1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu chuyển pha trong mô hình sigma tuyến tính

135 350 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 135
Dung lượng 3,64 MB

Nội dung

nghiên cứu chuyển pha trong hình sigma tuyến tính luận án tiến sĩ vật lý Chuyên ngành: Vật lý lý thuyết và Vật lý toán Mã số: 62.44.01.01 Hướng dẫn khoa học: GS.TSKH Trần Hữu Phát TS. Nguyễn Tuấn Anh Hà Nội - 2011 Bộ giáo dục và đào tạo Bộ khoa học và công nghệ Viện năng lượng nguyên tử Việt Nam ----------oOo---------- Nguyễn Văn Thụ Lời cam đoan Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các kết quả thu được bằng phương pháp nêu trong luận án là trung thực và chưa từng được công bố trong bất kỳ công trình nào khác. Hà Nội, ngày 11 tháng 11 năm 2011 Tác giả luận án Nguyễn Văn Thụ i Lời cảm ơn Lời đầu tiên tôi xin bày tỏ lòng kính trọng và biết ơn sâu sắc nhất tới GS. TSKH. Trần Hữu Phát - người thày đã luôn tận tình hướng dẫn, giúp đỡ và tạo điều kiện thuận lợi nhất cho tôi trong suốt thời gian thực hiện luận án này. Tôi xin chân thành cảm ơn TS. Nguyễn Tuấn Anh và TS. Nguyễn Văn Long đã nhiệt tình hướng dẫn tôi trong việc tính số bằng phần mềm Mathe- matica, đồng thời đã cho tôi nhiều ý kiến đóng góp quý báu trong suốt quá trình tôi thực hiện luận án. Tôi xin chân thành cảm ơn Bộ Giáo dục và Đào tạo, Việt Năng lượng nguyên tử Việt Nam, Viện khoa học và kỹ thuật hạt nhân và Trường Đại học Sư phạm Hà Nội 2 đã tạo những điều kiện thuận lợi nhất để tôi có thể hoàn thành luận án. Nhân dịp này tôi xin được bày tỏ tấm lòng biết ơn tới các thầy cô, bạn bè và những người thân đã động viên và giúp đỡ tôi trong những năm qua. Tôi cũng xin được cảm ơn sự quan tâm của anh chị em ở Trường Đại học Sư phạm Hà Nội 2, đặc biệt là Khoa Vật lý đã tạo điều kiện thuận lợi nhất cho tôi dành thời gian hoàn thành luận án. Cuối cùng, tôi xin dành sự biết ơn của mình tới những người thân yêu nhất trong gia đình đã động viên, giúp đỡ và dõi theo từng bước đi của tôi trong nhiều năm qua. Hà Nội, ngày 11 tháng 11 năm 2011 Tác giả luận án Nguyễn Văn Thụ ii Mục lục Trang Trang bìa phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Lời cam đoan . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Mục lục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Danh mục các chữ viết tắt . . . . . . . . . . . . . . . . . . . . . . v mở đầu 1 Chương 1: cấu trúc pha trong hình sigma tuyến tính khi không có sự tham gia của quark 8 1.1. hình sigma tuyến tính . . . . . . . . . . . . . . . . . . . 8 1.2. Cấu trúc pha khi số hạng phá vỡ đối xứng có dạng chính tắc 9 1.2.1. Chuyển pha chiral khi thế hóa bằng không . . . . . . 9 1.2.2. Cấu trúc pha ở nhiệt độ và ICP hữu hạn . . . . . . . . 16 1.3. Cấu trúc pha khi số hạng phá vỡ đối xứng có dạng không chính tắc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.3.1. Khi à I > m . . . . . . . . . . . . . . . . . . . . . . 38 1.3.2. Khi à I < m . . . . . . . . . . . . . . . . . . . . . . 42 1.4. Vai trò của cân bằng điện tích . . . . . . . . . . . . . . . . . 44 1.4.1. Khi số hạng phá vỡ đối xứng có dạng chính tắc . . . . 45 1.4.2. Khi số hạng phá vỡ đối xứng có dạng không chính tắc 49 1.5. Nhận xét . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chương 2: cấu trúc pha trong hình sigma tuyến tính khi có sự tham gia của quark 54 2.1. Thế hiệu dụng trong gần đúng trường trung bình . . . . . . . 54 iii 2.2. Khi số hạng phá vỡ đối xứng có dạng chính tắc . . . . . . . 56 2.2.1. Giới hạn chiral = 0 . . . . . . . . . . . . . . . . . . 57 2.2.2. Trong thế giới vật lý = 1 . . . . . . . . . . . . . . . 61 2.3. Khi số hạng phá vỡ đối xứng có dạng không chính tắc . . . . 72 2.3.1. Khi à I > m . . . . . . . . . . . . . . . . . . . . . . 76 2.3.2. Khi à I < m . . . . . . . . . . . . . . . . . . . . . . 81 2.4. Vai trò của điều kiện trung hòa điện tích . . . . . . . . . . . 84 2.4.1. Khi số hạng phá vỡ đối xứng có dạng chính tắc . . . . 88 2.4.2. Khi số hạng phá vỡ đối xứng có dạng không chính tắc 90 2.5. Nhận xét . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Chương 3: Chuyển pha chiral trong không-thời gian rút gọn 97 3.1. Chuyển pha chiral khi không tính đến hiệu ứng Casimir . . . 97 3.1.1. Thế hiệu dụng và phương trình khe . . . . . . . . . . 97 3.1.2. Tính số . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.2. Chuyển pha chiral dưới ảnh hưởng của hiệu ứng Casimir . . . 104 3.2.1. Năng lượng Casimir . . . . . . . . . . . . . . . . . . 104 3.2.2. Tính số . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3. Nhận xét . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 kết luận 114 Các công trình liên quan đến luận án . . . . . . . . . . . . . . . . 116 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Phụ lục 124 Danh mục các chữ viết tắt CEP critical endpoint (điểm tới hạn). CJT Cornwall-Jackiw-Tomboulis. HF Hartree-Fock. ICP isospin chemical potential (thế hóa spin đồng vị). IHF improved Hatree-Fock (Hatree-Fock cải tiến). LQCD lattice quantum chromodynamics (mạng sắc động lực học lượng tử). LSM linear sigma model (mô hình sigma tuyến tính). LSMq linear sigma model with constituent quarks (mô hình sigma tuyến tính với sự tham gia của quark). NJL Nambu-Jona-Lasinio. PNJL Polyakov-Nambu-Jona-Lasinio. QCD quantum chromodynamics (sắc động lực học lượng tử). QCP quark chemical potential (thế hóa quark). SB symmetry breaking (sự phá vỡ đối xứng). SD Schwinger-Dyson. TQ twisted quark (quark có cấu trúc trường xoắn). UQ untwisted quark (quark có cấu trúc trường không xoắn). v mở đầu 1. Lý do chọn đề tài Nghiên cứu chuyển pha hiện đang là vấn đề thời sự của vật lý hiện đại. Nó đang được các nhà vật lý quan tâm trong nhiều lĩnh vực khác nhau, từ vũ trụ học đến vật lý hạt nhân. Trong lĩnh vực vũ trụ học, người ta cho rằng đã xảy ra rất nhiều các quá trình chuyển pha ở thời kì đầu khi vũ trụ được hình thành. Chuyển pha của QCD là một trong số những chuyển pha đó. Có hai hiện tượng liên quan đến chuyển pha QCD đó là hiện tượng không giam cầm của các quark và gluon và hiện tượng phục hồi đối xứng chiral. ở giá trị nào đó của nhiệt độ sẽ xảy ra sự chuyển pha từ pha các hadron đến pha quark-gluon plasma. Trạng thái không giam cầm cũng xảy ra khi mật độ đạt giá trị tới hạn, ở đó có sự dịch chuyển pha giữa pha hadron và pha của vật chất quark lạnh. Tại cùng giá trị tới hạn của nhiệt độ và mật độ có thể xảy ra sự chuyển pha không giam cầm và chuyển pha chiral. Sắc động học lượng tử được xem là lý thuyết phù hợp nhất để tả vật chất tương tác mạnh. Về mặt nguyên tắc, QCD có thể tả tất cả các pha của vật chất tương tác mạnh ở mọi giá trị của nhiệt độ và mật độ. Việc khảo sát cấu trúc pha của QCD sẽ cho ta cái nhìn tổng quát về sự chuyển pha vật chất trong tương tác mạnh. Trong những năm gần đây đã có rất nhiều các công trình nghiên cứu về cấu trúc pha của QCD ở giá trị hữu hạn của nhiệt độ và thế hóa. Các nghiên cứu này đã chỉ ra rằng bài toán cấu trúc pha chỉ có thể giải chính xác trong một số trường hợp giới hạn. Trước tiên, ở nhiệt độ hoặc mật độ đủ cao để đạt đến trạng thái tiệm cận tự do, sao cho tương tác giữa các hạt đủ nhỏ, lúc này ta có thể sử dụng khai triển nhiễu loạn. Trong trường hợp này hình hiệu dụng cho QCD được gọi là lý thuyết nhiễu loạn chiral [14, 36, 39, 57]. 2 Khi nhiệt độ thấp và mật độ đủ lớn các nghiên cứu đã cho thấy rằng QCD ở pha có màu và hương bị khóa, lúc này QCD được tả bởi các hình như NJL [9, 24, 29, 30], LSM [4, 5, 52], PNJL [1, 43]. Trong số các hình này thì LSM là một hình tiêu biểu, nó bắt đầu được nghiên cứu từ nhiều thập kỷ trước đây. Đây là một hình rất phù hợp để nghiên cứu các hiện tượng liên quan đến tương tác mạnh ở nhiệt độ thấp, bao gồm cả đối xứng chiral. Tuy nhiên các nghiên cứu theo LSM cho đến nay vẫn chưa đầy đủ, đặc biệt khi tính đến ICP và QCP. Chính vì lý do này mà chúng tôi chọn đề tài "Nghiên cứu chuyển pha trong hình sigma tuyến tính" làm vấn đề nghiên cứu của luận án này. 2. Lịch sử vấn đề hình sigma tuyến tính được đề cập lần đầu tiên trong công trình nghiên cứu của M. Gell-Mann và M. Levy [25] khi nghiên cứu đối xứng chiral trong QCD. Từ đó đến nay LSM luôn thu hút được sự quan tâm của các nhà vật lý. hình này được coi là lý thuyết hiệu dụng để nghiên cứu sự ngưng tụ trong chất hạt nhân. Sau [25], nghiên cứu đáng kể về LSM phải kể đến công trình của D. K. Campell, R. F. Dashen và J. T. Manassah [18]. Trong công trình này các tác giả đã khảo sát chi tiết cấu trúc năng lượng của hệ với hai dạng khác nhau của số hạng phá vỡ đối xứng: số hạng phá vỡ đối xứng dạng chính tắc (standard case) hay còn gọi là phá vỡ đối xứng dạng cos và số hạng phá vỡ đối xứng dạng không chính tắc (non-standard case) hay còn gọi là phá vỡ đối xứng dạng sin 2 . Tuy nhiên các tính toán ở đây chỉ dừng lại ở gần đúng cây. Bây giờ chúng tôi điểm qua về việc sử dụng LSM ở gần đúng bậc cao trên hai phương diện: hai dạng khác nhau của số hạng phá vỡ đối xứng và sự tham gia của các quark. 3 Trước tiên ta nói đến trường hợp không có sự tham gia của các quark và số hạng phá vỡ đối xứng có dạng chính tắc. Khi không có ICP, các tác giả [38] đã sử dụng phương pháp tác dụng hiệu dụng CJT để khảo sát sự phụ thuộc nhiệt độ của khối lượng các pion và hạt sigma theo LSM ở nhiệt độ hữu hạn trong hai gần đúng khác nhau là gần đúng HF và gần đúng khai triển N lớn. Cũng xét cho trường hợp không có ICP, các tác giả [59] khảo sát sự chuyển pha chiral trong LSM theo phương pháp tác dụng hiệu dụng CJT và đề xuất một phương pháp tái chuẩn hóa mới trong gần đúng HF. Kết quả cho thấy, trong giới hạn chiral chuyển pha là loại một, trong thế giới vật lý thì đối xứng chiral được phục hồi ở nhiệt độ cao. Trường hợp số hạng phá vỡ đối xứng có dạng không chính tắc, sau [18], hiện chưa có công trình trình nào khảo sát bài toán này ở gần đúng bậc cao. Bây giờ ta xét đến bài toán cấu trúc pha của vật chất tương tác mạnh với sự tham gia của các quark. Hiện nay nghiên cứu cấu trúc pha của LSMq mới chỉ dừng lại ở trường hợp không có ICP [52], trong đó bỏ qua khối lượng dòng của quark. Các nghiên cứu về cấu trúc pha của QCD hiện nay chủ yếu tập trung vào hình NJL [6] và hình PNJL [51]. Nghiên cứu về không-thời gian rút gọn với số chiều không gian được bổ sung thêm (extra dimension) đang thu hút được sự quan tâm lớn của nhiều nhà nghiên cứu trong nhiều lĩnh vực khác nhau của vật lý. Công trình đầu tiên nghiên cứu về vấn đề này thuộc về Kaluza và Klein [54] khi cố gắng thống nhất lực hấp dẫn với các lực khác trong tự nhiên. Từ đó đến nay vấn đề này đã có những bước tiến đáng kể. Trước tiên phải kể đến những thành công trong lý thuyết siêu hấp dẫn, siêu dây và lý thuyết màng [53]. Đặc biệt, thành phần không gian bổ sung đã được mở rộng đến thang năng lượng thấp [3, 48]. Toàn ảnh QCD [50], lý thuyết hạt nhân toàn ảnh [12] và lý thuyết toàn ảnh về siêu dẫn nhiệt độ cao [32] đã hình thành và phát triển với những kết quả rất đáng quan tâm. Bên cạnh đó các nghiên cứu về không-thời gian 4 với topo không tầm thường cũng đưa đến những hiệu ứng vật lý mới như hiệu ứng Casimir [15, 46] gây ra bởi cấu trúc chân không của trường lượng tử của không-thời gian rút gọn, lý thuyết về năng lượng tối [22], sự dãn nở vũ trụ [21]. 3. Mục đích nghiên cứu Luận án đặt ra mục đích là nghiên cứu cấu trúc pha của LSM trong hai trường hợp: có và không có sự tham gia của quark. Trong mỗi trường hợp này đều lần lượt khảo sát hai dạng khác nhau của số hạng phá vỡ đối xứng. Bên cạnh đó chúng tôi cũng đặt ra mục tiêu nghiên cứu chuyển pha chiral trong không-thời gian rút gọn trong trường hợp không có ICP. 4. Đối tượng, nhiệm vụ và phạm vi nghiên cứu Đối tượng chúng tôi lựa chọn để nghiên cứu trong luận án này là hình sigma tuyến tính tả tương tác của các hạt pion, sigma và các quark. hình sigma tuyến tính cũng là đối tượng mà chúng tôi lựa chọn khi nghiên cứu chuyển pha chiral trong không-thời gian rút gọn. Trên cơ sở đó, những mục tiêu chính mà chúng tôi đặt ra trong luận án này như sau: Khảo sát sự khôi phục đối xứng chiral trong hình sigma tuyến tính ở ICP bằng không khi số hạng phá vỡ đối xứng có dạng chính tắc, trong cả giới hạn chiral và thế giới vật lý. Nghiên cứu chuyển pha nhiệt và chuyển pha lượng tử trong trường hợp số hạng phá vỡ đối xứng có dạng chính tắc, trong giới hạn chiral và ở ICP hữu hạn. Nghiên cứu sự phá vỡ đối xứng, sự phục hồi đối xứng và giản đồ pha ở ICP hữu hạn khi số hạng phá vỡ đối xứng có dạng chính tắc.

Ngày đăng: 27/12/2013, 23:04

HÌNH ẢNH LIÊN QUAN

Hình 1.1: Sự phụ thuộc nhiệt độ của ngưng tụ chiral u(T ). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.1 Sự phụ thuộc nhiệt độ của ngưng tụ chiral u(T ) (Trang 20)
Hình 1.3: Sự phụ thuộc nhiệt độ của ngưng tụ chiral u(T ). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.3 Sự phụ thuộc nhiệt độ của ngưng tụ chiral u(T ) (Trang 22)
Hình 1.4: Sự biến thiên của khối lượng hiệu dụng của pion và sigma theo nhiệt độ. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.4 Sự biến thiên của khối lượng hiệu dụng của pion và sigma theo nhiệt độ (Trang 23)
Hình 1.5: Sự biến thiên của v/fπ theo thế hóa àI. Từ trên xuống dưới các đường cong lần lượt tương ứng vớiT= 0,218.2MeV vàT= 250MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.5 Sự biến thiên của v/fπ theo thế hóa àI. Từ trên xuống dưới các đường cong lần lượt tương ứng vớiT= 0,218.2MeV vàT= 250MeV (Trang 27)
Hình 1.11: Sự biến thiên của mật độ spin đồng vị theo thế hóa àI. Các đường nét liền, nét gạch và nét chấm lần lượt tương ứng vớiT= 0,100,200MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.11 Sự biến thiên của mật độ spin đồng vị theo thế hóa àI. Các đường nét liền, nét gạch và nét chấm lần lượt tương ứng vớiT= 0,100,200MeV (Trang 36)
Hình 1.13: Giản đồ pha v(T, àI )= cho trường hợp thế giới vật lý được vẽ trong mặt phẳng(T, àI): IHF (nét liền), HF (nét gạch) và khai triểnNlớn (nét chấm). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.13 Giản đồ pha v(T, àI )= cho trường hợp thế giới vật lý được vẽ trong mặt phẳng(T, àI): IHF (nét liền), HF (nét gạch) và khai triểnNlớn (nét chấm) (Trang 37)
Hình 1.12: Sự biến thiên của thế hiệu dụng theo ngưng tụ pion tại à I = 300 MeV. Các - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.12 Sự biến thiên của thế hiệu dụng theo ngưng tụ pion tại à I = 300 MeV. Các (Trang 37)
Hình 1.15: Dáng điệu của đường cong ngưng tụ chiral theo nhiệt độ ở một vài giá trị của thế hóa:àI= 50MeV (nét liền) vààI= 200MeV (nét gạch). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.15 Dáng điệu của đường cong ngưng tụ chiral theo nhiệt độ ở một vài giá trị của thế hóa:àI= 50MeV (nét liền) vààI= 200MeV (nét gạch) (Trang 38)
Hình 1.18: Sự phụ thuộc nhiệt độ của ngưng tụ pion được chuẩn hóa về giá trị của nó tại - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.18 Sự phụ thuộc nhiệt độ của ngưng tụ pion được chuẩn hóa về giá trị của nó tại (Trang 46)
Hình 1.18: Sự phụ thuộc nhiệt độ của ngưng tụ pion được chuẩn hóa về giá trị của nó tại - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.18 Sự phụ thuộc nhiệt độ của ngưng tụ pion được chuẩn hóa về giá trị của nó tại (Trang 46)
củ au trên hình 1.22. Từ các đồ thị này chúng ta có thể đưa ra một số nhận xét sau đây - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
c ủ au trên hình 1.22. Từ các đồ thị này chúng ta có thể đưa ra một số nhận xét sau đây (Trang 48)
Hình 1.22: Sự phụ thuộc nhiệt độ của u(T, àI ). Đường nét liền và đường nét gạch tương ứng vớiàI= 0vààI= 100MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.22 Sự phụ thuộc nhiệt độ của u(T, àI ). Đường nét liền và đường nét gạch tương ứng vớiàI= 0vààI= 100MeV (Trang 49)
Hình 1.22: Sự phụ thuộc nhiệt độ của u(T, à I ) . Đường nét liền và đường nét gạch tương ứng với à I = 0 và à I = 100 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.22 Sự phụ thuộc nhiệt độ của u(T, à I ) . Đường nét liền và đường nét gạch tương ứng với à I = 0 và à I = 100 MeV (Trang 49)
Hình 1.24: Giản đồ pha cho ngưng ngưng tụ chiral. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.24 Giản đồ pha cho ngưng ngưng tụ chiral (Trang 50)
Hình 1.33: Sự biến thiên của ngưng tụ chiral theo ICP. Đường nét liền, nét gạch và nét chấm lần lượt tương ứngα= 0,1/4,1/2. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.33 Sự biến thiên của ngưng tụ chiral theo ICP. Đường nét liền, nét gạch và nét chấm lần lượt tương ứngα= 0,1/4,1/2 (Trang 57)
Hình 1.32: Sự biến thiên của ngưng tụ chiral theo nhiệt độ. Đường nét liền và nét gạch lần lượt tương ứng với khi có và không có (1.86). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 1.32 Sự biến thiên của ngưng tụ chiral theo nhiệt độ. Đường nét liền và nét gạch lần lượt tương ứng với khi có và không có (1.86) (Trang 57)
Hình 2.1: Sự biến thiên của ngưng tụ pion theo à và à I tại T = 100 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.1 Sự biến thiên của ngưng tụ pion theo à và à I tại T = 100 MeV (Trang 64)
Hình 2.3: Sự biến thiên của ngưng tụ pion theo T và à I tại à = 100 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.3 Sự biến thiên của ngưng tụ pion theo T và à I tại à = 100 MeV (Trang 65)
Hình 2.6: Giản đồ pha của ngưng tụ pion trong mặt phẳng (T, à) tại à I= 100 MeV(nét liền), 200 MeV (nét gạch), 300 MeV (nét chấm) - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.6 Giản đồ pha của ngưng tụ pion trong mặt phẳng (T, à) tại à I= 100 MeV(nét liền), 200 MeV (nét gạch), 300 MeV (nét chấm) (Trang 66)
Hình 2.5: Sự biến thiên của ngưng tụ pion theo (à, T ) tại à I = 100 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.5 Sự biến thiên của ngưng tụ pion theo (à, T ) tại à I = 100 MeV (Trang 66)
Hình 2.7: Sự biến thiên của ngưng tụ chiral (nét gạch) và ngưng tụ pion (nét liền) theo à I - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.7 Sự biến thiên của ngưng tụ chiral (nét gạch) và ngưng tụ pion (nét liền) theo à I (Trang 68)
Hình 2.8: Biến thiên ngưng tụ pion như hàm số của T và à I tại à = 0 . - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.8 Biến thiên ngưng tụ pion như hàm số của T và à I tại à = 0 (Trang 69)
Hình 2.10: Giản đồ pha của ngưng tụ pion trong mặt phẳng (T, à I) tại à= 0. Xuất hiện chuyển pha loại 1 (nét liền) và loại 2 (nét gạch) ngăn cách nhau bởi điểm tới hạn C (128.3, 181) MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.10 Giản đồ pha của ngưng tụ pion trong mặt phẳng (T, à I) tại à= 0. Xuất hiện chuyển pha loại 1 (nét liền) và loại 2 (nét gạch) ngăn cách nhau bởi điểm tới hạn C (128.3, 181) MeV (Trang 70)
Hình 2.12: Giản đồ pha của ngưng tụ pion trong mặt phẳng (T, à I) tại à= 50 MeV. Đường nét liền (nét gạch) tương ứng với chuyển pha loại 1 (loại 2) - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.12 Giản đồ pha của ngưng tụ pion trong mặt phẳng (T, à I) tại à= 50 MeV. Đường nét liền (nét gạch) tương ứng với chuyển pha loại 1 (loại 2) (Trang 71)
Hình 2.11: Biến thiên ngưng tụ pion như hàm số của T và à I tại à = 50 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.11 Biến thiên ngưng tụ pion như hàm số của T và à I tại à = 50 MeV (Trang 71)
Hình 2.13: Diễn biến của thế hiệu dụng theo ngưng tụ pion tại à = 50 MeV. Đường nét liền - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.13 Diễn biến của thế hiệu dụng theo ngưng tụ pion tại à = 50 MeV. Đường nét liền (Trang 72)
Hình 2.14: Ngưng tụ pion như hàm số của à và à I tại T = 0 . - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.14 Ngưng tụ pion như hàm số của à và à I tại T = 0 (Trang 73)
Hình 2.17: Biến thiên của ngưng tụ pion theo T và à tại à I = 150 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.17 Biến thiên của ngưng tụ pion theo T và à tại à I = 150 MeV (Trang 75)
Hình 2.19: Sự phụ thuộc củ au the oà trong vùng àI &lt; mπ . Từ trên xuống, các đường cong lần lượt ứng vớiT= 0,50,100MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.19 Sự phụ thuộc củ au the oà trong vùng àI &lt; mπ . Từ trên xuống, các đường cong lần lượt ứng vớiT= 0,50,100MeV (Trang 76)
Hình 2.21: Giản đồ pha cho ngưng tụ chiral trong mặt phẳng (T, à) khi àI &lt; mπ . CEP là điểm kết thúc của chuyển pha loại 1. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.21 Giản đồ pha cho ngưng tụ chiral trong mặt phẳng (T, à) khi àI &lt; mπ . CEP là điểm kết thúc của chuyển pha loại 1 (Trang 77)
Hình 2.22: Sự biến thiên của thế hiệu dụng theo M khi à I &lt; m π . Từ trên xuống, các đường cong ứng với T = 0, 50, 100 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.22 Sự biến thiên của thế hiệu dụng theo M khi à I &lt; m π . Từ trên xuống, các đường cong ứng với T = 0, 50, 100 MeV (Trang 78)
Hình 2.27: Biến thiên ngưng tụ chiral the oà tại à I= 300MeV và T=0 (nét liền), 50 MeV (nét gạch), 100 MeV (nét chấm). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.27 Biến thiên ngưng tụ chiral the oà tại à I= 300MeV và T=0 (nét liền), 50 MeV (nét gạch), 100 MeV (nét chấm) (Trang 81)
Hình 2.29: Sự biến thiên của ngưng tụ pion theo àI và à tại T= 0. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.29 Sự biến thiên của ngưng tụ pion theo àI và à tại T= 0 (Trang 83)
Hình 2.29: Sự biến thiên của ngưng tụ pion theo à I và à tại T = 0 . - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.29 Sự biến thiên của ngưng tụ pion theo à I và à tại T = 0 (Trang 83)
Hình 2.31: Giản đồ pha ngưng tụ pion trong mặt phẳng (à, àI ). Đường nét liền, nét gạch và nét chấm lần lượt ứng vớiT= 0,100,200MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.31 Giản đồ pha ngưng tụ pion trong mặt phẳng (à, àI ). Đường nét liền, nét gạch và nét chấm lần lượt ứng vớiT= 0,100,200MeV (Trang 84)
Hình 2.30: Sự biến thiên của ngưng tụ pion theo à I và à tại T = 200 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.30 Sự biến thiên của ngưng tụ pion theo à I và à tại T = 200 MeV (Trang 84)
Hình 2.32: Biến thiên của ngưng tụ pion theo à và T tại à I = 138 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.32 Biến thiên của ngưng tụ pion theo à và T tại à I = 138 MeV (Trang 85)
Hình 2.33: Biến thiên của ngưng tụ pion theo à và T tại à I = 300 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.33 Biến thiên của ngưng tụ pion theo à và T tại à I = 300 MeV (Trang 85)
Hình 2.36: Biến thiên của ngưng tụ pion theo T tại à = 0 và à I = 192 MeV, T c = 114.5 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.36 Biến thiên của ngưng tụ pion theo T tại à = 0 và à I = 192 MeV, T c = 114.5 MeV (Trang 87)
Hình 2.37: Ngưng tụ pion như hàm số của à I và T tại à = 0 . - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.37 Ngưng tụ pion như hàm số của à I và T tại à = 0 (Trang 88)
Hình 2.38: Ngưng tụ pion như hàm số của à I và T tại à = 350 MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.38 Ngưng tụ pion như hàm số của à I và T tại à = 350 MeV (Trang 88)
Hình 2.40: Biến thiên của thế hiệu dụng theo ngưng tụ pion tại à= 350 MeV. Đường nét liền, nét gạch, nét chấm lần lượt ứng với(T, àI) = (75.4,600),(107.2,650),(133.2,700) - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.40 Biến thiên của thế hiệu dụng theo ngưng tụ pion tại à= 350 MeV. Đường nét liền, nét gạch, nét chấm lần lượt ứng với(T, àI) = (75.4,600),(107.2,650),(133.2,700) (Trang 89)
Hình 2.39: Giản đồ pha cho ngưng tụ pion trong mặt phẳng (T, àI ). Đường nét liền, nét gạch, nét chấm lần lượt ứng vớià= 0,150,350MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.39 Giản đồ pha cho ngưng tụ pion trong mặt phẳng (T, àI ). Đường nét liền, nét gạch, nét chấm lần lượt ứng vớià= 0,150,350MeV (Trang 89)
Hình 2.41: Biến thiên của ngưng tụ chiral the oà và T. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.41 Biến thiên của ngưng tụ chiral the oà và T (Trang 90)
Hình 2.41: Biến thiên của ngưng tụ chiral theo à và T . - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.41 Biến thiên của ngưng tụ chiral theo à và T (Trang 90)
Hình 2.44: Sự biến thiên thế hiệu dụng theo M . Đường nét liền, nét gạch, nét chấm lần lượt ứng với (T, à) = (0, 194.3), (50, 171.9), (100, 69.7) MeV. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.44 Sự biến thiên thế hiệu dụng theo M . Đường nét liền, nét gạch, nét chấm lần lượt ứng với (T, à) = (0, 194.3), (50, 171.9), (100, 69.7) MeV (Trang 92)
Hình 2.46: Sự biến thiên của ngưng tụ pion the oT tại à= 100 MeV (hình 2.46(a)) và theoàtạiT= 0(hình 2.46(b)) - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.46 Sự biến thiên của ngưng tụ pion the oT tại à= 100 MeV (hình 2.46(a)) và theoàtạiT= 0(hình 2.46(b)) (Trang 95)
Hình 2.48: Sự biến thiên của ngưng tụ pion theo T tại à I = 200 MeV (hình 2.48(a)) và theo - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.48 Sự biến thiên của ngưng tụ pion theo T tại à I = 200 MeV (hình 2.48(a)) và theo (Trang 97)
Hình 2.51: Giản đồ pha cho ngưng tụ chiral trong mặt phẳng (T, à I) khi có tính đến điều kiện trung hòa điện tích vààI&lt; mπ. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.51 Giản đồ pha cho ngưng tụ chiral trong mặt phẳng (T, à I) khi có tính đến điều kiện trung hòa điện tích vààI&lt; mπ (Trang 98)
Hình 2.52: Sự biến thiên của ngưng tụ pion theo T tại à = 100 MeV (hình 2.52(a)) và theo - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.52 Sự biến thiên của ngưng tụ pion theo T tại à = 100 MeV (hình 2.52(a)) và theo (Trang 99)
Hình 2.54: Sự biến thiên của ngưng tụ chiral theo T (hình 2.54(a)) và theo à (hình 2.54(b)). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 2.54 Sự biến thiên của ngưng tụ chiral theo T (hình 2.54(a)) và theo à (hình 2.54(b)) (Trang 100)
Hình 3.5: Sự biến thiên của ngưng tụ chiral theo nhiệt độ trong thế giới vật lý cho UQ - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.5 Sự biến thiên của ngưng tụ chiral theo nhiệt độ trong thế giới vật lý cho UQ (Trang 109)
Hình 3.8: Sự biến thiên của ngưng tụ chiral theo nhiệt độ trong thế giới vật lý cho TQ - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.8 Sự biến thiên của ngưng tụ chiral theo nhiệt độ trong thế giới vật lý cho TQ (Trang 111)
và a= 0.760 fm−1 (nét chấm-gạch). Hình 3.8(c): a= 0.0101 fm−1 (nét liền), a= 0.0181 - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
v à a= 0.760 fm−1 (nét chấm-gạch). Hình 3.8(c): a= 0.0101 fm−1 (nét liền), a= 0.0181 (Trang 111)
Hình 3.10: Biến thiên của ngưng tụ chiral u(T, a) trong giới hạn chiral theo T tại à = 0 và - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.10 Biến thiên của ngưng tụ chiral u(T, a) trong giới hạn chiral theo T tại à = 0 và (Trang 113)
Hình 3.11: Biến thiên của ngưng tụ chiral u(T, a) trong giới hạn chiral the oT tại à= 100 - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.11 Biến thiên của ngưng tụ chiral u(T, a) trong giới hạn chiral the oT tại à= 100 (Trang 114)
Hình 3.13: Biến thiên của ngưng tụ chiral u(T, a) theo T trong thế giới vật lý tại à = 0 và - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.13 Biến thiên của ngưng tụ chiral u(T, a) theo T trong thế giới vật lý tại à = 0 và (Trang 115)
Hình 3.16: Biến thiên của thế hiệu dụng the oM trong thế giới vật lý cho UQ tại à= 0. Từ trên xuống các đường ứng với(T, a)= (93 MeV, 0.760 fm−1), (109 MeV, 0.507 fm−1), (126 MeV, 0.294 fm−1). - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.16 Biến thiên của thế hiệu dụng the oM trong thế giới vật lý cho UQ tại à= 0. Từ trên xuống các đường ứng với(T, a)= (93 MeV, 0.760 fm−1), (109 MeV, 0.507 fm−1), (126 MeV, 0.294 fm−1) (Trang 116)
Hình 3.15: Giản đồ pha của ngưng tụ chiral trong mặt phẳng (T, a) trong thế giới vật lý. - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.15 Giản đồ pha của ngưng tụ chiral trong mặt phẳng (T, a) trong thế giới vật lý (Trang 116)
Hình 3.18: Sự phụ thuộ ca của ngưng tụ chiral trong giới hạn chiral cho TQ tại à= 50 - Nghiên cứu chuyển pha trong mô hình sigma tuyến tính
Hình 3.18 Sự phụ thuộ ca của ngưng tụ chiral trong giới hạn chiral cho TQ tại à= 50 (Trang 119)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w