Một lớp bài toán quy hoạch ngẫu nhiên với ràng buộc cân bằng

36 8 0
Một lớp bài toán quy hoạch ngẫu nhiên với ràng buộc cân bằng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

▼ö❝ ❧ö❝ tr❛♥❣ ▼ð ✤➛✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ❈❤÷ì♥❣ ✶✳ ❑✐➳♥ t❤ù❝ ❝ì sð ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✶✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ❝õ❛ ①→❝ s✉➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✶✳✶✳ ❈→❝ ✤à♥❤ ♥❣❤➽❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✶✳✷✳ ❚➼♥❤ ❝❤➜t ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ởt số ỵ t ỗ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✶✳✷✳✶✳ ❑❤→✐ ♥✐➺♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✶✳✷✳✸✳ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✸✳ ❈➦♣ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✤è✐ ♥❣➝✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✸✳✶✳ ❈➦♣ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✤è✐ ♥❣➝✉ ❦❤æ♥❣ ✤è✐ ①ù♥❣ ✳ ✳ ✳ ✶✵ ✶✳✸✳✷✳ ▼ët sè t➼♥❤ ❝❤➜t ❝õ❛ ❝➦♣ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✤è✐ ♥❣➝✉ ✤è✐ ①ù♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✹✳ ❇➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✹✳✶✳ ❇➔✐ t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✹✳✷✳ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ❈❤✉ì♥❣ ✷✳ ❇➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ✈ỵ✐ r➔♥❣ ❜✉ë❝ ♥û❛ ①→❝ ✤à♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✷✳✶✳ ❇➔✐ t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✷✳✶✳✶✳ ❇➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ♥û❛ ①→❝ ✤à♥❤ ✳ ✳ ✳ ỵ ❣✐↔ t❤✐➳t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✷✳✷✳ ❈→❝ t➼♥❤ ❝❤➜t ❝õ❛ ❜➔✐ t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✷✳✷✳✶✳ ❚➼♥❤ ✤↕♦ ❤➔♠ ❝õ❛ ❤➔♠ ♠ö❝ t✐➯✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✷ ✷✳✷✳✷✳ ❈→❝ t➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✸ ✷✳✸✳ ❚❤✉➟t t♦→♥ ❣✐↔✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵ ✷✳✸✳✶✳ ❚❤✉➟t t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳✸✵ ✷✳✸✳✷✳ ❙ü ❤ë✐ tö ❝õ❛ t❤✉➟t t♦→♥ ✷✳✸✳✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ❑➳t ❧✉➟♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✺ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻ ✸ ▼ð ✤➛✉ ▲➼ t❤✉②➳t q✉② ❤♦↕❝❤ t♦→♥ ❤å❝ r❛ ✤í✐ ✈➔♦ ♥❤ú♥❣ ♥➠♠ ✹✵ ❝õ❛ t❤➳ ❦➾ ❳❳ ♥❤➡♠ ❣✐↔✐ q✉②➳t ❜➔✐ t♦→♥ t❤ü❝ t✐➵♥ ❝õ❛ ❧♦➔✐ ♥❣÷í✐ ❧➔ ❧➔♠ t❤➳ ♥➔♦ ✤➸ ❝ỉ♥❣ ✈✐➺❝ ✤↕t ♥❤÷ ♠♦♥❣ ♠✉è♥✱ tr➯♥ ❝ì sð ♥❤ú♥❣ ✤✐➲✉ ❦✐➺♥ ❤✐➺♥ ❝â✳ ✣➸ ✤↕t ✤÷đ❝ sü ♠♦♥❣ ♠✉è♥ ➜②✱ ♥❣÷í✐ t❛ ✤✐ ✤➳♥ ❣✐↔✐ q✉②➳t ♥❤ú♥❣ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤✳ ❇➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♠➔ ❝→❝ ❞ú ❧✐➺✉ ♣❤ö t❤✉ë❝ ❝→❝ ❜✐➳♥ ❝è ♥❣➝✉ ♥❤✐➯♥ ❣å✐ ❧➔ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥✳ ❚r♦♥❣ ❧ỵ♣ ❝→❝ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥✱ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ✤â♥❣ ✈❛✐ trá r➜t q✉❛♥ trå♥❣✳ ❈❤♦ tỵ✐ ♥❛② ✤➣ ❝â ❤➔♥❣ tr➠♠ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥✱ ✤➠♥❣ t↔✐ tr➯♥ ❝→❝ t↕♣ ❝❤➼✳ ▼é✐ ❝æ♥❣ tr➻♥❤ ✤➲✉ t❤➸ ❤✐➺♥ t ợ r ợ tữớ t ð ♣❤÷ì♥❣ ♣❤→♣✱ ð ♠ỉ ❤➻♥❤✱ ð ❝→❝❤ t✐➳♣ ❝➟♥✱ ✳✈✳✈✳✳ ❱✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❜➔✐ t♦→♥ ♥➔② ♥❤➡♠ ♣❤→t ❤✐➺♥ ♥❤ú♥❣ t➼♥❤ ❝❤➜t ❝õ❛ ♥â ✈➔ t❤✉➟t t♦→♥ ✤➸ ❣✐↔✐ tớ sỹ õ ỵ ❦❤♦❛ ❤å❝ ✈➔ t❤ü❝ t✐➵♥ rë♥❣ ❧ỵ♥✳ ❈❤➼♥❤ ✈➻ ✈➟②✱ tỉ✐ ✤➲ ①✉➜t ♥❣❤✐➯♥ ❝ù✉ ✤➲ t➔✐✿ ✧▼ët ❧ỵ♣ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ✈ỵ✐ r➔♥❣ ❜✉ë❝ ♥û❛ ①→❝ ✤à♥❤ ✧✳ ❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ❝❤ó♥❣ tỉ✐ s➩ ❣✐ỵ✐ t❤✐➺✉ ♠ët t❤✉➟t t♦→♥ ✤➸ ❣✐↔✐ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ♥û❛ ①→❝ ✤à♥❤✳ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❚✇♦✲❙t❛❣❡ ❙t♦❝❤❛st✐❝ ❙❡♠✐❞❡❢✐♥✐t❡ Pr♦❣r❛♠♠✐♥❣ ❛♥❞ ❉❡❝♦♠♣♦s✐t✐♦♥ ❇❛s❡❞ ■♥t❡r♦r ▼❡t❤♦❞s✿ ❚❤❡♦r②✱ ❝õ❛ ❝→❝ t→❝ ❣✐↔ ❙✳ ▼❡❤r♦tr❛ ❝❤➼♥❤ ✤â ❧➔ ❜➔✐ ❜→♦ ☎ ✈➔ ▼✳ ●✳ ❖③❡✈✐♥✱ ❝æ♥❣ ❜è ♥➠♠ ✷✵✵✺ ✭①❡♠ ❬✺❪✮✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ỗ ữỡ ữỡ tự ❝ì sð ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ❝õ❛ ①→❝ s✉➜t❀ ♠ët sè ❦❤→✐ ♥✐➺♠ ❝õ❛ ●✐↔✐ t➼❝❤ ✈➔ ✣↕✐ sè ❝â ❧✐➯♥ q✉❛♥ tỵ✐ ✈✐➺❝ tr➻♥❤ ✹ ❜➔② ❝õ❛ ✤➲ t➔✐❀ ♠ët sè ✈➜♥ ✤➲ ✈➲ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✈➔ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✤è✐ ♥❣➝✉✳ ❈❤÷ì♥❣ ✷✳ ❚❤✉➟t t♦→♥ ❣✐↔✐ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ♥û❛ ①→❝ ✤à♥❤ ❈❤÷ì♥❣ ♥➔② ❧➔ ♥ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ ✈➠♥✳ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ♥û❛ ①→❝ ✤à♥❤✱ ❝→❝ t➼♥❤ ❝❤➜t ✈➔ t❤✉➟t t♦→♥ ✤➸ ❣✐↔✐ ♥â✳ ▲✉➟♥ ✈➠♥ ✤÷đ❝ t❤ü❝ ❤✐➺♥ ✈➔ ❤♦➔♥ t❤➔♥❤ t↕✐ tr÷í♥❣ ✣↕✐ ữợ sỹ ữợ P ❚❙✳ ❚r➛♥ ❳✉➙♥ ❙✐♥❤✳ ❚→❝ ❣✐↔ ①✐♥ ❜➔② tä ❧á♥❣ t ỡ s s t ữớ ữợ t➟♥ t➙♠ ✈➔ ♥❤✐➺t t➻♥❤ ❣✐ó♣ ✤ï t→❝ ❣✐↔ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉✳ ◆❤➙♥ ❞à♣ ♥➔② t→❝ ❣✐↔ ❝ơ♥❣ ①✐♥ tr➙♥ trå♥❣ ❣û✐ ❧í✐ ❝↔♠ ì♥ ❝❤➙♥ t❤➔♥❤ tỵ✐ P●❙✳ ❚❙✳ P❤❛♥ ✣ù❝ ❚❤➔♥❤✱ P●❙✳ ❚❙✳ ◆❣✉②➵♥ ❱➠♥ ◗✉↔♥❣✱ ❚❙✳ ◆❣✉②➵♥ ❚r✉♥❣ ❍♦➔✱ ❝→❝ t❤➛② ❝æ tr♦♥❣ tê ❳→❝ s✉➜t t❤è♥❣ ❦➯ ✈➔ ❚♦→♥ ù♥❣ ❞ö♥❣✱ ❦❤♦❛ ❚♦→♥✱ ❦❤♦❛ ❙❛✉ ✤↕✐ ❤å❝ ✈➔ ❝→❝ ❜↕♥ tr♦♥❣ ❧ỵ♣ ❈❛♦ ❤å❝ ❦❤♦→ ✶✼ ❚♦→♥ ✤➣ ♥❤✐➺t t➻♥❤ ú ù õ ỵ t tr sốt q tr➻♥❤ ❤å❝ t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉ ✤➸ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳ ❚→❝ ❣✐↔ ❝ơ♥❣ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤ ✈➔ ❜↕♥ ❜➧ ✤➣ t↕♦ ✤✐➲✉ ❦✐➺♥ ❣✐ó♣ ✤ï ✈➔ ✤ë♥❣ ✈✐➯♥ t→❝ ❣✐↔ tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ q✉❛✳ ▼➦❝ ❞ị ✤➣ ❝è ❣➢♥❣ s♦♥❣ ❧✉➟♥ ✈➠♥ ❦❤ỉ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât✳ ❚→❝ ❣✐↔ r➜t ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ sỹ õ ỵ t ổ ✤➸ ❧✉➟♥ ✈➠♥ ✤÷đ❝ tèt ❤ì♥✳ ❚→❝ ❣✐↔ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦ ❱✐♥❤✱ t❤→♥❣ ✶✷ ♥➠♠ ✷✵✶✶ ❚→❝ ❣✐↔ ✺ ❈❤÷ì♥❣ ✶ ❑✐➳♥ t❤ù❝ ❝ì sð ✶✳✶✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ❝õ❛ ①→❝ s✉➜t ✶✳✶✳✶✳ ❈→❝ ✤à♥❤ ♥❣❤➽❛ ✶✳✶✳✶✳✶✳ σ✲ ✤↕✐ sè • ●✐↔ sû Ω ❧➔ ởt t tý ỵ rộ ỵ P() t ủ ỗ tt t ợ A P() ữủ ởt số ♥➳✉✿ A1) Ω ∈ A, A2) A ∈ A ⇒ A = Ω\A ∈ A, A3) A, B ∈ A ⇒ A ∪ B ∈ A ✭❤♦➦❝A ∩ B ∈ A) ã ợ F P() ữủ ✲ ✤↕✐ sè ♥➳✉ ♥â ❧➔ ✤↕✐ sè ✈➔ ♥❣♦➔✐ r❛ A4) ◆➳✉ An ∈ F, ∀n = 1, 2, t❤➻ ∞ ∞ An ∈ F ✭❤♦➦❝ n=1 ✶✳✶✳✶✳✷✳ ❑❤ỉ♥❣ ❣✐❛♥ ✤♦ ❈➦♣ (Ω, F) ✤÷đ❝ ❣å✐ ❧➔ ♠ët An ∈ F) n=1 ❦❤æ♥❣ ❣✐❛♥ ✤♦✱ tr♦♥❣ ✤â✿ Ω = ∅ ❜➜t ❦ý✱ F ❧➔ ♠ët σ ✲ ✤↕✐ sè ❝→❝ t➟♣ ❝♦♥ ❝õ❛ Ω✳ ✶✳✶✳✶✳✸✳ ❇✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ●✐↔ sû (Ω, F) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤♦✱ R = [−∞; +∞]✳ ❍➔♠ t❤ü❝ X = X(ω) ①→❝ ✤à♥❤ tr➯♥ Ω ❧➜② ❣✐→ trà tr➯♥ R ❣å✐ ❧➔ ❤➔♠ F ✲✤♦ ✤÷đ❝ ❤♦➦❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ s✉② rë♥❣ ♥➳✉ {ω : X(ω) ∈ B} = X −1 (B) ∈ F ✱ ✈ỵ✐ ♠é✐ B ∈ B(R) ✭✈ỵ✐ B(R) ❧➔ σ ✲ ✤↕✐ sè ❝→❝ t➟♣ ❇♦r❡❧ ❝õ❛ trö❝ t❤ü❝ R✮✳ ◆➳✉ X : Ω → R = (−∞; +∞) t❤➻ X ✤÷đ❝ ❣å✐ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✻ ✶✳✶✳✶✳✹✳ ❍➔♠ ❇♦r❡❧ ❍➔♠ ϕ : (Rn , B(Rn )) → (R, B(R)) ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ❇♦r❡❧✱ ♥➳✉ ♥â ❧➔ B(Rn ) ✲ ✤♦ ✤÷đ❝✱ ♥❣❤➽❛ ❧➔ ϕ−1 (B) ∈ B(Rn )✱ ✈ỵ✐ ♠é✐ B ∈ B(R)✳ ✶✳✶✳✶✳✺✳ ❍➔♠ ♣❤➙♥ ♣❤è✐ ①→❝ s✉➜t ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ●✐↔ sû X ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ①→❝ ✤à♥❤ tr➯♥ (Ω, F, P) ♥❤➟♥ ❣✐→ trà tr➯♥ R✳ ❍➔♠ sè FX (x) = P[X < x], (x ∈ R) ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ ♣❤➙♥ ♣❤è✐ ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X ✳ ✶✳✶✳✶✳✻✳ ❑ý ✈å♥❣ ❝õ❛ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ⊕ ◆➳✉ X ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✤ì♥ ❣✐↔♥ ①→❝ ✤à♥❤ tr➯♥ (Ω, F, P)✱ ❝â ♥❣❤➽❛ ❧➔ n X= xk IAk , k=1 ✈ỵ✐ xk ∈ R, Ak ∈ F, (k = 1, 2, , n) ✈➔ Ak Al = ∅ (k = l) t❤➻ ý X ỵ EX ữủ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ s❛✉ n EX := xk PAk k=1 ⊕ ◆➳✉ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X ❧➔ ❣✐ỵ✐ ❤↕♥ ❝õ❛ ❞➣② t➠♥❣ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✤ì♥ ❣✐↔♥✱ ❦❤ỉ♥❣ ➙♠ {Xn } : ≤ Xn ↑ X t❤➻ EX := lim EXn n ⊕ ●✐↔ sû X ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ❜➜t ❦ý✱ ❦❤✐ ✤â X ❝â t ữợ X = X + X − ✱ ✈ỵ✐ X + , X − ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ❦❤æ♥❣ ➙♠✳ (X + = max{X, 0}, X − = max{−X, 0}) ◆➳✉ (EX + , EX − ) < ∞ t❤➻ EX := EX + − EX − ❤↕♥✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ EX + ✈➔ EX − ✤➲✉ ❤ú✉ ❤↕♥ t❤➻ X ❝â ❦ý ✈å♥❣ ❤ú✉ ✼ ✶✳✶✳✷✳ ❚➼♥❤ ❝❤➜t ❝õ❛ ❜✐➳♥ ♥❣➝✉ ỵ sỷ X : R✳ ❑❤✐ ✤â ❝→❝ ♠➺♥❤ ✤➲ s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣ ❛✮ ❳ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ❜✮ {ω : X(ω) < x} ∈ F ✈ỵ✐ ♠é✐ x ∈ R✳ ❝✮ {ω : X(ω) ≤ x} ∈ F ✈ỵ✐ ♠é✐ x ∈ R✳ ❞✮ {ω : a ≤ X(ω) < b} ∈ F ✈ỵ✐ a < b ❜➜t ❦ý✳ ✶✳✶✳✷✳✷✳ ✣à♥❤ ỵ sỷ X1, , Xn ♥❤✐➯♥ ❝ò♥❣ ①→❝ ✤à♥❤ tr➯♥ (Ω, F) ✈➔ ϕ(t1, , tn) ❧➔ ❤➔♠ ❇♦r❡❧ ❣✐→ trà t❤ü❝✳ ❑❤✐ ✤â Y = ϕ(X1 , , Xn ) ❝ô♥❣ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✶✳✶✳✷✳✸✳ ❍➺ q✉↔✳ ●✐↔ sû ❳✱ ❨ ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ❑❤✐ ✤â X ± Y, X.Y, X ∨ Y, X ∧ Y, X + = X ∨ 0, X − = (−X) ∨ 0, |X| = X + + X − ❝ô♥❣ ❧➔ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✣➦❝ ❜✐➺t✱ ♥➳✉ ❨ ❦❤æ♥❣ tr✐➺t t✐➯✉ t❤➻ ❳✴❨ ❧➔ ỵ sỷ {Xn, n ≥ 1} ❧➔ ❞➣② ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ ✈➔ sup Xn , inf Xn n n ❤ú✉ ❤↕♥ tr➯♥ Ω✳ ❑❤✐ ✤â sup Xn , inf Xn , lim sup Xn , lim inf Xn n n n n ❧➔ ❝→❝ t tỗ t lim Xn = X t❤➻ ❳ ❝ô♥❣ ❧➔ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ✶✳✷✳ ởt số ỵ t ỗ r ú tổ tr ởt số ❦❤→✐ ♥✐➺♠ ❝õ❛ ●✐↔✐ t➼❝❤ ✈➔ ✣↕✐ sè ❝â ❧✐➯♥ q✉❛♥ tr♦♥❣ tr➻♥❤ ❜➔② ❝õ❛ ❧✉➟♥ ✈➠♥✳ ✽ ✶✳✷✳✶✳ ❑❤→✐ ♥✐➺♠ ✰ ❈❤♦ ♠❛ tr➟♥ ✈✉ỉ♥❣ A(x) ❝➜♣ n × n ợ x Rn tr A(x) ữủ ❣å✐ ❧➔ ①→❝ ✤à♥❤ ❞÷ì♥❣ ♥➳✉ ✤à♥❤ t❤ù❝ A(x) > 0✱ ✈ỵ✐ ♠å✐ x✳ ✰ ❈❤♦ t➟♣ K ⊂ Rn ✳ ❚➟♣ K ✤÷đ❝ ❣å✐ ❧➔ ♥â♥ ✤è✐ ①ù♥❣ t↕✐ x∗ ♥➳✉ x∗ + λ(x − x∗ ) ∈ K ợ R ỵ K+v ♥â♥ s✐♥❤ r❛ ❜ð✐ ♥❤ú♥❣ ♠❛ tr➟♥ ①→❝ ✤à♥❤ ❞÷ì♥❣✳ õ K t ỗ t t õ õ ỗ t tự s rở õ ỗ K ⊂ Rn ✈➔ x, y ∈ K ✳ ❚r➯♥ K ✱ t❛ ❝❤♦ ❝↔♠ s✐♥❤ t❤ù tü ❜ë ♣❤➟♥✱ ỵ x ụ õ t t x K K K✱ ♥❤÷ s❛✉ y ⇔ y − x ∈ K y t❤❛② ❝❤♦ y K x✳ ◆➳✉ ♥â♥ ỗ K õ õ tr t❤ù❝ x ❜➜t ✤➥♥❣ t❤ù❝ s✉② rë♥❣ ❝↔♠ s✐♥❤ tr➯♥ K ✳ ✰ ❈❤♦ ♥â♥ K+v ✱ tr➯♥ ✤â ✤➣ ①→❝ ✤à♥❤ t❤ù tü ❜ë ♣❤➟♥ A ∈ K+v t❤♦↔ ♠➣♥ A K t❤➻ t❛ ♥â✐ A ❧➔ ♠❛ tr➟♥ K✳ K y ❣å✐ ❧➔ ❑❤✐ ✤â ♠é✐ ♥û❛ ữỡ ỵ vec(M ) tỡ ❝õ❛ ♠❛ tr➟♥ M ✳ ✰ ❚➼❝❤ A ⊗ B ✤÷đ❝ ❣å✐ ❧➔ t➼❝❤ ❑r♦♥❡❝❦❡r ❝õ❛ ✷ ♠❛ tr➟♥ A ✈➔ B ✱ ♥❣❤➽❛ ❧➔ [A ⊗ B][C ⊗ D] = [AC ⊗ BD], ✈ỵ✐ ❣✐↔ t❤✐➳t r➡♥❣ sè ❤➔♥❣ ❝õ❛ ♠❛ tr➟♥ A ✈➔ B ❜➡♥❣ sè ❝ët ❝õ❛ C D ỵ ợ ộ x Rn , x > ỵ 1 T x−1 := (x−1 , x2 , , xn ) X := diag(x1 , , xn ) ❧➔ ♠❛ tr ữớ ỗ tỷ x1 , , xn I ❧➔ ♠❛ tr➟♥ ✤ì♥ ✈à✳ f ❧➔ ✈❡❝tì ✤↕♦ ❤➔♠ r✐➯♥❣ ❜➟❝ ✶ ❝õ❛ ❤➔♠ f ✳ ✾ f ❧➔ ✈❡❝tì ✤↕♦ ❤➔♠ r✐➯♥❣ ❜➟❝ ✷ ❝õ❛ ❤➔♠ f ✳ f ❧➔ ✈❡❝tì ✤↕♦ ❤➔♠ r✐➯♥❣ ❜➟❝ ✸ ❝õ❛ ❤➔♠ f ✳ x ❧➔ ✤↕♦ ❤➔♠ ❝õ❛ x✳ S := ♠❛t(s) ❧➔ ♠❛ tr➟♥ t÷ì♥❣ ù♥❣ ❝õ❛ ✈❡❝tì s✳ ✈❡❝(M ) ❧➔ ✈❡❝tì ❝õ❛ ♠❛ tr➟♥ M ✳ ✶✳✷✳✸✳ ❈→❝ t➼♥❤ ❝❤➜t ✶✳✷✳✸✳✶✳ K ❧➔ ♥â♥ ỗ ợ x, y ∈ K; λ ≥ t❤➻ λx ∈ K; x + y ∈ K ✶✳✷✳✸✳✷✳ ❈❤♦ M ∈ Rv×v ✈➔ ❣✐↔ t❤✐➳t r➡♥❣ M ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣✳ ❑❤✐ ✤â ❧➔ ♠❛ tr➟♥ ❝➜♣ v × v} K p := {vec(M ) : M ❧➔ ♠ët ♥â♥ ✤è✐ ①ù♥❣✱ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣✳ ◆❣❤➽❛ ❧➔ õ K p ỗ tỡ t ữủ tứ ♥❤ú♥❣ ✈❡❝tì ❝õ❛ ♥❤ú♥❣ ♠❛ tr➟♥ ✤è✐ ①ù♥❣✱ ♥û❛ ①→❝ ✤à♥❤ ❞÷ì♥❣✳ ✶✳✷✳✸✳✸✳ ❚❤ù tü ❜ë ♣❤➟♥ K ❝â t➼♥❤ ❝❤➜t ❜➢❝ ❝➛✉✱ ♣❤↔♥ ①↕✱ ❦❤➨♣ ❦➼♥ ✈ỵ✐ ♣❤➨♣ t♦→♥ ❝ë♥❣ ✈➔ ♥❤➙♥ ✈ỵ✐ sè ❦❤ỉ♥❣ ➙♠✳ ✶✳✷✳✸✳✹✳ ❚❤ù tü ❜ë ♣❤➟♥ K ❝â t➼♥❤ ❝❤➜t ✭✐✮ x K y, y K x ⇒ x = y✱ ✭✐✐✮ xk K yk , xk → x, yk → y ⇒ x ✭✐✐✐✮ x K y, u K v ⇒x+u ❚➟♣ {z ∈ K : x ✶✳✷✳✸✳✺✳ ❚❛ ❝â ✭✐✈✮ K z K K y} K y, y + v, ❜à ❝❤➦♥✳ ✈❡❝(C) = ✈❡❝(BCAT ) (A ⊗ B) ✶✳✸✳ ❈➦♣ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✤è✐ ♥❣➝✉ ✶✵ ✶✳✸✳✶✳ ❈➦♣ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ❦❤æ♥❣ ✤è✐ ①ù♥❣ ❈❤♦ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ n f (x) = cj xj j=1 ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ n aij xj = bi , i = 1, , m j=1 xj ≥ 0, j = 1, , n ❜➔✐ t♦→♥ ❣è❝✳ ❑❤✐ ✤â ❜➔✐ t♦→♥ s❛✉ ✤➙② ✤÷đ❝ ❣å✐ ❧➔ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✤è✐ ♥❣➝✉ ❦❤æ♥❣ ✤è✐ ①ù♥❣ m ❇➔✐ t♦→♥ q✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤ ✤➣ ❝❤♦ ❣å✐ ❧➔ bi yi max g(y) = i=1 ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ m aij yi ≤ cj , j = 1, , n i=1 ❇✐➳♥ yi , i = 1, , m ❝á♥ ❣å✐ ❧➔ ♥❤➙♥ tû ▲❛❣r➠♥❣ ❤❛② ♥❤➙♥ tû ✤è✐ ♥❣➝✉✳ ✶✳✸✳✷✳ ❚➼♥❤ ❝❤➜t ❝õ❛ ❝➦♣ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ✶✳✸✳✷✳✶✳ ❱ỵ✐ ♠å✐ ♣❤÷ì♥❣ →♥ ①✱ ② ❝õ❛ ❝➦♣ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ t❤➻ f (x) ≤ g(y)✳ ❇➔✐ t♦→♥ ❣è❝ ❝â ♣❤÷ì♥❣ →♥ tè✐ ÷✉ x∗ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ ❜➔✐ t ố õ ữỡ tố ữ y ỗ t❤í✐ f (x∗) = g(y∗)✳ ✶✳✸✳✷✳✷✳ P❤÷ì♥❣ →♥ x∗ = (x∗j ) ❝õ❛ ❜➔✐ t♦→♥ ❣è❝ ❧➔ tè✐ ÷✉ ❦❤✐ tỗ t ữỡ y = (yi) ❝õ❛ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ s❛♦ ❝❤♦ t↕✐ ❝❤➾ sè ❥ ❝â m x∗j > t❤➻ ✤✐➲✉ ❦✐➺♥ t❤ù ❥ ❝õ❛ ❜➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ❝â aij yi = cj ✳ i=1 ✶✳✹✳ ❇➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ✶✳✹✳✶✳ ❇➔✐ t♦→♥ ✷✷ P❤÷ì♥❣ →♥ tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✺✮✲✭✷✳✼✮ ✤÷đ❝ ♠ð rë♥❣ tỵ✐ ❜➔✐ t♦→♥ K T dTi yi + µ ln(detS) + µeT ln(detSi )} min{c x + i=1 ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ Ax + s = b, Wi yi + si = hi − Ti x, i = 1, , K, (2.10) s ∈ Kp , si ∈ Kr , i = 1, , K ❚ø ✤â✱ ♥❣÷í✐ t❛ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ s ợ ộ > 0✱ ♥➳✉ (x(µ), s(µ); y1 (µ), s1 (µ), , yK (à), sK (à)) ữỡ tố ữ (2.10) t (x(à), s(à)) ữỡ tố ữ ❝õ❛ (2.5)✱ (y1 (µ), s1 (µ), , yK (µ), sK (à)) ữỡ tố ữ (2.7) ợ x = x(à) ữủ ợ µ ✤➣ ❝❤♦ (x(µ), s(µ)) ❧➔ ♣❤÷ì♥❣ →♥ tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ (2.5), (y1(µ), s1(µ), , yK (µ), sK (à)) ữỡ tố ữ t (2.7) ợ x = x(à) t (x(à), s(à), y1 (à), s1 (à), , yK (à), sK (à)) ữỡ tố ÷✉ ❝õ❛ ❜➔✐ t♦→♥ (2.10)✳ ✷✳✷✳ ❈→❝ t➼♥❤ ❝❤➜t ❝õ❛ ❜➔✐ t♦→♥ ✷✳✷✳✶✳ ❚➼♥❤ ✤↕♦ ❤➔♠ ❝õ❛ ❤➔♠ ♠ö❝ t✐➯✉ ❚ø ✭✷✳✾✮ ❝❤ó♥❣ t❛ ❝â t❤➸ ❝❤➾ r❛ r➡♥❣ ❣✐→ trà ❤➔♠ ♠ư❝ t✐➯✉ tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✼✮✲✭✷✳✽✮ ữủ t i (à, x) = (hi Ti x)λi (µ, x) − µln(detΛi (µ, x)) − rµ + µ ln(rµ) (2.11) ❇➙② ❣✐í✱ ❝❤ó♥❣ t❛ t➼♥❤ ∇η(µ, x) ✈➔ ∇2 η(µ, x)✳ ▲➜② ✤↕♦ ❤➔♠ ❤❛✐ ✈➳ (2.9)✱ t❛ ✤÷đ❝ WiT ∇λi = 0, ✷✸ Wi ∇yi + ∇si = −Ti , (2.12) (I ⊗ Si )∇λi + (Λi ⊗ I)∇si = ●✐↔✐ ❤➺ tr➯♥✱ t❛ ✤÷đ❝ ∇yi = −Ri−1 WiT Q2i Ti , ∇Λi = Qi Pi Qi Ti , (2.13) ∇Si = −Q−1 i Pi Qi Ti , tr♦♥❣ ✤â Qi := Qi (µ, x) = (Λi ⊗ Si−1 ) , Ri := Ri (µ, x) = WiT Q2i Wi (2.14) Pi := Pi (µ, x) = I − Qi Wi Ri−1 WiT Qi (2.15) ✈➔ ▲➜② ✤↕♦ ❤➔♠ ❤❛✐ ✈➳ (2.11) ✈➔ sû ❞ư♥❣ ✤✐➲✉ ❦✐➺♥ (2.9) ✈➔ (2.13) t❛ ✤÷đ❝ ∇ρi (µ, x) = −TiT λi (µ, x) ❚ø ✤â (2.16) K TiT λi (µ, x) − µAT s−1 , ∇η(µ, x) = c − (2.17) i=1 K TiT ∇λi (µ, x) − µAT (S −1 ⊗ S −1 )A ∇ η(µ, x) = − (2.18) i=1 ❙❛✉ ✤â✱ t❤❛② ∇λi tr♦♥❣ (2.18)✱ t❛ ❝â K TiT Qi Pi Qi Ti − µAT (S −1 ⊗ S −1 )A ∇ η(µ, x) = − (2.19) i=1 ✷✳✷✳✷✳ ❈→❝ t➼♥❤ ❝❤➜t ✷✳✷✳✷✳✶✳ ✣à♥❤ ♥❣❤➽❛ ❈❤♦ Q ⊂ Rn ❧➔ ởt t ỗ rộ số f : Q → R, α > 0✳ ❚❛ ❣å✐ f ❧➔ α ✲ tü ♣❤ị ❤đ♣ tr➯♥ Q ✈ỵ✐ ❣✐→ trà t❤❛♠ sè α ♥➳✉ f ∈ C ❧➔ ởt ỗ tr Q ợ x Q, h ∈ Rn t❤➻ ❜➜t ✤➥♥❣ t❤ù❝ s❛✉ t❤ä❛ ♠➣♥ |∇3 f (x)[h, h, h]| ≤ 2α− (∇2 f (x)[h, h]) ✷✹ ❍➔♠ sè f ✤÷đ❝ ❣å✐ ❧➔ α ✲ tü ♣❤ị ❤đ♣ ♠↕♥❤ tr➯♥ Q ♥➳✉ ♥â ❧➔ α ✲ tü ♣❤ị ❤đ♣ tr➯♥ Q ✈➔ ♥➳✉ ✈ỵ✐ ♠å✐ ❞➣② {xi ∈ Q} ❤ë✐ tư ✤➳♥ ♠ët ✤✐➸♠ ❣✐ỵ✐ ❤↕♥ tr♦♥❣ Q t❤➻ f (xi ) ❞➛♥ ✤➳♥ ✈ỉ ❝ü❝✳ ❇➙② ❣✐í ❝❤ó♥❣ t❛ ❝❤➾ r❛ r➡♥❣ ❤➔♠ ρ(µ, x) ❧➔ ❤➔♠ tü ♣❤ị ❤đ♣ tr➯♥ F ✳ ✷✳✷✳✷✳✷✳ ❇ê ✤➲✳ ❱ỵ✐ ♠é✐ µ > 0✱ ❤➔♠ ρi(µ, ) ❧➔ µ✲tü ♣❤ị ❤ñ♣ ♠↕♥❤ tr➯♥ Fi1 , ∀i = 1, , K ự ợ ộ > 0, d Rn ✈➔ x ∈ {x|ρi(x) = max dTi yi < ∞}✱ t❛ ✤➦t Φi (t) := ∇2 ρi (µ, x + td)[d, d] ú ỵ r i (0) = i (µ, x)[d, d, d] ●✐↔ sû xj ∈ Fi1 ❧➔ ♠ët ❞➣② ❤ë✐ tư ✤➳♥ ♠ët ✤✐➸♠ ❣✐ỵ✐ ❤↕♥ tr♦♥❣ Fi1 ✳ ❑❤✐ ✤â ρi (µ, x) → ∞ ❉♦ ✤â✱ ✤➸ ❝❤ù♥❣ ♠✐♥❤ ❜ê ✤➲ t❛ ❝❤➾ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ ρi (µ, ) ❧➔ ♠ët µ✲tü ♣❤ị ❤đ♣ tr➯♥ Fi1 ợ t số tự ự ♥➳✉ ρi (µ, ) : Fi1 → R ❧➔ ❤➔♠ ỗ tử tr Fi1 ∀x ∈ Fi1 , d ∈ Rn t❤➻ |∇3 ρi (µ, x)[d, d, d]| ≤ √ (∇2 i (à, x)[d, d]) ữ t ❝❤➾ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ |Φi (0)| ≤ √ |Φi (0)| µ ❚❤➟t ✈➟②✱ ❣✐↔ sû (λi , Pi , si , Qi , Ri ) := (λi (µ, x), Pi (µ, x), si (µ, x), Qi (à, x), Ri (à, x)) ỵ ui := Pi Qi Ti d ú ỵ r (0) = uTi ui = −||ui ||2 ✈➔ |Φi (0) | = |2uTi ui | ✷✺ ❈❤ó♥❣ t❛ ❝â ui = [Qi − Qi Wi Ri−1 Wi Q2i ] Ti d = [Qi − Qi Wi Ri−1 Wi Q2i + Qi Wi Ri−1 Wi (Qi Qi + Qi Qi ) × (I − Wi Ri−1 Wi Q2i )]Ti d = [Qi (I − Wi Ri−1 Wi Q2i ) − Qi Wi Ri−1 Wi (Qi Qi + Qi Qi ) × (I − Wi Ri−1 Wi Q2i )]Ti d = [(Qi − Qi Wi Ri−1 Wi (Qi Qi + Qi Qi ))](I − Wi Ri−1 Wi Q2i )Ti d = [(Qi − Qi Wi Ri−1 Wi (Qi Qi + Qi Qi ))]Q−1 i ui ✭✷✳✷✵✮ ✭❝â ✤➥♥❣ t❤ù❝ ❝✉è✐ ❝ò♥❣ ❧➔ ❞♦ (I − Wi Ri−1 Wi Q2i )Ti d = Q−1 i ui ) ú ỵ r uTi Qi Wi = tø ✭✷✳✷✵✮ t❛ t❤➜② |Φi (0) | = |2uTi ui | = |2uTi Qi Q−1 i ui | −1 = |uTi (Qi Q−1 i + Qi Qi )ui |✈➻Qi , Qi ❧➔ ♠❛ tr➟♥ ✤è✐ ①ù♥❣ −1 = |uTi Q−1 i (Qi Qi + Qi Qi )Qi ui | −1 = |uTi Q−1 i (Qi ) Qi ui | ✣➦t ∇λi := ∇λi (µ, x) ✈➔ λi := ✭✷✳✷✶✮ δλi (µ,x+td) |t=0 δt = ∇λi d ❚ø ✭✷✳✶✹✮ ❝❤ó♥❣ t❛ ❝â (Q2i ) = (Λi ⊗ Si−1 ) = µ−1 (Λi ⊗ Λi ) = µ−1 (Λi ⊗ Λi + Λi ⊗ Λi )(❞♦Λi = = µ−1 (Λi ⊗ ♠❛t(∇λid)) ♠❛t(∇λid) + ♠❛t(∇λid) ⊗ Λi) ✭✷✳✷✷✮ ❚ø ✭✷✳✷✶✮ ✈➔ ✭✷✳✷✷✮ t❛ ✤÷đ❝ − 21 |Φi (0)| = |uTi (Λi −1 ⊗ Λi )[(Λi ⊗ ♠❛t(∇λid) ♠❛t(∇λid) ⊗ ⊗ − − − = |uTi [I ⊗ (Λi ♠❛t(∇λi d)Λi ) + (Λi ♠❛t(∇λi d)Λi ) ⊗ I]ui | − − ≤ 2||ui ||22 ||✈❡❝(Λi ♠❛t(∇λi d)Λi )♠❛t(ui )||2 − 12 Λi )](Λi + − 12 2 2 − 21 Λi )ui | ✷✻ − 12 = 2||ui ||22 ||(Λi −1 ⊗ Λi )(∇λi d)||2 −1 = 2µ ||ui ||22 ||Q−1 i ∇λi d||2 −1 √ − 12 µ(Λi −1 ⊗ Λi )) (❞♦ Q−1 i ∇λi d = ui ) = 2µ ||ui ||32 −1 (❞♦ Q−1 i = (✈➻ |Φi (0)| = ||ui ||22 ) = 2µ |Φi (0)| ✭✷✳✷✸✮ ❱➟② ❇ê ✤➲ ✤➣ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❈❤ó♥❣ t❛ ❝â ❤➺ q✉↔ s❛✉ ✤➙②✳ ✷✳✷✳✷✳✸✳ ❍➺ q✉↔✳ ❍➔♠ r➔♥❣ ❜✉ë❝ ρ(µ, x) ❧➔ ♠ët µ✲ tü ♣❤ị ❤đ♣ tr➯♥ F ✈➔ ❤➔♠ ♠ư❝ t✐➯✉ ❣✐❛✐ ✤♦↕♥ ♠ët η(µ, x) := cT x + ρ(x) + µ ln(detS) ❧➔ ♠ët µ✲tü ♣❤ị ❤đ♣ ♠↕♥❤ tr➯♥ F ✳ ❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ❝â K Fi1 ⊂ Fi1 F = ; ∀i = 1, , K i=1 ❚ø ❇ê ✤➲ ✷✳✷✳✷✳✷ t❛ s✉② r❛ ρ(µ, x) ❧➔ ♠ët µ✲ tü ♣❤ị ❤đ♣ tr➯♥ F ỗ tớ t t r ln(detS) ♠ët µ✲ tü ♣❤ị ❤đ♣ tr➯♥ {x|Ax + s = b, s ∈ Kp } ❚ø ❦➳t q✉↔ ρ(µ, x) tü ♣❤ị ❤đ♣ tr➯♥ F ✱ s✉② r❛ ρ(x) = µ✲ tü ♣❤ị ❤đ♣ tr➯♥ F ✭❞♦ F ⊂ F ✮✳ K ρi (µ, x) ❧➔ ♠ët i=1 ▼➦t ❦❤→❝✱ tø ▼➺♥❤ ✤➲ ✷✳✶✳✶✭✐✐✮ tr♦♥❣ ❬✻❪ t❛ s✉② r❛ η(µ, x) ❧➔ µ✲ tü ♣❤ị ❤đ♣ ♠↕♥❤ tr➯♥ F ✷✳✷✳✷✳✹✳ ✣à♥❤ ♥❣❤➽❛✳ ❍å ❝→❝ {(à, ) : > 0} ữủ tü ♣❤ị ❤đ♣ ♠↕♥❤ tr➯♥ F ✈ỵ✐ ❝→❝ ❤➔♠ t❤❛♠ sè α(µ), γ(µ), ν(µ), ξ(µ) ✈➔ σ(µ) ♥➳✉ t❤ä❛ ♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ s❛✉ ✤➙②✿ ✶✮ η(µ, x) ❧➔ ❤➔♠ ❧ã♠ ✈➔ ❧✐➯♥ tư❝ tr➯♥ (µ, x) ∈ R+ × F ✈➔ ❝â ✤↕♦ ❤➔♠ ❝➜♣ ✸ ✤è✐ ợ x tử tr (à, x) R+ ì F (à, x) (à, x) tử ố ợ µ✳ ✸✮ ❱ỵ✐ ♠é✐ µ ∈ R+ ✱ η(µ, x) ❧➔ α(µ)✲ tü ♣❤ị ❤đ♣ ♠↕♥❤ tr➯♥ F ✳ ✷✼ ✹✮ ❍➔♠ t❤❛♠ sè α(µ), γ(µ), ν(µ), ξ(µ) ✈➔ (à) ổ ữợ ữỡ tử t R+ ợ (à, x) ∈ R+ × F ✈➔ h ∈ Rn ✱ t❤➻ 1 |{∇η(µ, x)h} − {ln ν(µ)} {∇η(µ, x)h}| ≤ ξ(µ)α(µ) (−hT ∇2 η(µ, x)h) ✻✮ ợ (à, x) R+ ì F h ∈ Rn ✱ t❤➻ |{hT ∇2 η(µ, x)h} − {ln γ(µ)} hT ∇2 η(µ, x)h| ≤ −2σ(µ)hT ∇2 η(µ, x)h ✣➸ t✐➳♣ tư❝ ♥❣❤✐➯♥ ❝ù✉ t➼♥❤ tü ♣❤ị ❤đ♣ ❝õ❛ ❝→❝ ❤➔♠✱ t❛ t➼♥❤ ✤↕♦ ❤➔♠ ❝õ❛ (yi (µ, x), λi (µ, x), si (µ, x)) ▲➜② ✤↕♦ ❤➔♠ (2.9) t t ữủ WiT i = 0, Wi yi + si = 0, (I ⊗ Si )λi + (Λ ⊗ I)si = (2.24) ✈❡❝(I) ●✐↔✐ ❤➺ (2.24)✱ ❝❤♦ t❛ yi = −Ri−1 WiT s−1 i , (I), λi = √ Qi Pi µ ✈❡❝ (2.25) si = Wi Ri−1 WiT s−1 i ✷✳✷✳✷✳✺✳ ❇ê ✤➲✳ ❈❤♦ µ > 0, x ∈ F ✈➔ h ∈ Rn✳ ❑❤✐ ✤â |{∇η(µ, x)T h}| ≤ [ −(p + Kr) T h ∇ η(µ, x)T h] µ ❈❤ù♥❣ ♠✐♥❤✳ ▲➜② ✤↕♦ ❤➔♠ ❤❛✐ (2.17) t (2.25) t ữủ K TiT λi (µ, x) − µAT s−1 } {∇η(µ, x)} = {c − i=1 K TiT λi (µ, x) − AT s−1 =− i=1 ✷✽ = −√ µ = −√ µ K TiT Qi Pi ✈❡❝(I) − AT s−1 TiT Qi Pi ✈❡❝(I) − AT (S − i=1 K ✈❡❝(I) ⊗ S− ) i=1 1 ✣➦t B := [ √1µ T1T Q1 P1 , , √1µ TKT QK PK , AT (S − ⊗ S − )] ✈➔ ✈❡❝(Ir ), , ✈❡❝(Ir ), ✈❡❝(Ip)] z := [ ❧➔ ✈❡❝tì ❝â ✤ë ❞➔✐ ❧➔ (p2 + Kr2 )✳ ❑❤✐ ✤â {∇η(µ, x)} = −Bz ✳ ▼➦t ❦❤→❝ BB = µ K TiT Qi Pi Qi Ti + AT (S −1 ⊗ S −1 )A T i=1 = − ∇2 η(µ, x) µ ❞♦ ((2.19)) ❉♦ ✤â T T z B [BB T ]−1 Bz µ 1 ≤ z T z = (p + Kr) µ µ −{∇η(µ, x)T } [∇2 η(µ, x)]−1 {∇η(µ, x)} = ✭✷✳✷✻✮ ❇➙② ❣✐í sû ❞ư♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❝❤✉➞♥ ✈➔ ✭✷✳✷✻✮ t❛ ❝â |{∇η(µ, x)T h} | ≤ [−{∇η(µ, x)T } [2 (à, x)]1 {(à, x)} ] ì [hT ∇2 η(µ, x)h] −(p + Kr) T 2 ≤ h ∇ η(µ, x)h µ ❇ê ✤➲ ữủ ự > 0, x ∈ F ✈➔ h ∈ Rn✳ ❑❤✐ ✤â √ T |{h ∇ η(µ, x)h} | ≤ − r T h ∇ η(µ, x)h µ ✷✾ ❈❤ù♥❣ ♠✐♥❤✳ ❈❤ó♥❣ t❛ ❝è ✤à♥❤ h ∈ Rn ✈➔ ✤➦t (λi , Pi , si , Qi , Ri ) := (λi (µ, x), Pi (µ, x), si (µ, x), Qi (µ, x), Ri (µ, x)) ❚❛ ❝â K T TiT Qi Pi Qi Ti − µhT AT (S −1 ⊗ S −1 )A]h T h ∇ η(µ, x)h = h [− i=1 K uTi ui − µhT AT (S −1 ⊗ S −1 )Ah =− i=1 ❚ø ❝❤ù♥❣ ♠✐♥❤ ❝õ❛ ❜ê ✤➲ ✷✳✷✳✷✳✷ ✭①❡♠ (2.21)✮✱ t❛ s✉② r❛ {hT ∇2 η(µ,x)h} K uTi ui ) − hT AT (S −1 ⊗ S −1 )Ah = (− i=1 K −1 T T −1 uTi Q−1 ⊗ S −1 )Ah i (Qi ) Qi ui − h A (S =− ✭✷✳✷✼✮ i=1 ▼➦t ❦❤→❝✱ ❞♦ Si Λi = µI ✈➔ tø (2.25) ♥➯♥ −1 uTi Q−1 i (Qi ) Qi ui −1 − 21 = uTi (I ⊗ Λi Λi Λi −1 − 12 − Si Si Si −1 − 21 = µ−1 uTi (I ⊗ I − µ(Si Si Si ≤ ≤ = = ≤ ⊗ I)ui −1 −1 ⊗ I + I ⊗ Si Si Si )ui ♠❛t ||ui ||2 −1 −1 (ui )||2 ||(I − 2µSi Si Si ) µ ||ui ||22 − 21 − 12 || (I) − 2µ(Si ⊗ Si )si ||2 µ ||ui ||22 −1 −1 || (I) − 2µ(Si ⊗ Si )Wi Ri−1 WiT s−1 i ||2 µ ||ui ||22 ||(I − 2Pi ) (I)||2 µ √ r ||ui ||22 ✭✷✳✷✽✮ µ ✈❡❝ ✈❡❝ ✈❡❝ ✸✵ ✭❞♦ ||(I − 2Pi )||2 ≤ 1) ❚ø (2.27) ✈➔ (2.28)✱ ✈ỵ✐ ♠é✐ h ∈ Rn t ữủ |{hT (à, x)h} | K r ≤ uT ui + hT AT (S −1 ⊗ S −1 )Ah µ i=1 i √ K r [ uTi ui + µhT AT (S −1 ⊗ S −1 )Ah] ≤ µ i=1 √ r = − hT ∇2 η(µ, x)h µ ❇ê ✤➲ ❝❤ù♥❣ ♠✐♥❤ ①♦♥❣✳ ❚ø ❝→❝ ❇ê ✤➲ ✷✳✷✳✷✳✺ ✈➔ ✷✳✷✳✷✳✻ t❛ ❝â t➼♥❤ ❝❤➜t s❛✉ ❧➔ ❝ì sð ✤➸ ①➙② ❞ü♥❣ t❤✉➟t t♦→♥ ✤➸ ❣✐↔✐ t ỵ η : R++ ×√F → R ❧➔ ❤å tü √♣❤ị ủ ợ t số (à) = à, (à) = (à) = 1, ξ(µ) = p+Kr ✈➔ σ(µ) = 2µr ự ự ỵ t ❝➛♥ t❤û ❧↕✐ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝õ❛ ✤à♥❤ ♥❣❤➽❛ ✷✳✷✳✷✳✹✳ ❘ã r➔♥❣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✶✮✱ ✷✮ ✹✮ ✤➲✉ ✤÷đ❝ t❤ä❛ ♠➣♥✱ ✤✐➲✉ ❦✐➺♥ ✸✮ ✤÷đ❝ s✉② r❛ tø ❍➺ q✉↔✳ ❈→❝ ✤✐➲✉ ❦✐➺♥ ✺✮ ✈➔ ✻✮ ✤÷đ❝ t❤ä❛ ♠➣♥ ♥❤í ❝→❝ ❇ê ✤➲ ✷✳✷✳✷✳✺ ✈➔ ✷✳✷✳✷✳✻✳ ❚ø ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✺✮✲✭✷✳✼✮✱ ♥❣÷í✐ t❛ ✤➣ ①➙② ❞ü♥❣ t❤✉➟t t♦→♥ ✤➸ ❣✐↔✐ ♥â✱ t❤✉➟t t♦→♥ ♥➔② ❞ü❛ tr➯♥ sð sü ♣❤➙♥ r➣ ❝õ❛ ❇❡♥❞❡r✳ ♣❤÷ì♥❣ ♣❤→♣ ✤✐➸♠ tr♦♥❣ tr➯♥ ❝ì ✷✳✸✳ ❚❤✉➟t t♦→♥ ❣✐↔✐ ✷✳✸✳✶✳ ❚❤✉➟t t♦→♥ ●✐↔ sû t❛ ❝â t❤➸ t➻♠ ✤÷đ❝ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❝õ❛ ✤✐➲✉ ❦✐➺♥ (2.12) ✭tr♦♥❣ t❤ü❝ ❤➔♥❤✱ ♥❣÷í✐ t❛ t➻♠ ♥❣❤✐➺♠ ỹ t ữợ t ✣è✐ ✈ỵ✐ ❜➔✐ t♦→♥ ❣✐❛✐ ✤♦↕♥ ✶ (2.8)✱ t❛ ❝❤♦ ∇η(µ, x(µ)) = (2.29) ✸✶ ❚↕✐ ♠ët ✤✐➸♠ ❝❤♦ x t ữợ t t t x = (à, x)−2 ∇η(µ, x) (2.30) ❈❤♦ β > 0, γ ∈ (0, 1) ✈➔ θ > 0✳ ❱ỵ✐ ✤ë ❝❤➼♥❤ ①→❝ ♠♦♥❣ ♠✉è♥ ε ✤÷đ❝ ❣å✐ ❧➔ t✐➯✉ ❝❤✉➞♥ ❞ø♥❣✱ t❛ ❣✐↔ sû x0 ∈ F ❚ø ✤â t❛ ❝â tt t ữ s t t t ữợ x = x0 , µ = µ0 ✶✳✶✳ ❚ø (2.9) t t ữủ (yi (à, x), si , i (à, x)); ∀i = 1, , K ✳ ✶✳✷✳ ❚➼♥❤ t❤❡♦ ữợ t t (à, x) = x tứ (2.30) − µ1 xT ∇2 η(µ, x) x✳ ✰ ◆➳✉ δ t s ữợ ổ ❝❤✉②➸♥ s❛♥❣ ✶✳✹✳ ✶✳✹✳ ✣➦t x = x + θ x tr ữợ ≤ ε t❤➻ ❞ø♥❣ ❧↕✐✳ ✰ ◆➳✉ ❦❤ỉ♥❣✱ ✤➦t µ := γµ ✈➔ trð ❧↕✐ ✶✳✶✳ ◆❤➟♥ ①➨t ✿ ❈ù s ộ ữợ k t xk ✈➔ δ(µk , xk ) ≤ β ❙❛✉ ♠é✐ ❧➛♥ t t := ữợ tự ❣✐↔♠ µk ①✉è♥❣ µk+1 = γµk t❤➻ δ(µk+1 , xk ) ữ ự s ộ ữợ ◆❡✇t♦♥ ✈ỵ✐ θ = t❤➻ t❛ ❝â ♠ët ✤✐➸♠ ợ xk+1 ợ (àk+1 , xk+1 ) ✤➲ ✤÷đ❝ ✤➦t r❛ ❧➔ t❤✉➟t t♦→♥ ♥➔② ❝â ❤ë✐ tư ❤❛② ❦❤ỉ♥❣❄ ✣✐➲✉ ✤â ✤÷đ❝ tr➻♥❤ ❜➔② ð ♠ư❝ s❛✉ ✤➙②✳ ✸✷ ✷✳✸✳✷✳ ❙ü ❤ë✐ tö ❝õ❛ t❤✉➟t t♦→♥ rữợ t sỹ tử tt t t ỵ tợ t q s ✤➲✳ ❈❤♦ µ > 0, x ∈ F ✈➔ − δ := x✳ ❚❛ ✤➦t xT ∇2 η(µ, x) x µ ✈➔ ❝❤♦ δ < 1, τ ∈ [0, 1], ✈ỵ✐ ♠é✐ h, h1, h2 ∈ Rn✱ t❛ ❝â (i) − (1 − τ δ)2 hT ∇2 η(µ, x)h ≤ −hT ∇2 η(µ, x + τ x)h ≤ −(1 − τ δ)−2 hT ∇2 η(µ, x)h (ii) |hT1 [∇2 η(µ, x + τ x) − ∇2 η(µ, x)]h2 | ≤ [(1 − τ δ)−2 − 1] −hT1 ∇2 η(µ, x)h1 −hT2 ∇2 η(µ, x)h2 ✷✳✸✳✷✳✷✳ ❇ê ✤➲✳ ❈❤♦ µ > ✈➔ x ∈ F 0✳ ●✐↔ sû x ✤÷đ❝ t➼♥❤ t❤❡♦ ❝ỉ♥❣ t❤ù❝ (2.30) ✈➔ ✤➦t (à, x) = ữợ t xT η(µ, x) x µ ❑❤✐ ✤â✱ ❝→❝ ❤➺ t❤ù❝ s❛✉ ✤÷đ❝ t❤ä❛ ♠➣♥ √ ✭✐✮ ◆➳✉ δ < − t❤➻ δ(µ, x + ✭✐✐✮ ◆➳✉ δ ≥ − √ x) ≤ ( δ δ ) ≤ 1−δ t❤➻ η(µ, x) − η(µ, x + θ x) ≥ µ[δ − ln(1 + δ)], tr♦♥❣ ✤â θ = (1 + δ)−1 ✷✳✸✳✷✳✸✳ ▼➺♥❤ ✤➲✳ ✣➦t ●✐↔ sû δ(µ, x) < κ ✈➔ ϕκ (η; µ, µ+ ) := ( 1+r + µ+ := γµ s❛♦ ❝❤♦ ϕκ (η; µ, µ+ ) ≤ − ❑❤✐ ✤â √ p+Kr ) ln γ −1 κ ợ > (à, x) (à+ , x) < κ✳ σ , σ ≤ 0, ✈➔ β = 2−2 ✳ ✷✳✸✳✷✳✹✳ ❇ê ✤➲✳ ❈❤♦ µ+ = ợ = p+Kr õ ♥➳✉ δ(µ, x) ≤ β √ t❤➻ δ(µ+ , x) ≤ 2β ✸✸ ❇➙② ❣✐í✱ t❛ ✤➦t φ(µk , xk−1 ) := η(µk , x(µk )) − η(µk , xk−1 ) (2.31) ❈❤ó♥❣ t❛ ✤✐ ✤➳♥ ❝→❝ ❦➳t q✉↔ s❛✉✿ ✷✳✸✳✷✳✺✳ ❇ê ✤➲✳ ❈❤♦ µ > ✈➔ x ∈ F 0✳ ✣➦t δ(µ, x) = − x := x − x(µ) ✈➔ xT ∇2 η(µ, x) x µ ❑❤✐ ✤â✱ ♥➳✉ δ < t❤➻ (i) φ(µ, x) ≤ µ[ δ µ+ = γµ✳ (2.32) p + Kr ln(1 − δ) (2.33) 1−δ (ii) |φ (µ, x)| ≤ − ✷✳✸✳✷✳✻✳ ❇ê ✤➲✳ ❈❤♦ + ln(1 − δ)], µ > 0, x ∈ F , δ < ❑❤✐ ✤â ❱ỵ✐ γ ∈ (0, 1)✱ t❛ ✤➦t η(µ+ , x(µ+ )) − η(µ+ , x) ≤ O(p + Kr)µ+ ❈✉è✐ ❝ị♥❣✱ ❝❤ó♥❣ t❛ ❝â t❤➸ ✤→♥❤ ❣✐→ δ ❞ü❛ ✈➔♦ δ tr♦♥❣ ❇ê ✤➲ s❛✉ ✤➙②✿ ✷✳✸✳✷✳✼✳ ❇ê ✤➲✳ ❈❤♦ µ > 0, x ∈ F ✈➔ Γ ∈ Sp✳ ●✐↔ sû ( x, S, ) ữợ t ữủ ổ tự ✈➔ x := x − x(µ) ✣➦t δ(µ, x) := − µ1 xT H x ✈➔ δ(µ, x) := − µ1 xT H x, ✈ỵ✐ H := ∇2 η(µ, x) ❑❤✐ ✤â✱ ♥➳✉ δ≤ t❤➻ 3δ ≤ δ ≤ 2δ (2.34) ❚ø ❇ê ✤➲ ✷✳✸✳✷✳✷ ✈➔ ❇ê ✤➲ ✷✳✸✳✷✳✹✱ t❛ ❧➔♠ ❣✐↔♠ µ ❜ð✐ ❤➺ sè γ = − √ σ/ p + Kr✱ ✈ỵ✐ σ < 0, t ộ ữợ ữ ự s ộ ữợ t ữỡ t ữủ õ ỵ s tr ❝➙✉ ❤ä✐ ✈➲ sü ❤ë✐ tö ❝õ❛ t❤✉➟t t♦→♥ ✤➣ ỵ sỷà0 t số ❜❛♥ ✤➛✉ ✈➔ ❝❤♦ ε > ❧➔ t✐➯✉ ❝❤✉➞♥ ❞ø♥❣✱ β = (2 − 3)/2✳ ◆➳✉ ✤✐➸♠ ①✉➜t ♣❤→t ❜❛♥ ✤➛✉ x0 t❤ä❛ ♠➣♥ δ(µ0, x0) ≤ β t❤➻ số ữợ tt t s t tú sợ t ❧➔ √ O( p + Kr ln µ0 /ε)✳ ✸✹ ❈✉è✐ ❝ò♥❣✱ tø ❇ê ✤➲ 2.3.2.2(ii)✱ ❇ê ✤➲ ✷✳✸✳✷✳✻ ✈➔ t s r ỵ s ỵ sỷ à0 t số ❜❛♥ ✤➛✉ ✈➔ ❝❤♦ ε > ❧➔ t✐➯✉ ❝❤✉➞♥ ❞ø♥❣✱ β = 1/6✳ ◆➳✉ ✤✐➸♠ ①✉➜t ♣❤→t ❜❛♥ ✤➛✉ x0 t❤ä❛ ♠➣♥ δ(µ0, x0) ≤ √ β t❤➻ sè ữợ tt t s t tú t O( p + Kr ln à0 /) ỵ ỵ t ữỡ tr t ữợ tửt s t t❤✉➟t t♦→♥ ❤ë✐ tö✳ ✸✺ ❑➳t ❧✉➟♥ ■✮ ◆❤ú♥❣ ✤â♥❣ ❣â♣ ❝õ❛ ❧✉➟♥ ✈➠♥ ❑➳t q✉↔ ❝õ❛ ▲✉➟♥ ✈➠♥ ❜❛♦ ỗ tố ữủ ỳ tự ỡ ỵ tt st t t ỵ tt q ởt số ỵ t ỗ t ố q ♥❤✐➯♥✮ ❝â ❧✐➯♥ q✉❛♥ ✈ỵ✐ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ✤➲ t➔✐✳ ✷✳ ●✐ỵ✐ t❤✐➺✉ ❝❤✐ t✐➳t ♠ỉ ❤➻♥❤ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ t✉②➳♥ t➼♥❤ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ✈➔ ❝→❝ ✈➜♥ ✤➲ ❧✐➯♥ q✉❛♥✳ ✸✳ ●✐ỵ✐ t❤✐➺✉ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ ♥❣➝✉ ♥❤✐➯♥ ❤❛✐ ❣✐❛✐ ✤♦↕♥ ♥û❛ ①→❝ ✤à♥❤ ð ❞↕♥❣ tê♥❣ q✉→t✱ tø ✤â ①❡♠ ①➨t ♠ët ❜➔✐ t♦→♥ ❝ö t❤➸ ✭❜➔✐ t♦→♥ ✭✷✳✺✮✲✭✷✳✼✮✮✱ tr➻♥❤ ❜➔② ❝→❝ t➼♥❤ t q ỵ ✹✳ ✣÷❛ r❛ ✤÷đ❝ ♠ët t❤✉➟t t♦→♥ ❦❤→ t✐♥ ❝➟② ✭t❤✉➟t t♦→♥ ✷✳✸✳✶✮ ✤➸ ❣✐↔✐ ❜➔✐ t♦→♥ ✈➔ ❝❤ù♥❣ ♠✐♥❤ sü ❤ë✐ tö ❝õ❛ t❤✉➟t t♦→♥ ✤â✳ ✣➦❝ ❜✐➺t✱ t❤✉➟t t t tr ữỡ tr ợ ❤➔♠ ❝❤➢♥ ♣❤ị ❤đ♣✱ ❞ü❛ tr➯♥ ♣❤÷ì♥❣ ♣❤→♣ ♣❤➙♥ r➣ r ữợ t tr r q tr ❝ù✉ ✈➔ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✱ tæ✐ t❤➜② ❜➔✐ t♦→♥ ✤➦t r❛ ✈➝♥ ❝á♥ ✤❛♥❣ ð ❞↕♥❣ ♠ỉ ❤➻♥❤✱ ❝❤÷❛ õ ỵ tỹ t r tớ tợ ❝â ✤✐➲✉ ❦✐➺♥ tæ✐ s➩ ♥❣❤✐➯♥ ❝ù✉ ❜➔✐ t♦→♥ ð ❞↕♥❣ ❝ư t❤➸ ❤ì♥ ♥ú❛✳ ✸✻ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪✳ ◆❣✉②➵♥ ❱➠♥ ◗✉↔♥❣ ✭✷✵✵✼✮✱ ●✐→♦ tr➻♥❤ ①→❝ s✉➜t✱ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ❬✷❪✳ ❚r➛♥ ❳✉➙♥ ❙✐♥❤ ✭✷✵✵✹✮✱ ❈→❝ ♣❤÷ì♥❣ ♣❤→♣ ♥❣➝✉ ♥❤✐➯♥ ❣✐↔✐ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤✱ ●✐→♦ tr➻♥❤ ❙❛✉ ✤↕✐ ❤å❝✱ ✣↕✐ ❤å❝ ❱✐♥❤✳ ❬✸❪✳ ❚r➛♥ ❳✉➙♥ ❙✐♥❤ ✭✷✵✵✸✮✱ ◗✉② ❤♦↕❝❤ t✉②➳♥ t➼♥❤✱ ◆❳❇ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✱ ❍➔ ◆ë✐✳ ❬✹❪✳ ◆❣✉②➵♥ ❉✉② ❚✐➳♥ ✲ ụ t ỵ tt st ❞ö❝✱ ❍➔ ◆ë✐✳ ❚✇♦✲❙t❛❣❡ ❙t♦❝❤❛st✐❝ ❙❡♠✐❞❡❢✲ ✐♥✐t❡ Pr♦❣r❛♠♠✐♥❣ ❛♥❞ ❉❡❝♦♠♣♦s✐t✐♦♥ ❇❛s❡❞ ■♥t❡r✐♦r P♦✐♥t ▼❡t❤♦s✿ ❚❤❡✲ ♦r②✱ ❤tt♣✴✴✇✇✇✳ ❙♣❡♣s✳✐♥❢♦✴✳ ❬✻❪✳ ❏✳❊✳ ◆❡st❡r♦✈ ❛♥❞ ❆✳ ❙✳ ◆❡♠✐r♦✈s❦② ✭✶✾✾✹✮✱ ■♥t❡r✐♦r P♦✐♥t P♦❧②♥♦✲ ♠✐❛❧ ❆❧❣♦r✐t❤♠s ✐♥ ❈♦✈❡① Pr♦❣r❛♠♠✐♥❣✱ ❙t✉❞✐❡s ✐♥ ❆♣♣❧✐❡❞ ▼❛t❤❡♠❛t✐❝s✱ ☎ ❬✺❪✳ ❙✳ ▼❡❤r♦tr❛ ❛♥❞ ▼✳ ●✳ ❖③❡✈✐♥ ✭✷✵✵✹✮✱ ❙■❆▼✳

Ngày đăng: 03/10/2021, 12:17

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan