Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
1,23 MB
Nội dung
NHĨM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TỐN THEO MỨC ĐỘ DẠNG TOÁN 30: SỰ ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ SỰ ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ Định nghĩa Giả sử K khoảng, đoạn nửa khoảng y f x hàm số xác định K Ta nói: + Hàm số y f x gọi đồng biến (tăng) K x1 , x2 K , x1 x2 f x1 f x2 + Hàm số y f x gọi nghịch biến (giảm) K x1 , x2 K , x1 x2 f x1 f x2 Hàm số đồng biến nghịch biến K gọi chung đơn điệu K Nhận xét a Nhận xét Nếu hàm số f x g x đồng biến (nghịch biến) K hàm số f x g x đồng biến (nghịch biến) K Tính chất khơng hiệu f x g x b Nhận xét Nếu hàm số f x g x hàm số dương đồng biến (nghịch biến) K hàm số f x g x đồng biến (nghịch biến) K Tính chất khơng hàm số f x , g x không hàm số dương K c Nhận xét Cho hàm số u u x , xác định với x a; b u x c; d Hàm số f u x xác định với x a; b Ta có nhận xét sau: Giả sử hàm số u u x đồng biến với x a; b Khi đó, hàm số f u x đồng biến với x a; b f u đồng biến với u c; d Định lí Giả sử hàm số f có đạo hàm khoảng K Khi đó: a) Nếu hàm số đồng biến khoảng K f ' x 0, x K b) Nếu hàm số nghịch biến khoảng K f ' x 0, x K Định lí Giả sử hàm số f có đạo hàm khoảng K Khi đó: a) Nếu f ' x 0, x K hàm số f đồng biến K b) Nếu f ' x 0, x K hàm số f nghịch biến K c) Nếu f ' x 0, x K hàm số f không đổi K Chú ý: Khoảng K định lí ta thay đoạn nửa khoảng Khi phải có thêm giả thuyết “ Hàm số liên tục đoạn nửa khoảng đó’ Chẳng hạn: TÀI LIỆU ƠN THI THPT QUỐC GIA Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Nếu hàm số f liên tục đoạn a; b f ' x 0, x a; b hàm số f đồng biến đoạn a; b Ta thường biểu diển qua bảng biến thiên sau: Định lí 3.(mở rộng định lí 2) Giả sử hàm số f có đạo hàm khoảng K Khi đó: a) Nếu f ' x 0, x K f ' x hữu hạn điểm thuộc K hàm số f đồng biến K b) Nếu f ' x 0, x K f ' x hữu hạn điểm thuộc K hàm số f đồng biến K Quy tắc xét tính đơn điệu hàm số Giả sử hàm số f có đạo hàm K Nếu f ' x với x K f ' x số hữu hạn điểm x K hàm số f đồng biến K Nếu f ' x với x K f ' x số hữu hạn điểm x K hàm số f nghịch biến K Chú ý: ax b Có TXĐ tập D Điều kiện sau: cx d +) Để hàm số đồng biến TXĐ y ' 0, x D *) Riêng hàm số: y +) Để hàm số nghịch biến TXĐ y ' 0, x D y ' 0, x a, b +) Để hàm số đồng biến khoảng a; b d x c y ' 0, x a, b +) Để hàm số nghịch biến khoảng a; b d x c Giả sử y f x ax bx cx d f x 3ax 2bx c Hàm số đồng biến f x 0; x a a b c Hàm số nghịch biến f x 0; x a a b c Trường hợp hệ số c khác a b c f x d (Đường thẳng song song trùng với trục Ox khơng đơn điệu) TÀI LIỆU ƠN THI THPT QUỐC GIA Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ II CÁC DẠNG BÀI TẬP TƯƠNG TỰ Tìm khoảng đồng biến, nghịch biến hàm số Tìm điều kiện m để hàm số đồng biến, nghịch biến khoảng, đoạn nửa khoảng BÀI TẬP MẪU Câu 30 (Minh họa 2021) Hàm số đồng biến ? x 1 A y B y x2 x C y x3 x2 x x2 Phân tích hướng dẫn giải DẠNG TỐN: Tìm đồng biến, nghịch biến hàm số cho trước HƯỚNG GIẢI: B1: Tìm tập xác định B2: Tìm y ' tìm xi để y ' y ' không xác định D y x4 3x2 B3: Lập bảng biến thiên B4: Két luận Từ đó, ta giải toán cụ thể sau: Lời giải trước hết phải có tập xác định D Hàm số đồng biến (x x x) 3x , loại câu A, xét câu khác Chỉ có nên y x x x đồng biến 2x 0, x Bài tập tương tự phát triển: Mức độ Câu x2 Mệnh đề đúng? x 1 A Hàm số nghịch biến khoảng ; Cho hàm số y B Hàm số nghịch biến khoảng 1; C Hàm số nghịch biến khoảng ; 1 D Hàm số đồng biến khoảng ; 1 Lời giải Chọn D Tập xác định: Ta có y ' Câu \ 1 x 1 , x \ 1 Cho hàm số y x3 3x2 Mệnh đề đúng? A Hàm số đồng biến khoảng 0; B Hàm số nghịch biến khoảng 0; C Hàm số nghịch biến khoảng ; D Hàm số nghịch biến khoảng 2; Lời giải Chọn B x Ta có y 3x2 6x ; y x Lập bảng biến thiên suy hàm số nghịch biến khoảng 0; Câu Hỏi hàm số y x4 đồng biến khoảng nào? A ; B ;1 TÀI LIỆU ÔN THI THPT QUỐC GIA C 0; D 1; Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Lời giải Chọn C y x4 Tập xác định: D Ta có: y 8x3 ; y 8x3 x suy y Giới hạn: lim y ; lim y x x Bảng biến thiên: Vậy hàm số đồng biến khoảng 0; Câu Cho hàm số y x3 x2 x Mệnh đề đúng? 1 B Hàm số nghịch biến khoảng ;1 3 1 1 C Hàm số nghịch biến khoảng ; D Hàm số đồng biến khoảng ;1 3 3 Lời giải Chọn B x Ta có y 3x x y x Bảng biến thiên: A Hàm số nghịch biến khoảng 1; 1 Vậy hàm số nghịch biến khoảng ;1 3 Câu Cho hàm số y x x Mệnh đề đúng? A Hàm số nghịch biến khoảng ; B Hàm số đồng biến khoảng 1;1 C Hàm số nghịch biến khoảng 1;1 D Hàm số đồng biến khoảng ; Lời giải Chọn A TXĐ: D x y x x; y x x x x 1 3 TÀI LIỆU ÔN THI THPT QUỐC GIA Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Suy hàm số đồng biến khoảng 1; , 1; ; hàm số nghịch biến khoảng ; 1 , 0;1 Vậy hàm số nghịch biến khoảng ; Cách 2: Dùng chức mode máy tính kiểm tra đáp án Câu x3 x x 2019 A Hàm số cho đồng biến B Hàm số cho nghịch biến ;1 Cho hàm số y C Hàm số cho đồng biến ;1 nghịch biến 1; D Hàm số cho đồng biến 1; nghịch biến ;1 Lời giải Chọn A Ta có y x x x 1 0, x y x (tại hữu hạn điểm) Câu Do hàm số cho đồng biến 2x Hàm số y nghịch biến x3 A R\ B C ; 3 D 3; Lời giải Chọn C Hàm số y y' 11 x 3 2x có tập xác định D x3 \ 0, với x D Vậy hàm số cho nghịch biến khoảng ; 3 3; Câu Hàm số sau nghịch biến A y x3 3x C y x3 x2 x ? B y x4 2x2 D y x3 2x2 5x Lời giải Câu Chọn C Xét A: hàm số bậc có hệ số a khơng thể NB Xét B: hàm số trùng phương ln có cực trị nên loại B Xét C: y x3 x x y' 3x x 2x2 Do hàm số nghịch biến Hàm số y x3 3x2 đồng biến khoảng A 0; B ; C 1; nên loại A (x 2)2 0, x D 4; Lời giải Chọn A TÀI LIỆU ÔN THI THPT QUỐC GIA Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Tập xác định D Ta có: y 3x2 6x x y x Bảng xét dấu y sau: Nhìn vào bảng xét dấu y ta thấy hàm số y x3 3x2 đồng biến khoảng 0; Vậy hàm số y x3 3x2 đồng biến khoảng 0; Câu 10 Hàm số y x4 4x3 đồng biến khoảng A ; D ; C 1; B 3; Lời giải Chọn B Tập xác định D Ta có y 4x3 12x2 Cho y 4x3 12x2 x x Bảng xét dấu Dựa vào bảng xét dấu ta thấy hàm số đồng biến khoảng ; nên đồng biến khoảng 3; Mức độ Câu nghịch biến khoảng đây? x 1 A (; ) B (0; ) C (; 0) Hàm số y D (1;1) Lời giải Chọn B Ta có y Câu 4 x x2 0x0 Cho hàm số y x Mệnh đề đúng? A Hàm số đồng biến khoảng 0; B Hàm số đồng biến khoảng ;0 C Hàm số nghịch biến khoảng 0; D Hàm số nghịch biến khoảng 1;1 Lời giải Chọn A Ta có D , y 2x x2 TÀI LIỆU ÔN THI THPT QUỐC GIA ; y x Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Vậy hàm số nghịch biến khoảng ;0 đồng biến khoảng 0; Câu Cho hàm số y x Mệnh đề đúng? A Hàm số đồng biến khoảng 1; B Hàm số nghịch biến khoảng ; C Hàm số đồng biến khoảng 0; D Hàm số đồng biến ; Lời giải Chọn A Hàm số có tập xác định D ; 1 1; nên loại B, C, D Câu Cho hàm số y f x liên tục có đạo hàm f x 1 x x 1 x Hàm số y f x đồng biến khoảng đây? B ; 1 A ;1 D 3; C 1;3 Lời giải Chọn C x 1 Ta có: f x 1 x x 1 x x 1 x Bảng xét dấu: Hàm số đồng biến khoảng 1;3 Câu Hàm số sau đồng biến khoảng 0; ? A y x 3x x2 B y x C y 2x 1 x 1 D y x ln x Lời giải Chọn A Xét hàm số y x3 3x2 có y 3x2 6x y 3x2 x x x Xét dấu y ta có hàm số đồng biến 0; Câu Cho hàm số y f x có đạo hàm f x x x , x khoảng A 2;0 B 0; Hàm số y 2 f x đồng biến C 2; D ; 2 Lời giải Chọn B Ta có: y 2 f x 2 x x x 0; Suy ra: Hàm số y 2 f x đồng biến khoảng 0; Câu Hàm số y 2018x x nghịch biến khoảng khoảng sau đây? A 1010; 2018 B 2018; C 0;1009 D 1; 2018 Lời giải Chọn A TÀI LIỆU ƠN THI THPT QUỐC GIA Trang NHĨM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ TXĐ: D 0; 2018 y 2018 x x 2x 2018 2018 x x 1009 x 2018 x x ; y x 1009 y ' x 1009; 2018 , suy hàm số nghịch biến khoảng 1009; 2018 , suy hàm số nghịch biến khoảng 1010; 2018 Câu Hàm số y f x có đạo hàm y x Mệnh đề sau đúng? A Hàm số nghịch biến B Hàm số nghịch biến ; đồng biến 0; C Hàm số đồng biến D Hàm số đồng biến ; nghịch biến 0; Lời giải Chọn C y x2 x x ∞ y' +∞ + + +∞ y ∞ Câu Cho hàm y x x Mệnh đề sau đúng? A Hàm số đồng biến khoảng 5; B Hàm số đồng biến khoảng 3; C Hàm số đồng biến khoảng ;1 D Hàm số nghịch biến khoảng ;3 Lời giải Chọn A Tập xác định: D ;1 5; Ta có y x 3 x2 6x , x 5; Vậy hàm số đồng biến khoảng 5; Câu 10 Cho hàm số y f x có đạo hàm f x x x , với x Hàm số cho nghịch biến khoảng đây? A 1; B 1; C 0; 1 D 2; Lời giải Chọn C x Ta có: f x x Đồng thời f x x 0; nên ta chọn đáp án theo đề 0; 1 Mức độ TÀI LIỆU ÔN THI THPT QUỐC GIA Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU Câu 50 BÀI TOÁN THEO MỨC ĐỘ Có giá trị nguyên tham số m cho hàm số f ( x) x mx x đồng biến A B C D Lời giải Chọn A Ta có f ( x) x2 2mx Hàm số cho đồng biến f ( x) 0, x điểm) Ta có f ( x) 0, x ' (Dấu ‘=’ xảy hữu hạn ' m2 2 m Vì m Câu nên m 2; 1;0;1; 2 , có giá trị nguyên m thỏa mãn Cho hàm số y x mx 4m x , với m tham số Hỏi có giá trị nguyên m để hàm số nghịch biến khoảng ; A C B D Lời giải Chọn D Ta có: +) TXĐ: D +) y ' 3 x mx m a 3 Hàm số nghịch biến ; y ' 0, x ; ' m m m 9; 3 có giá trị nguyên m thỏa mãn Câu Cho hàm số y x3 mx 3m x Tìm tất giá trị m để hàm số nghịch biến m 1 m 1 A B 2 m 1 C 2 m 1 D m 2 m 2 Lời giải Chọn B TXĐ: D , y x2 2mx 3m Hàm số nghịch biến y , x a 1 2 m 1 m m Câu Tìm m để hàm số y x3 3mx 2m 1 đồng biến B m A Khơng có giá trị m thỏa mãn C m D Luôn thỏa mãn với m Lời giải Chọn C TÀI LIỆU ÔN THI THPT QUỐC GIA Trang NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ y 3x 6mx 2m 1 Ta có: 3m 3.3 2m 1 Để hàm số đồng biến 9m2 18m m2 2m 1 m 1 m Câu Tìm tập hợp tất giá trị tham số thực m để hàm số y x3 mx x m đồng biến khoảng ; A 2; 2 C ; 2 B ; D 2; Lời giải Chọn A Ta có: y x2 2mx Hàm số đồng biến khoảng ; y 0, x ; m2 2 m Câu mx m với m tham số Gọi S tập hợp tất giá trị nguyên xm m để hàm số đồng biến khoảng xác định Tìm số phần tử S A Vơ số B C D Lời giải Chọn B Cho hàm số y y' m2 2m x m hàm số đồng biến khoảng xác định y ' m2 2m 1 m nên có giá trị m nguyên Câu mx 4m với m tham số Gọi S tập hợp tất giá trị nguyên m xm để hàm số nghịch biến khoảng xác định Tìm số phần tử S A B Vô số C D Lời giải Chọn C m 4m D \ m ; y x m Cho hàm số y Hàm số nghịch biến khoảng xác định y 0, x D m2 4m m Mà m Câu nên có giá trị thỏa mãn Tập hợp tất giá trị thực tham số m để hàm số y ; A 4; B 4; C 4;7 x4 đồng biến khoảng xm D 4; Lời giải Chọn B Tập xác định: D Ta có: y \ m4 x m m TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 10 NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Hàm số cho đồng biến khoảng ; y , x ; m m m 4 m7 m ; m 7 m Câu Tập hợp tất giá trị thực tham số m để hàm số y x x m x đồng biến khoảng 2; A ; 1 C ; 1 B ; D ; 2 Lời giải Chọn D Ta có y ' 3x2 6x m Để hàm số đồng biến khoảng 2; y ' 0, x 2; x x m 0, x 2; m 3x2 x 2, x 2; m f x 2; Xét hàm số f x x x 2, x 2; f ' x 6x ; f ' x 6x x Bảng biến thiên: Từ bảng biến thiên ta thấy m Vậy m ; 2 Câu 10 Tập hợp tất giá trị thực tham số m để hàm số y x x 1 m x đồng biến khoảng 2; A ; 2 C ; 2 B ;1 D ;1 Lời giải Chọn D Ta có y 3x2 6x m Hàm số đồng biến khoảng 2; y , x 2; 3x2 6x m , x 2; 3x2 6x m , x 2; m g x 2; Xét hàm số g x 3x x với x 2; g x x ; g x , x 2; Bảng biến thiên g x : TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 11 NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Vậy m Mức độ Câu Có giá trị nguyên âm tham số m để hàm số y x3 mx khoảng 0; A B C Lời giải đồng biến x5 D Chọn B y x m x6 Hàm số đồng biến 0; y 3x m 0, x 0; x6 1 m, x 0; Xét hàm số g ( x) 3x m , x 0; x x x 6( x 1) , g ( x) g ( x) 6 x x x x 1(loai) Bảng biến thiên: 3x Câu Dựa vào BBT ta có m 4 , suy giá trị nguyên âm tham số m 4; 3; 2; 1 Gọi S tập hợp tất giá trị tham số m để hàm số 1 f x m x mx 10 x m2 m 20 x đồng biến Tổng giá trị tất phần tử thuộc S A B C D 2 Lời giải Chọn B Ta có f x m x mx 20 x m m 20 m x 1 m x 1 20 x 1 m x 1 x 1 x 1 m x 1 x 1 20 x 1 x 1 m2 x 1 x 1 m x 1 20 x 1 f x 2 m x 1 x 1 m x 1 20 * Ta có f x có nghiệm đơn x 1 , * không nhận x 1 nghiệm f x đổi dấu qua x 1 Do để f x đồng biến * f x 0, x hay nhận x 1 làm nghiệm (bậc lẻ) m Suy m 1 11 1 m 1 1 20 4m 2m 20 m 2 TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 12 NHÓM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Thử lại: + Với m 5 25 ta có f x x 1 x 1 x 1 x 1 20 có nghiệm phân 2 4 biệt không thỏa mãn + Với m 2 ta có f x x 1 x 1 x 1 x 1 20 có nghiệm kép thỏa mãn Tổng giá trị m Câu Tập hợp giá trị thực tham số m để hàm số y x xác định A 0;1 B ; 0 m đồng biến khoảng x2 C 0; \ 1 D ; Lời giải Chọn B • Tập xác định: D \ 2 Hàm số cho đồng biến khoảng xác định khi: m y ' 0, x D 0, x D x 2 m x , x D m f x D Xét hàm số f x x ta có: f ' x 2x f ' x x Bảng biến thiên: Câu Vậy, để hàm số cho đồng biến khoảng xác định m cos x Tìm tất giá trị thực tham số để hàm số y nghịch biến khoảng cos x m ; 2 0 m 0 m A B C m D m m 1 m 1 Lời giải Chọn A Điều kiện: cos x m Ta có: y (m 3) cos x m ( sin x) (m 3) cos x m sin x Vì x ; s in x , cos x m 0, x ; : cos x m 2 2 TÀI LIỆU ƠN THI THPT QUỐC GIA Trang 13 NHĨM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Để hàm số nghịch biến khoảng ; y x ; 2 2 m m 0 m m m 1 cos x m x ; m 1;0 m m 2 Chú ý : Tập giá trị hàm số y cos x, x ; 1; 2 Câu Cho hàm số y (4 m) x Có giá trị nguyên m khoảng 10;10 6 x m cho hàm số đồng biến 8;5 ? A 14 D 15 C 12 Lời giải B 13 Chọn A Đặt t x x 8;5 t 14; 1 t x đồng biến 8;5 Hàm số trở thành y (4 m)t tập xác định D t m \ m y ' m 4m (t m)2 m 4m m 14 1 m Để hàm số đồng biến khoảng 14; 1 m 14 m m 1 m 9, 8, 7, 6, 5, 4, 1, 0, 4,5, 6, 7,8,9 có 14 giá trị Câu Có giá trị nguyên âm tham số m để hàm số y đồng biến x mx 2x khoảng 0; A B C Lời giải D Chọn A Tập xác định : D y x3 m 2x Ta có: hàm số cho đồng biến khoảng 0; y với x 0; 3 0, x 0; x3 m, x 0; 2x 2x m f x ,với f x x3 1 0; 2x Cách 1: x3 m x3 x3 1 1 Theo bất đẳng thức Cauchy ta có f x x 5 2x 2 2x 2x 2x 2 Dấu xảy x Do f x 0; 5 Từ 1 ta có m m Do m nguyên âm nên m 1 m 2 2 Vậy có hai giá trị nguyên âm tham số m thỏa mãn điều kiện TÀI LIỆU ƠN THI THPT QUỐC GIA Trang 14 NHĨM WORD – BIÊN SOẠN TÀI LIỆU 50 BÀI TOÁN THEO MỨC ĐỘ Cách 2: Xét hàm số f x x3 Ta có f x 3x , x 0; 2x2 , f x x x3 Bảng biến thiên – 5 m Do m nguyên âm nên m 1 m 2 2 Vậy có hai giá trị nguyên âm tham số m thỏa mãn điều kiện ln x Cho hàm số y với m tham số Gọi S tập hợp giá trị nguyên dương ln x 2m m để hàm số đồng biến khoảng 1;e Tìm số phần tử S Từ bảng biến thiên ta có m Câu A B C Lời giải D Chọn C y f x ln x ln x 2m Đặt t ln x , điều kiện t 0;1 g t t 4 2m ; g t t 2m t 2m Để hàm số f x đồng biến 1; e hàm số g t đồng biến 0;1 g t 0, t 0;1 2m t 2m 0, t 0;1 1 2m m2 2 2m 0;1 m S tập hợp giá trị nguyên dương S 1 Câu Vậy số phần tử tập S cos x Tìm m để hàm số y đồng biến khoảng cos x m m A m 2 B m 0; 2 m C 1 m Lời giải D 1 m Chọn C Ta có y ' sin x , x 0; Ta có sin x 0, x 0; 2 2 cos x m 2m TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 15 NHÓM WORD – BIÊN SOẠN TÀI LIỆU Câu 50 BÀI TỐN THEO MỨC ĐỘ Do đó: Hàm số nghịch biến khoảng 0; 2 2 m m m m cos x m 0, x 0; m 0;1 2 Có giá trị nguyên âm tham số m để hàm số y x x 2m 15 x 3m đồng biến khoảng 0; ? A B C D Lời giải Chọn D Yêu cầu toán y 3x x 2m 15 0, x 0; dấu xảy hữu hạn điểm thuộc 0; 3x3 x 15 2m , x 0; 2m g x 0; Xét hàm số: g ( x) 3x 9x 15 0; Ta có: g ( x) 9x2 x 1 g x x 1 (l ) Bảng biến thiên: Từ BBT ta có: 2m m Vậy m{ 4; 3; 2; 1} Câu 10 Tìm tất giá trị thực m để hàm số y x A m 8 Chọn B B m 1 Ta có: y 3x2 x m 2x x 3 x mx 1 đồng biến 1; C m 8 Lời giải D m 1 mx 1 ln Hàm số đồng biến 1; y , x 1; 3x2 x m 2x x ln , x 1; mx 1 3x2 x m , x 1; m 3x2 x , x 1; m max 3x x 1;2 Xét hàm số f x 3 x x , với x 1; Ta có: f x 6 x TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 16 NHÓM WORD – BIÊN SOẠN TÀI LIỆU Cho f x 6 x x 50 BÀI TOÁN THEO MỨC ĐỘ Bảng biến thiên: Vậy m 1 thỏa yêu cầu toán TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 17