 + b 3 + c 3 ≥ √ 3 abc a2 + b2 + c2 Theo bất đẳng thức AM-GM ta có: √ 3 3 abc ≤ (a + b + c) Suy... + b3 + c3 ≥ ab(a + b) + bc(b + c) + ca(c + a) Thật vậy, theo bất đẳng thức AM-GM ta có: a3 + a3 + b3 ≥ 3a2 b a3 + a3 + c3 ≥ 3a2 c a3 + b3 + b3 ≥ 3ab2 a3 + c3 + c3 ≥ 3ac2 b3 + b3 + c3 ≥ 3b2 c b3 + c3 + c3 ≥ 3bc2 Cộng từng vế của các bất đẳng thức trên ta được 2 a3 + b3 + c3 ≥ ab(a + b) + bc(b + c) + ca(c + a) Phép chứng minh hoàn tất Đẳng thức xảy ra khi và chỉ khi a = b = c Cách 2 Đặt a = 2x , b =... (bc) (ab) 3 ⇔ + + ≥ abc(b + c) abc(a + b) abc(c + a) 2 Mặt khác: Theo bất đẳng thức AM-GM ta có: (ab + bc + ca)2 ≥ 3 (a2 bc + ab2 c + abc2 ) = 3abc(a + b + c) Theo bất đẳng thức Cauchy-Schwarz ta có: (ac)2 (bc)2 (ab)2 (ab + bc + ca)2 3 + + ≥ ≥ abc(b + c) abc(a + b) abc(c + a) 2abc(a + b + c) 2 1 Bài toán được chứng minh xong Đẳng thức xảy ra khi và chỉ khi a = b = c = 3 Bài 16 Cho a, b, c là các số... 2(a4 + b4 ) ≥ 2 + 2ab cyc a2 √ + 2 + 2ab √ cyc b2 2 + 2ab Sử dụng bất đẳng thức Cauchy-Schwarz và AM-GM ta có: cyc 2(a + b + c)2 2(a + b + c)2 a2 3 √ √ ≥ ≥ ≥ ab + bc + ca + 9 2 2 + 2ab 2 2 + 2ab Tương tự √ cyc 3 b2 ≥ 2 2 + 2ab Cộng 2 bất đẳng thức ta được a4 + b 4 + 1 + ab b4 + c 4 + 1 + bc c 4 + a4 ≥3 1 + ca Phép chứng minh hoàn tất Đẳng thức xảy ra khi và chỉ khi a = b = c = 1 Bài 5 Cho a, b, c là các... 24 48 6 Cộng từng vế của các bất đẳng thức trên ta được 1 8 1 1 1 3 4 13 13 121 a+b+c+2 + + + ≥ + +1+ + + = ab bc ca abc 2 4 3 3 6 12 Chứng minh hoàn tất Đẳng thức xảy ra khi và chỉ khi a = 3, b = 4, c = 2 Bài 24 Cho ab + bc + ca = abc và a, b, c > 0 Chứng minh rằng a4 + b 4 b4 + c 4 c 4 + a4 P = + + ≥1 ab (a3 + b3 ) bc (b3 + c3 ) ac (a3 + b3 ) Lời giải: Áp dụng bất đẳng thức AM-GM ta có: a4 + a4 + . z) Lời giải: Bất đẳng thức đúng vì khi ta đặt a = xy, b = yz, c = zx thì bất đẳng thức trở thành bất đẳng thức a 2 + b 2 + c 2 ≥ ab + bc + ca. Đẳng thức xảy. z) Lời giải: Bất đẳng thức đúng vì khi ta đặt a = xy, b = yz, c = zx thì bất đẳng thức trở thành bất đẳng thức (a + b + c) 2 ≥ 3(ab + bc + ca). Đẳng thức xảy