1. Trang chủ
  2. » Cao đẳng - Đại học

CONG THUC VAT LI 12

7 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 1,09 MB

Nội dung

Giao thoa ánh sáng với khe Y-âng: a Giao thoa với ánh sáng đơn sắc: + Vị trí của các vân giao thoa:.. CHƯƠNG VI: LƯỢNG TỬ ÁNH SÁNG 1.[r]

(1)CÔNG THỨC VẬT LÍ 12 CHUẨN CHƯƠNG I: DAO ĐỘNG CƠ: Dao động điều hòa Con lắc lò xo: a) Biếu thức dao động: + Phương trình dao động: k  m x = Acos(ωt + φ); với + Vận tốc dao động điều hòa: v = x’ = -ωAsin(ωt +φ)  v = ωAcos(ωt + φ + );  v sớm pha so với li độ x + Chú ý: v  A - Khi x = thì max - Khi x = ± A thì x = + Gia tốc dao động điều hòa: a = v’ = x’’ a = - ω 2Acos(ωt + φ) = - ω2x a = ω2Acos(ωt + φ + π) a ngược pha so với lí độ x  a sớm pha so với vận tốc v + Chú ý: - Khi x = thì a = a  A - Khi x = ± A thì max + Chu kì và tần số dao động điều hòa: t 2  - Chu kì: T = N    - Tần số f = T 2 A  x2  v2 2 + Hệ thức v, x và a: b) Con lắc lò xo:  Lực đàn hồi: + Con lắc lò xo nằm ngang: - Lực đàn hồi: Fđh = F = - kx - Lực đàn hồi cực đại: Fmax = kA - Lực đàn hồi cực tiểu: Fmin= + Con lắc lò xo treo thẳng đứng: - Lực đàn hồi: Fđh = F = - k(Δl + x); với mg g l   k  : độ dãn lò xo vật vị trí cân - Lực đàn hồi cực đại: Fmax = k(Δl + A) - Lực đàn hồi cực tiểu: · Δl < A: Fmin= · Δl > A: Fmin = k(Δl - A) lmax  lmin Với lmax = lcb + A; lmin = lcb – A; A =  Tần số góc, chu kì và tần số: k m k  ; T 2 ;f  m k 2 m Nếu lắc lò xo treo thẳng đứng có thể tính: g  l  Ghép lò xo: + Lò xo ghép song song: k = k1 + k2 ; 1  2 2 T T1 T2 1   ;T T12  T22 + Lò xo ghép nối tiếp: k k1 k2 Khi gắn đồng thời m1 và m2 vào lò xo: m = m1 2 + m  T T1  T2   Năng lượng: mv + Động năng: Wđ = kx + Thế năng: Wt = 1 W  kA  m A2 const 2 + Cơ năng: Con lắc đơn a) Con lắc đơn: mg s + Lực tác dụng: F = Pt = - l + Phương trình dao động:  g l s = s 0cos(ωt + φ); α = α0cos(ωt + φ); với + Chu kì và tần số dao động: 2 l g T 2 ;f   g 2 l b) Năng lượng: 2 + Thế : Wt = mgl(1 – cosα) = mgl m A2 cos (t   ) = 2 mv m A2sin (t   ) 2 + Động năng: Wđ = = + Cơ năng: 1 mv m A2  mgl 02 W= + mgl(1 – cosα) = c) Chú ý: + Chu kì lắc đơn phụ thuộc độ cao (2)  R  gh g0    Rh (độ sâu) h: + Chu kì lắc đơn phụ thuộc nhiệt độ dây l l0     t  t0   treo: + Nếu lắc còn chịu thêm tác dụng ngoại    l F T 2  gh g  gh m  lực F không đổi: + Con lắc đặt trên mặt phẳng nằm nghiêng góc α : l 2 gcos T= + Chu kì lắc đơn có độ dài l = l1 + l2  T T12  T22 d) Vận tốc: + Khi qua li độ góc α bất kì: v2α = 2gl(cosα – cosα0) + Khi qua VTCB: v2max = 2gl(1 – cosα0) + Khi qua vị trí biên: v = e) Sức căng dây: + Khi qua li độ góc α bất kì: T α = mg(3cosα – 2cosα0) + Khi qua VTCB: Tmax = mg(3 – 2cosα0) + Khi qua vị trí biên: Tmin = mgcosα0 Năng lượng dao động điều hòa: kx m A2 cos2 (t   ) 2 + Thế : Wt = = mv m A2sin (t   ) + Động năng: Wđ = = + Cơ năng: 2 1 mv kx m A2  kA2 W= + = Dao động tắt dần: 4 mg A  k Độ giảm biên độ mỗi chu kì: Độ giảm xmax sau chu kì đầu tiên: 4F A1  m  mg x  k Tốc độ lớn khi: Tổng hợp dao động: Cho hàm dạng sin: x1 = Acos(ωt + φ1); x2 = Acos(ωt + φ2); Biểu thức dao động tổng hợp: x = Acos(ωt + φ); Trong đó  Biên độ A tính bởi: A2 = A12 +A22 + 2A1A2cos(φ2 – φ1)  Pha ban đầu φ tính bởi: A sin 1  A2 sin 2 tan   A1cos1  A2 cos2 - Nếu Δφ = φ2 – φ1 = k2π thì A = A1 + A2 A  A2 - Nếu Δφ = φ2 – φ1 = (2k +1 )π thì A = A  A2   - Nếu Δφ = φ2 – φ1 bất kì: A A1 + A2 CHƯƠNG II: SÓNG CƠ VÀ SÓNG ÂM Sóng Phương trình sóng: + Bước sóng: λ là quãng đường mà sóng truyền chu kì dao động   f + Tốc độ truyền sóng: v = T + Phương trình sóng O: u0 = Acosωt 2 t = Acos T = Acos2πft Phương trình sóng M, OM  x :   x    t x    t  v   2       = Acos   T    uM = Acos   2 x    2 ft    = Acos Phản xạ sóng Sóng dừng: + Phương trình sóng tổng hợp M sóng tới và sóng phản xạ truyền đến:   2 d     cos(2 ft  )  2 u = 2Acos    2 d   a  A cos     2  Biên độ dao động:  - Nếu d = k thì a = 0, M là nút 1   k   thì a = 2A, M là bụng - Nếu d =  + Điều kiện để có sóng dừng:  - Đối với sợi dây có hai đầu cố định: l = k ; với k = 1, 2, 3…; (k là số bụng = số bó sóng) - Đối với sợi dây có đầu tự do: l = (2k + 1)  ; với k = 0, 1, 2, 3…(k là số bó sóng nguyên)   l = k ; với k = 1, 3, 5…; l = (2k – 1) ; với k = 1, 2, 3… (k là số bụng sóng = số bó sóng + 1) Giao thoa sóng: a) Sự giao thoa hai sóng mặt nước: (3) - Các nguồn S1 và S2 dao động theo phương trình 2 t u1 = u2 = Acosωt = Acos T - Dao động đến M có phương trình: t d    1 u1M = Acos2  T   t d    2 u2M = Acos2  T   - Tại M hai dao động có độ lệch pha: 2    d  d1   cos  Biên độ dao động M: AM = 2A  Vị trí các cực đại giao thoa: Nếu Δφ = k2π  d2 – d1 = kλ  AM = 2A; với k = 0, 1, 2…  Vị trí các cực tiểu giao thoa:  Nếu Δφ = (2k + 1)π  d2 – d1 = (2k + 1) )  AM = 0; với k = 0, 1, 2… = (k + b) Số điểm dao động cực đại, cực tiểu trên đoạn S1S2 S1S2 + Lập tỉ số: n = 2 / + Hai nguồn cùng pha:  Số cực đại: N = 2n +1; với n là phần nguyên  Số cực tiểu: N’ = 2n; với n làm tròn số + Hai nguồn ngược pha:  Số cực đại: N = 2n; với n làm tròn số  Số cực tiểu: N’ = 2n +1; với n là phần nguyên Sóng âm Nguồn nhạc âm: P P W   St + Cường độ âm I = S 4 R I ; I + Mức cường độ âm: L(B) = lg I I L(dB) = 10lg + Nguồn âm là đẳng hướng, cường độ âm tỉ lệ nghịch với bình phương khoảng cách: I A  NB    IB  NA  CHƯƠNG III: DÒNG ĐIỆN XOAY CHIỀU Dòng điện xoay chiều: a) Suất điện động xoay chiều: e = E 0sin(ωt + φ) ; E0 = NBS 2  ;f   2 với b) Điện áp xoay chiều Dòng điện xoay chiều: u = U0cos(ωt + φ1); i = I0cos(ωt + φ2) + φ = φ1 – φ2: độ lệch pha u so với i - Nếu φ > 0: u sớm pha so với i - Nếu φ < 0: u trễ pha so với i - Nếu φ = 0: u đồng pha so với i c) Các giá trị hiệu dụng: I0 - Cường độ hiệu dụng: I = E0 - Suất điện động hiệu dụng: E = U0 - Điện áp hiệu dụng: U = 2 Mạch điện xoay chiều: a) Chỉ có điện trở thuần: + i đồng pha so với u U + Định luật Ôm: I = R b) Chỉ có tụ điện:   + i sớm pha so với u (u trễ pha so với i) U + Định luật Ôm: I = Z C T 1  + Dung kháng: ZC = C 2 fC c) Chỉ có cuộn cảm thuần:   + i trễ pha so với u (u sớm pha so với i) U + Định luật Ôm: I = Z L + Cảm kháng: ZL = ωL = 2πfL Mạch có R, L, C mắc nối tiếp Cộng hưởng điện: a) Quan hệ cường độ dòng điện và điện áp: + Định luật Ôm cho đoạn mạch RLC nối tiếp: U ;U  U R2   U L  U C  I= Z + Tổng trở:   Z  R   Z L  ZC   R    L  C   + Độ lệch pha điện áp u so với cường độ dòng điện i: 2 (4) L  C U L  U C Z L  ZC   R R tanφ = U R L     0: C  Nếu i trễ pha so với u (u sớm pha so với i) L    0: C  Nếu i sớm pha so với u (u trễ pha so với i) b) Cộng hưởng điện: L  0 C + u không đổi , ω thay đổi Khi hay 2LC = cộng hưởng điện Khi đó: U  Zmin = R  Imax = R  UL = UC; UR = U  i đồng pha u + Điều kiện để xảy tượng cộng hưởng điện: 1  0 LC ωL - C hay Công suất dòng điện xoay chiều Hệ số công suất: + Công suất dòng điện xoay chiều: P = UIcosφ + Điện tiêu thụ mạch điện: W = Pt R UR  + Hệ số công suất: cosφ = Z U Điều kiện để công suất mạch đạt giá trị cực đại: + Nếu R, U = số Thay đổi L, C, U2 ω, f: P = Pmax = R ZL = ZC  cosφ = + Nếu L, C, ω, U = số Thay đổi R: U2 Z  ZC  P = Pmax = R R = L Z=R 2  cosφ = + Tính C theo R, L, ω để UCmax: Z L2  R L  C R   L2  Z = ZL U Cmax C U Z L2  R U Cmax  R 2 2  U C U  U R  U L + Khi U Cmax  2L  L R2  R   C  L C ; với  + UCmax  + Tính L theo R, C, ω để ULmax: Z C2  R  L  R 2C  C  Z = ZC U  Lmax L U Z C2  R U Lmax  R 2 2  U L U  U R  U C + Khi U Lmax  2L  R  C  2 2LC  R C ; với   + ULmax  + Khi cuộn dây có điện trở r: U2 = (UR + Ur)2 + (UL – UC)2; Ucd = Ur2 + UL2; U2 P  Pmax   R  r   Z L  ZC  2R Máy phát điện: a) Suất điện động xoay chiều:  Nếu Ф1 = Ф0cosωt thì e = ωNФ0cos(ωt - ); E0= ωNФ0 = ωNBS b) Tần số biến thiên f suất điện động: f = np; với n (vòng/giây); p: số cặp cực c) Các cách mắc: - Cách mắc tam giác: Ud = Up - Cách mắc hình sao: Ud = d) Công suất mạch điện xoay chiều ba pha: P = 3UpIpcosφ P = UdIdcosφ  Động không đồng ba pha: Pi + Hiệu suất: H = P + Cảm ứng từ tâm stato: B = 1,5B0 + Mỗi cặp cực gồm cuộn dây Máy biến áp Truyền tải điện: U N2  U N1 + Sự biến đổi điện áp: U I1 N   U I N1 + Nếu hao phí không đáng kể: P2  U cos   + Công suất hao phí: Php = rI2 = r P  Php P + Hiệu suất truyền tải: H = + Liên hệ điện áp và hiệu suất truyền tải: U' 1 H  U 1 H ' (5) CHƯƠNG IV: DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ Phương trình dao động: q = q0cos(ωt + φ)  i = -I0sin(ωt + φ) = I0cos(ωt + φ + ); với I0 = q0ω u = U0cos(ωt + φ)  B = B0cos(ωt + φ + ) Các đặc trưng: 1  ; T 2 LC ; f  2 LC LC Năng lượng điện từ mạch dao động: + Năng lượng điện trường: q2 1 q2 WC  Cu   qu  cos (t   ) 2C 2C + Năng lượng từ trường: q02 2 WL  Li  LI sin (t   )  sin (t   ) 2 2C + Năng lượng điện từ toàn phần: W = WC + WL q 2 q02 1 W  Li   CU 02  LI 02 2C 2C 2 = số + Năng lượng hao phí tỏa nhiệt: CR CR U  U0 2L P = RI2 = L Sóng điện từ: + Trong chân không, sóng điện từ có bước sóng:  cT 2 c LC ; đó c = 3.108 m/s là tốc độ ánh sáng chân không; T = f là chu kì dao động điện từ + Ghép tụ điện: 1  2 2 f1 f2 - Ghép song song: C = C + C  f 1   - Ghép nối tiếp: C C1 C2  f2 = f12 + f22 CHƯƠNG V: SÓNG ÁNH SÁNG Nhiễu xạ ánh sáng: c  f + Bước sóng ánh sáng: Trong đó c = 3.108m/s: tốc độ ánh sáng chân không; f: tần số ánh sáng  '  n + Trong môi trường có chiết suất n  Giao thoa ánh sáng với khe Y-âng: a) Giao thoa với ánh sáng đơn sắc: + Vị trí các vân giao thoa: D  Vị trí các vân sáng: xk = k a ; với k = 0, ±1, ±2… D  Vị trí các vân tối: xk’ = (k’ + ) a ; với k’ = 0, ±1, ±2… D + Khoảng vân: i = a + Công thức tính góc lệch cực tiểu lăng kính có góc chiết quang nhỏ: D = (n -1)A + Số vân sáng, vân tối miền giao thoa bề rộng L: L Lập tỉ số: n = 2i  Số vân sáng: N = 2n + 1; với n là phần nguyên  Số vân tối: N’ = 2n; với n làm tròn số b)Giao thoa với ánh sáng trắng:  0,38 m  0, 76  m  + Số vân sáng điểm M có x = OM xa xa xa   0, 76  m  k   0,38 m  kD 0,38 D    0, 76 D Chọn k là số nguyên + Số vân tối điểm M có x = OM     xa 0, 76 m   0,38 m    (k  ) D   xa xa  k   0,38 D  0, 76 D Chọn k là số nguyên k1 2 i2   k 1 i1  + Vân trùng: x = x 1 D 2 D x1 = k1 a = k2 a xn =  nx1; với n = 0, 1, 2, 3… c) Sau khe S1 (hoặc S2) đặt bản song song, dày e, chiết suất n Độ dời hệ thống vân  n  1 eD x a phía S1(hoặc S2): d) Nguồn S di chuyển theo phương S1S2, phía S1 đoạn y, hệ thống vân di chuyển đoạn: D x  y D' Trong đó, D’ là khoảng cách từ nguồn S đến khe CHƯƠNG VI: LƯỢNG TỬ ÁNH SÁNG Hiện tượng quang điện ngoài: (6) + Lượng tử lượng: ε = hf h = 6,625.10-34 Js: số Plăng hc 0  A + Giới hạn quang điện: Mẫu nguyên tử Bo và quang phổ vạch nguyên tử hiđrô: + Công thức tính bán kính quĩ đạo dừng: r n = n2r0 ; với r0 = 5,3.10-11 m: bán kính Bo + Năng lượng phôtôn nguyên tử xạ: ε = E n – Em = hfnm hc hf max eU AK  mv 2 + Ống Rơn-ghen: min + Sơ đồ mức lượng: P O N M L K + Mức lượng các quĩ đạo dừng: 13,  (eV ) n En = ; với quĩ đạo K (n = 1); L (n =2); M (n =3); N (n = 4); O (n = 5); P (n = 6)… + Bán kính lớn vùng trên bề mặt anôt Uh R 2d U AK mà các êlectron tới đập vào: ; với d là khoảng cách anôt và catôt Đặc điểm ánh sáng huỳnh quang: λhq > λkt CHƯƠNG VII: HẠT NHÂN NGUYÊN TỬ Cấu tạo hạt nhân nguyên tử Độ hụt khối: a) Cấu tạo hạt nhân: A Hạt nhân Z X có Z prôtôn và N = A – Z nơtron; Z: nguyên tử số; A: số khối Bán kính hạt nhân: R = 1,2.10-15A1/3 m b) Đơn vị khối lượng nguyên tử:  1u = 1,66055.10-27 kg  Hệ thức Anh-xtanh: E = mc2 ; 1u = 931,5 MeV/c2 m N  NA A  Số nguyên tử m(gam): c) Khối lượng và lượng: m0 m v2 1 c ; + Khối lượng động: m0 : khối lượng nghỉ + Hệ thức khối lượng và lượng: m0 c v2 c ; ΔE = Δmc2 E = mc =  Khi v = 0, lượng nghỉ: E0 = m0c2  Khi v << c; lượng toàn phần: m0 c  m0v 2 W=E  + Động năng: Wđ = K = (m – m0)c2 c) Áp dụng cho phôtôn: hc  hf h  hf  m ph     ; c c c ; m0ph = 1 d) Năng lượng liên kết: m  Zm p   A  Z  mn   mX + Độ hụt khối: + Năng lượng liên kết:   2 Wlk  Zm p   A  Z  mn  m X  c Wlk = Δmc ; W   lk A +Năng lượng liên kết riêng: Phóng xạ: a) Các loại tia phóng xạ:  Tia α: các hạt nhân nguyên tử heli( He )  Tia β-: các êlectron(  e )  Tia β+: các pôzitron( 1 e )  Tia γ: sóng điện từ có bước sóng ngắn(< 1011 m) b) Định luật phóng xạ Độ phóng xạ: + Định luật phóng xạ:  Số hạt nhân còn lại: N(t) = N02-t/T = N0e-λt Số hạt nhân phân rã: ΔN(t) = N0 – N(t) = N0(1 – 2-t/T) = N0(1 – e-λt)  Khối lượng hạt nhân còn lại: m(t) = m 02-t/T = m0e-λt Khối lượng hạt nhân phân rã: Δm(t) = m0 – m(t) = m0(1 – 2-t/T) = m0(1 – e-λt)  t  Công thức gần đúng: t << T thì e 1  t Phản ứng hạt nhân: Xét phản ứng: A + B  C + D a) Các định luật bảo toàn:  Định luật bảo toàn số nuclôn: A A + AB = AC + AD  Định luật bảo toàn điện tích: ZA + ZB = ZC + ZD  Định luật bảo toàn lượng toàn phần: (m A+mB)c2+WđA+WđB = (mC+mD)c2+WđC+WđD  Định luật bảo toàn động lượng: (7)     mA v A  mB vB mC vC  mD vD b) Năng lượng phản ứng hạt nhân: W = (m trước – msau)c2 = (Δmsau – Δmtrước)c2 + W > 0: tỏa lượng + W < 0: thu lượng + Chú ý:  mtrước > msau (Δmsau > Δmtrước): phản ứng tỏa lượng:  mtrước < msau (Δmsau < Δmtrước): để phản ứng xảy phải cung cấp cho các hạt A và B W lượng (8)

Ngày đăng: 17/10/2021, 18:59

w