1. Trang chủ
  2. » Cao đẳng - Đại học

Toan TS 10 TP HCM NH 2011 2012

2 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 22,8 KB

Nội dung

a Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.. Suy ra APH là tam giác cân c Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn O K khác A.[r]

(1)SỞ GIÁO DỤC VÀ ĐÀO TẠOKỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2011 – 2012 MÔN: TOÁN Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) 3x  x  0  x  y 3  b) 5 x  y  c) x  x  36 0 d) 3x  x   0 Bài 2: (1,5 điểm) a) Vẽ đồ thị (P) hàm số y  x và đường thẳng (D): y  x  trên cùng hệ trục toạ độ b) Tìm toạ độ các giao điểm (P) và (D) câu trên phép tính Bài 3: (1,5 điểm) Thu gọn các biểu thức sau: A B 3 4  1 5 x x  x  28  x x  x x 8  x 1  x ( x 0, x 16) Bài 4: (1,5 điểm) 2 Cho phương trình x  2mx  4m  0 (x là ẩn số) a) Chứng minh phương trình luôn luôn có nghiệm với m b) Gọi x1, x2 là các nghiệm phương trình 2 Tìm m để biểu thức A = x1  x2  x1 x2 đạt giá trị nhỏ Bài 5: (3,5 điểm) Cho đường tròn (O) có tâm O, đường kính BC Lấy điểm A trên đường tròn (O) cho AB > AC Từ A, vẽ AH vuông góc với BC (H thuộc BC) Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC) a) Chứng minh AEHF là hình chữ nhật và OA vuông góc với EF b) Đường thẳng EF cắt đường tròn (O) P và Q (E nằm P và F) Chứng minh AP2 = AE.AB Suy APH là tam giác cân c) Gọi D là giao điểm PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A) Chứng minh AEFK là tứ giác nội tiếp d) Gọi I là giao điểm KF và BC Chứng minh IH2 = IC.ID (2) (3)

Ngày đăng: 10/09/2021, 02:45

w