Người quan sát ghi lại những lần chúng đi qua vị trí cân bằng c ùng lúc cùng chi ều(tr ùng phùng).[r]
(1)Dạng 1: Viết phương trình dao động diều hoà Xác định đặc trưng dao động điều hoà
Chọn hệ quy chiếu: + Trục ox
+ gốc toạ độ VTCB
+ Chiều dương
+ gốc thời gian
Phương trình dao động có dạng: x = Acos(t + ) cm
Phương trình vận tốc: v = -Asin(t + ) cm/s
1) Xác định tần số góc : (>0)
+ = 2f =
T
, với T t N
, N: tống số dao động
+ Nếu lắc lò xo: k
m
, ( k: N/m, m: kg)
+ cho độ giản lò xo VTCB : k mg k g m
g
+
2
v
A x
2) Xác định biên độ dao động A:(A>0)
+ A=
d
, d: chiều dài quỹ đạo vật dao động
+ Nếu đề cho chiều daig lớn nhở lò xo:
2
max A
+ Nếu đề cho ly độ x ứng với vận tốc v ta có: A =
2
2
v x
(nếu buông nhẹ v = 0)
+ Nếu đề cho vận tốc gia tốc: 2 2
v a
A
+ Nếu đề chovận tốc cực đại: Vmax thì: A vMax
+ Nếu đề cho gia tốc cực đại aMax :
Max a A
+ Nếu đề cho lực phục hồi cực đại Fmax Fmax= kA
+ Nếu đề cho lượng dao động Wthì A 2W k
3) Xác định pha ban đầu : ( )
Dựa vào cách chọn gốc thời gian để xác định
Khi t=0
0
x x v v
0
x Acos
v A sin
0
0
os sin
x c
A v A
= ?
+ Nếu lúc vật qua VTCB
0
0 Acos
v A sin
os
0 sin
c
v A
? ?
A
(2)+ Nếu lúc buông nhẹ vật
0
x Acos A sin
0 0
cos
sin
x A
? ?
A
Chú ý:
thả nhẹ, buông nhẹ vật v0=0 , A=x
Khi vật theo chiều dương v>0 (Khi vật theo chiều âm v<0)
Pha dao động là: (t + )
sin(x) = cos(x-2
)
(-cos(x)) = cos(x+)
Dạng 2: Xác định thời điểm vật qua ly độ x0 -vận tốc vật đạt giá trị v0
Phương trình dao động có dạng: x = Acos(t + ) cm
Phương trình vận tốc: v = -Asin(t + ) cm/s
1) Khi vật qua ly độ x0 x0= Acos(t + ) cos(t + ) = x0
A =cosb
2
t b k
t b k2
s với kN b >0 kN* b <0
Khi có điều kiện vật ta loại bớt nghiệm t
2) Khi vật đạt vận tốc v0thì v0 = -Asin(t + ) sin(t + ) = v0 A
=cosd
2
t d k
t d k
2
d k
t
d k
t
với kN 0
d d
kN*
0
d d
3) Tìm ly độ vật vận tốc có giá trị v1: Ta dùng
2 2 v1
A x
2 v1
x A
4) Tìm vận tốc qua ly độ x1: Ta dùng
2 2 v1
A x
2
v A x
vật theo chiều dương v>0
Dạng 3: Xác định quãng đường số lần vật qua ly độ x0 từ thời điểm t1 đến t2
Phương trình dao động có dạng: x = Acos(t + ) cm
Phương trình vận tốc: v = -Asin(t + ) cm/s
Tính số chu kỳ dao động từ thời điểm t1 đến t2 : N t2 t1 n m
T T
, với T 2
Trong chu kỳ : + vật quãng đường 4A
+ Vật qua ly độ lần
* Nếu m= thì: + Quãng đường được: ST = 4nA
+ Số lần vật qua x0 MT= 2n
(3)+ Khi t=t2 ta tính x2 = Acos(t2 + )cm v2 dương hay âm (khơng tính v2)
Sau vẽ hình vật phần lẽ m
T chu kỳ dựa vào hình vẽ để tính Slẽ số lần Mlẽ vật
qua x0 tương ứng
Khi đó: + Quãng đường vật là: S=ST +Slẽ
+ Số lần vật qua x0 là: M=MT+ Mlẽ
* Ví dụ:
1 0,
x x x
v v
ta có hình vẽ:
Khi + Số lần vật qua x0 Mlẽ= 2n
+ Quãng đường được:
Slẽ = 2A+(A-x1)+(A-x2 ) =4A-x1- x2
Dạng 4: Xác định lực tác dụng cực đại và cực tiểu tác dụng lên vật và điểm treo lò xo - chiều dài lò xo vật dao động
1) Lực hồi phục( lực tác dụng lên vật):
Lực hồi phục: F kx ma : ln hướn vị trí cân Độ lớn: F = k|x| = m2|x|
Lực hồi phục đạt giá trị cực đại Fmax = kA vật qua vị trí biên (x = A)
Lực hồi phục có giá trị cực tiểu Fmin = vật qua vị trí cân (x = 0)
2) Lực tác dụng lên điểm treo lò xo:
Lực tác dụng lên điểm treo lò xo lực đàn hồi: F k | x | + Khi lăc lò xo nằm ngang =0
+ Khi lắc lò xo treo thẳng đứng: = mg g2 k
+ Khi lắc nằm mặt phẳng nghiêng góc : = mg sin k
a) Lực cực đại tác dụng lện điểm treo là: Fmax k( A) b) Lực cực tiểu tác dụng lên điểm treo là:
+ lắc nằm ngang: Fmin =0
+ lắc treo thẳng đứng nằm mặt phẳng nghiêng góc : Nếu >A Fmin k( A)
Nếu A Fmin =0
3) Lực đàn hồi vị trí có li độ x (gốc O vị trí cân ): + Khi lăc lò xo nằm ngang F= kx
+ Khi lắc lò xo treo thẳng đứng nằm nghiêng góc : F = k| + x| 4) Chiều dài lò xo:
lo : chiều dài tự nhiên lò xo:
a) lò xo nằm ngang:
Chiều dài cực đại lò xo : max = o + A
Chiều dài cực tiểu lò xo: min = o + A
b) Khi lắc lị xo treo thẳng đứng nằm nghiêng góc : Chiều dài vật vị trí cân bằng: cb = o +
Chiều dài cực đại lò xo: max = o + + A
Chiều dài cực tiểu lò xo: min = o + – A
Chiều dài ly độ x: = 0++x
(4)Dạng 5: Xác định lượng dao động điều hồ Phương trình dao động có dạng: x = Acos(t + ) m
Phương trình vận tốc: v = -Asin(t + ) m/s a) Thế năng: Wt =
2
kx2 =
k A2cos2(t + )
b) Động năng: Wđ =
2 1mv2 =
2
1m2A2sin2(t + ) =
2
1kA2sin2(t + ) ; với k = m2
c) Cơ năng: W = Wt + Wđ =
2
1k A2 =
2
1 m2A2.
+ Wt = W - Wđ
+ Wđ = W – Wt
Khi Wt = Wđ x =
2
A
thời gian Wt = Wđ :
4
T t
+ Thế động vật biến thiên tuần hồn với tần số góc ’ = 2, tần số dao động f’ =2f chu kì T’ =
2
T .
Chú ý: Khi tính lượng phải đổi khối lượng kg, vận tốc m/s, ly độ mét
Dạng 6: Xác địnhthời gian ngắn vật qua ly độ x1 đến x2
Ta dùng mối liên hệ dao động điều hồ chuyển động trịn để tính
Khi vật dao động điều hoà từ x1 đến x2 tương ứng vứoiu vật chuyển động trịn từ M đến
N(chú ý x1 x2 hình chiếu vng góc M N lên trục OX
Thời gian ngắn vật dao động từ x1 đến x2 thời gian vật chuyển động tròn từ M đến N
ˆ
MN
MON
Δt = t = T
360 , MONˆ x MO ONx1 ˆ ˆ với
1
| | ˆ
Sin(x MO) x A ,
2
| |
ˆ
( ) x
Sin ONx A
+ vật từ: x =
2
A x
12
T t
+ vật từ:
2
A
x x=A
T t
+ vật từ: x=0
2
A
x
2
A
x x=A
8
T t
+ vật lần liên tiếp qua
2
A
x
4
T t
Vận tốc trung bình vật dao dộng lúc này: v S t
S tính dạng
Dạng 7: Hệ lò xo ghép nối tiếp - ghép song song xung đối. 1) Lò xo ghép nối tiếp:
a) Độ cứng hệ k:
Hai lị xo có độ cứng k1 k2 ghép nối tiếp xem
lị xo có độ cứng k thoả mãn biểu thức:
2
1 1
k k
k (1)
M N
X
O x1 N
x2
-A
m
(5)Chứng minh (1):
Khi vật ly độ x thì:
1 2
F F F
x x x
1 1 2 2
1
f kx, F k x , F k x
F F F
x x x
2
F F F
F F
F
k k k
1 2
1 = 1 + 1
k k k hay
1 2 1 2
k k k =
k + k b) Chu kỳ dao động T- tần số dao động:
+ Khi có lị xo 1( k1):
2 1 1
m T
T
k k m
+ Khi có lị xo 2( k2):
2 2 2 2
m T
T
k k m
+ Khi ghép nối tiếp lò xo trên:
2 2
m T
T
k k m
Mà 1 1 k k
k nên
2
2
1
2 2
4 4 4
T T
T
m m m
2 2 2
1 1
T = T + T Tần số dao động:
2
2 2
1 2
1 1 1
= +
f f f
b Lò xo ghép song song:
Hai lị xo có độ cứng k1 k2 ghép song song xem lị xo có độ cứng k thoả mãn biểu thức: k = k1 + k2 (2)
Chứng minh (2):
Khi vật ly độ x thì:
1 2
x x x
F F F
1 1 2 2
1
f kx, F k x , F k x
x x x
F F F
1 2
x x x
kx k x k x
k = k + k1 2
b) Chu kỳ dao động T - tần số dao động:
+ Khi có lị xo1( k1):
2
1
1
4
2
m m
T k
k T
+ Khi có lị xo2( k2):
2
2 2
2
4
2
m m
T k
k T
+ Khi ghép nối tiếp lò xo trên:
2
4
2
m m
T k
k T
Mà k = k1 + k2 nên
2 2
2 2
1
4 m 4 m4 m
T T T 2
1
1 1 1
= +
2 2
T T T2
Tần số dao động: 2 2 2 1 1
f = f + f
c) Khi ghép xung đối công thức giống ghép song song
Lưu ý: Khi giải tốn dạng này, gặp trường hợp lị
xo có độ dài tự nhiên 0 (độ cứng k0) cắt thành hai lị xo có
chiều dài 1 (độ cứng k1) 2 (độ cứng k2) ta có:
k00 = k11 = k22
Trong k0 =
0
ES =
const
; E: suất Young (N/m
2); S: tiết diện ngang (m2)
L1, k1
L2, k2
(6)Dạng : Chứng minh hệ dao động điều hoà
Trong trường hợp phải chứng minh hệ dao động điều hoà sở lực đàn hồi tác dụng:
F = -kx lượng vật dao động (cơ năng) W = Wt + Wđ, ta tiến hành sau: Cách 1: Dùng phương pháp động lực học:
+ Phân tích lực tác dụng lên vật
+ Chọn hệ trục toạ độ Ox
+ Viết phương trình định luật II Newtơn cho vật: F ma chiếu phương trình lên OX
để suy ra: x'' = -2x : vậy vật dao dộng điều hoà với tàn số góc
Cách 2: Dùng phương pháp lượng:
* Vì W = Wt + Wđ đó: Wt =
2
kx2 (con lắc lò xo) Wđ =
2 1mv2
Áp dụng định luật bảo toàn năng: W = Wt + Wđ
2
1= kx2 +
2
1mv2= const
+ Lấy đạo hàm hai vế theo t phương trình ý: a = v' = x''
+ Biến đổi để dẫn đến: x'' = -2x vậy vật dao động điều hoà với tần số góc Con lắc đơn
Dạng 9: Viết phương trình dao động lắc đơn - lắc vật lý- chu kỳ dao động nhỏ
1) Phương trình dao động.
Chọn: + Trục OX trùng tiếp tuyến với quỹ đạo
+ gốc toạ độ vị trí cân
+ chiều dương chiều lệch vật
+ gốc thời gian
Phương trình ly độ dài: s=Acos(t + ) m v = - Asin(t + ) m/s * Tìm >0:
+ = 2f =
T
, với t T
N
, N: tống số dao động
+ g
, ( l:chiều dài dây treo:m, g: gia tốc trọng trường nơi ta xét: m/s2)
+ mgd
I
với d=OG: khoảng cách từ trọng tâm đến trục quay
I: mơmen qn tính vật rắn
+
2
v
A s
* Tìm A>0: +
2 2
2
v
A s
với s
+ cho chiều dài quỹ đạo cung tròn MN : A MN
(7)* Tìm ( )
Dựa vào cách chọn gốc thời gian để xác định
Khi t=0
0
x x v v
0
x Acos
v A sin
0
0
os sin
x c
A v A
= ?
Phươg trình ly giác: =s
=0cos(t + ) rad với
A
rad 2) Chu kỳ dao động nhỏ.
+ Con lăc đơn: T
g
2
2
4
T g
g T
+ Con lắc vật lý: T I
mgd
2 2
4
T mgd I
I g
T md
Dạng 10: Năng lượng lắc đơn - Xác định vận tốc vật Lực căng dây treo vật qua ly độ góc α
1) Năng lượng lắc đơn:
Chọn mốc vị trí cân O + Động năng: Wđ=1mv2
2
+ Thế hấp dẫn ly độ : W = mg (1- cost α)
+ Cơ năng: W=Wt+Wđ=1m 2A2
2
Khi góc nhỏ:
t
1
W mg (1 cos ) mg
2
W=
0
1mg
2
2) Tìm vận tốc vật qua ly độ (đi qua A): Áp dụng định luật bảo toàn ta có:
Cơ biên = vị trí ta xét WA=WN
WtA+WđA=WtN+WđN
mg (1 cos ) + A
1 mv
2 =mg (1 cos ) 0 +0
A
v 2g (cos cos ) v = ± 2g (cosA α - cosα )0
3) Lực căng dây(phản lực dây treo) treo qua ly độ (đi qua A):
Theo Định luật II Newtơn: P+τ=m a chiếu lên τ ta
2 A ht
v
mgcos ma m
2 A
0
v
m mgcos m2g(cos cos ) mgcos
τ = mg(3cosα - 2cosα )0
N
O A
0
P
(8)2
sin
cos
2
2 2
A
2
v g ( )
1mg(1 2 3 )
2
Chú ý:+ Khi qua vị trí cân bằng(VTCB) 0 + Khi vị trí biên
Dạng 11 : Xác định chu kỳ lắc độ cao h độ sâu d dây treo không giản
Gia tốc trọng trường mặt đất: g = 2
R
GM ; R: bán kính tráiĐất R=6400km
1) Khi đưa lắc lên độ cao h:
Gia tốc trọng trường độ cao h: h
2
GM g
g
h
(R h) (1 )
R
Chu kỳ lắc dao độngđúngở mặt đất: T1 g
(1) Chu hỳ lắc dao động saiở độ cao h: 2
h
T
g
(2)
h
2
T g
T g mà
h
g
h
g 1
R
1
T
h
T 1
R
2 1
h
T = T (1 + )
R Khi đưa lên cao chu kỳ dao động tăng lên
2) Khi đưa lắc xuống độ sâu d:
*ở độ sâu d: g = g(1-d d) R Chúng minh: Pd = Fhd
3
d
4
m( (R d) D)
3
mg G
(R d)
D: khối lượng riêng trái Đất
3
3
d 3
4
( R D)(R d) M(R d) GM d
3
g G G (1 )
(R d) R (R d) R R R
d
d
g = g(1 - )
R *Chu kỳcon lắc dao động độ sâu d: 2
d
T
g
(3)
d
2
g T
T g mà
d
g 1 d
g R
1
1
2 1
T d
T = T (1 + )
R d
1-R
Khi đưa xuống độ sâu chu kỳ dao động tăng lên tăng đưa lên độ cao
Dạng 12 : Xác định chu kỳ nhiệt độ thay đổi
(dây treo làm bằng kim loại)
Khi nhiệt độ thay đổi: Chiều dài biến đổi theo nhiệt độ : = 0(1 +t)
: hệ số nở dài nhiệt kim loại làm dây treo lắc
0
(9)Chu kỳ lắc dao độngđúngở nhiệt độ t1(0C): T1
g
(1) Chu kỳ lắc dao độngsaiở nhiệt độ t2(0C): T2 2
g
(2) 1
2
T
T
Ta có: 1 1
2
2 2
(1 t ) t
1 (t t )
(1 t ) t
1
1
2 2
2
2
T T
1 (t t ) T 1 T (1 (t t ))
T 1 (t t )
2
Vậy T = T (1 +2 1 1λ(t - t ))2 1
2
+ nhiệt độ tăng chu kỳ dao động tăng lên + nhiệt độ giảm chu kỳ dao động giảm xuống Chú ý: + đưa lên cao mà nhiệt độ thay đổi thì: 1
2 1 2
T 1 h
1- λ(t t )
-T 2 R
+ đưa lên xuống độ sâu d mà nhiệt độ thay đổi thì: 1
2 1 2
T 1 d
1- λ(t t )
-T 2 2R
Dạng 13 : Xác định thời gian dao động nhanh chậm ngày đêm.
Một ngày đêm: t= 24h = 24.3600 = 86400s.
Chu kỳ dao độngđúng là: T1
chu kỳ dao độngsai T2
+ Số dao động lắc dao độngđúng thực ngàyđêm: 1
1
t N
T
+ Số dao động lắc dao độngsai thực ngàyđêm: 2
2
t N
T
+ Số dao đông sai ngàyđêm: 1
2
1
N | N N | t | |
T T
+ Thời gian chạysai một ngàyđêm là:
1
2
T
T N t | 1|
T
Nếu chu kỳ tăng lắc dao động chậm lại
Nếu chu kỳ giảm lắc dao động nhanh lên
* Khi đưa lên độ cao h lắc dao động chậm ngày là: t.h R
* Khi đưa xuống độ sâu h lắc dao động chậm ngày là: Δτ = t. d
2R
* Thời gian chạy nhanh chậm nhiệt độ thay đổi ngàyđêm là: Δτ = t λ | t - t1 2 1| 2
* Thời gian chạy nhanh chậm tổng quát: 2 1) |
h 1
Δτ = t | λ(t - t
R 2
Dạng 13 : Xác định chu kỳ lăc vấp(vướng) đinh biên độ sau vấp đinh
1) Chu kỳ lắc:
(10)* Chu kỳ lắc sau vấp đinh: 2
T
g
, 2: chiều dài lắc
sau vấp đinh
* Chu kỳ lắc: T 1(T1 T )2
2) Biên độ góc sau vấp đinh β0:
Chọn mốc O Ta có: WA=WN
WtA=WtN mg (1 cos ) mg (1 cos )2 0 1 0 2(1 cos )0 1(1 cos )0
góc nhỏ nên
2
2
1
(1 (1 )) (1 (1 )
2 2
1
0 0 2
β = α
: biên độ góc sau vấp đinh
Biên độ dao động sau vấp đinh: A' =β 0 2
Dạng 14: Xác định chu kỳ lắc phương pháp trùng phùng
Cho hai lắc đơn: Con lắc chu kỳ T1 biết
Con lắc chu kỳ T2chưa biết T2 T1
Cho hai lắc dao động mặt phẳng thẳng đứng song song trước mặt người quan sát Người quan sát ghi lại lần chúng qua vị trí cân lúc chiều(trùng phùng) Gọi thời gian hai lần trùng phùng liên tiếp
a) Nếu T1>T2: lắc T2thực nhiều lắc T1 dao động
ta có nT1(n1)T2
1
1
T n n
T
1
T T
1
1
1
T
T
2 1
1 1 1
= +
T T θ
b) Nếu T1<T2: lắc T1 thực nhiều lắc T2một dao động
ta có nT2 (n1)T1
1
1
T n n
T
1
T T
1
1
1
T
T
2 1
1 1 1
=
-T T θ
Dạng 15 : Xác định chu kỳ lắc chịu tác dụng thêm ngoại lực không đổi F .
* Chu kỳ lắc lúcđầu: T1 g
(1) * Chu kỳ lắc lúc sau: 2
hd
T
g
(2)
Khi lắc chịu tác dụng thêm ngoại lực không đổi F đó: Trọng lực hiệu dụng(trọng lực biểu kiến): Phd F P
hd hd
F
mg F mg g g
m
1) Khi FP(cùng hướng)
N
O
0
A
0
N
O
0
P F
(11)hd
F
g g
m
T2 <T1: chu kỳ giảm
2) Khi FP(ngược hướng)
hd
F
g g
m
T2 >T1: chu kỳ tăng
3) Khi F P (vng góc)
2
hd
F
g g
m
T2 <T1: chu kỳ giảm
Vị trí cân tan 0 F P
Chú ý: Các loại lực gặp: +1) Lực tĩnh điện:
2 12
| q q | F 9.10
r
+2) Lực diện trường: F=|q|.E, E U d
: cường độ điện trường đều(V/m)
FE q>0,
FE q<0
+3) Lực đẩyAcsimet: FA= D.V.g : D: khối lượng riêng chất lỏng, khí
V: thể tích chất lỏng mà vật chiếm chổ
Dạng 16 : Xác định chu kỳ lắc gắn vào hệ chuyển động tịnh tiến với gia tốc a
- Khi lắc gắn vào hệ chuyển động tính tiến với gia tốc a vật chịu tác dụng thêm lực
quán tính Fqt
=-m a(ngược chiều với a )
Trọng lực hiệu dụng(trọng lực biểu kiến): PhdFqtP
hd hd
mg mg ma g g a
+ hệ chuyển động nhanh dần a chiều với v(chiều chuyển động) Fqt ngược chiều chuyển động
+ hệ chuyển động chậm dần a ngược chiều với v(chiều chuyển động) Fqt chiều chuyển động
1) Khi Fqt P(cùng hướng) ghd g a T2 <T1: chu kỳ giảm
2) Khi Fqt P
(ngược hướng) ghd g a T2 >T1: chu kỳ tăng
3) Khi Fqt P(vng góc) 2 hd
g g a T2 <T1: chu kỳ giảm
Vị trí cân qt
F tan
P
4) Khi Fqthợp vớiP góc thì: 2 hd
g g a 2ga.cos
N
O
0
P F
O
0
P F
(12)Dạng 17 : Bài toán lắc đứt dây - va chạm 1) Bài toán đứt dây:
Khi lăc đứt dây vật bay theo phương tiếp tuyến với quỹ đạo điểm đứt
+ Khi vật qua vị trí cân bằng đứt dây lúc vật chuyển động nén ngang với vận tốc đầu vận tốc lúc đứt dây Vận tốc lúcđứt dây: v0 2g (1 cos ) 0
Phương trình theo trục toạ độ:
0
theo ox : x v t theo oy : y gt
2
phương trình quỹ đạo:
2
2
0
1 x
y g x
2 v (1 cos )
+ Khi vật đứt ly độ thì vật sẽ chuyển động ném xiên với vận tốc ban đầu vận tốc lúcđứt dây.
Vận tốcvậtlúcđứt dây: v0 2g (cos cos )0
Phương trình theo trục toạ độ:
0
2
theo ox : x (v cos ).t theo oy : y (v sin ).t gt
2
Khi phương trình quỹ đạo là:
2
1 g
y (tan ).x x
2 (v cos )
Hay: 2
2
1 g
y (tan ).x (1 tan )x
2 v
Chú ý: Khi vật đứt dây vị trí biên vật sẻ rơi tự theo phương trình: y 1gt2
2
2) Bài toán va chạm:
+ Trường hợp va chạm mềm: sau va chạm hệ chuyển động vận tốc
Theo ĐLBT động lượng: PAPBPAB m vA A m vB B (mAm )VB Chiếu phương trình suy vận tốc sau va chạm V
+ Trường hợp va chạm đàn hồi: sau va chạm hai vật chuyển động với vận tốc khác vA2và vB2
Theo định luật bảo toànđộng lượng vàđộng ta có
A B A2 B2 dA dB dA2 dB2
P P P P
W W =W +W
A A B B A A2 B A2
2 2
A A B B A A2 B B2
m v m v m v m v
1 1
m v m v m v m v
2 2
từ suy giá trịvận tốc sau va chạm vA2và vB2
N
O
0
0
v X
Y
N
O
0
0
v
(13)Dạng 18 : Tổng hợp hai dao động phương tần số + Hai dao động điều hoà phương tần số:
Phương trình dao động dạng: x1 = A1cos(t + 1)
x2 = A2cos(t + 2) x = x1 + x2 = Acos(t + )
a) Biên độ dao động tổng hợp:
A2 = A12 + A22 + 2A1A2 cos (2-1) Nếu hai dao động thành phần có pha:
pha: = 2k Amax = A1 + A2
ngược pha: = (2k + 1) Amin = A1A2
vuông pha: (2 1)
2
k
2
1
A A A
lệch pha bất kì: A1A2 A A1A2
b) Pha ban đầu: 1 2
1 2
sin sin
tan
cos cos
A A
A A
?
+ Nếu có n dao động điều hoà phương tần số:
x1 = A1cos(t + 1)
……… xn = Ancos(t + n)
Dao động tổng hợp là: x = x1 + x2 + x3… = A cos(t + )
Thành phần theo phương nằm ngang Ox:
Ax = A1cos1 + A2cos2 + …… Ancosn
Thành phần theo phương thẳng đứng Oy:
Ay = A1sin1 + A2sin2 + …… Ansinn
A = 2
x y
A A + … tan = y x A A
Chú ý: Khi không áp dụng công thức để đơn giản ta dùng phương pháp giản đồ vectơ Frexnen để giải
Dạng 19 : Bài toán cộng hưởng dao động
Để cho hệ dao động với biên độ cực đại rung mạnh nước sóng sánh mạnh xãy cộng hưởng dao động
Khi 0(f f0)T=T0
Vận tốc xãy cộng hưởng là: v s T Lưu ý:
lắc lò xo:
k m
lắc đơn:0 g
lắc vật lý:
(14)Dạng 20 : Bài toán dao động tắt dần
a) Tính độ giảm biên độ dao động sau chu kỳ: A ta có : Độ giảm công lực ma sát
Gọi A1 biên độ dao động sau nửa chu kỳ đầu
A2 biên độ dao động sau nửa chu kỳ
+ Xét nửa chu kỳ đầu:
2
1 át át
1
( )
2kA 2kA Amas Fmas A A
2
1 át
1
( )
2kA 2kA Fmas A A
1 át
1 ( )( ) ( )
2k A A A A Fmas A A
( 1) át
2k A A Fmas
át
1 mas
F A A
k
(1)
+ Xét nửa chu kỳ tiếp theo:
2
2 át át
1 ( )
2kA 2kA Amas Fmas A A
2
1 át
1 ( )
2kA 2kA Fmas A A
1 2 át
1 ( )( ) ( )
2k A A A A Fmas A A
( 1 2) át
2k A A Fmas
át
1 2 mas
F
A A
k
(2)
Từ (1) (2) Độ giảm biên độ sau chu kỳ: át mas
F
A A A
k
Độ giảm biên độ sau N chu kỳ dao động: 4 masát
n n
F
A A A N
k
b) Số chu kỳ dao động lúc dừng lại:
Khi dừng lại An=0 số chu kỳ :
át
4
n mas
A kA
N
A F
Lực masát: Fmasát .N : hệ số masát
N: phản lực vng góc với mặt phẳng
c) Để trì dao động: