1. Trang chủ
  2. » Giáo án - Bài giảng

NW260 đề 03 ôn THI GIỮA HK2 TOÁN 11 LAM THEO CAU TRUC CUA BO 2020 2021 GV

19 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 1,21 MB

Nội dung

NHĨM WORD  BIÊN SOẠN TỐN TRƯỜNG  THPT XXXXXXXXX Mà ĐỀ: 003 ĐỀ THI THỬ:2020-2021 ĐỀ ÔN THI GIỮA HỌC KỲ MÔN TOÁN 11 NĂM HỌC 2020 - 2021 Thời gian: 90 phút I PHẦN TRẮC NGHIỆM (GỒM 35 CÂU TỪ CÂU ĐẾN CÂU 35) lim 2n  Câu Tính Câu A B Phát biểu sau sai? A lim C  C ( C số) lim  n C Câu Tính lim Câu Câu Câu Tính A Câu Câu n  q  1 B lim q  lim k   k  1 n D B C D B C � D � C D 5n  3n  2x 1 Tính giới hạn x �2 x  A 1 B lim lim �f  x   g  x  � lim f  x   1; lim g  x   2 � x �1 Cho x �1 Tính x ��� A 1 B C Tính A D 3 x2  5x  4x 1  lim Câu D 2n  n2 A lim C x �2 B lim Cho biết x�3 A 2021  C  x 1  a a  x 3 b ( b phân số tối giản) Tính B 2023 C 2024 D a  b  2018 D 2022 �4 x  3x  � lim �  ax  b � x �� � x2 � Khi a  b hai số thực a b thỏa mãn A 4 B C D 7 lim  x �� Câu 10 Biết A P  32  x  ax   bx  1 Tính giá biểu thức P  a  2b B P  C P  16 D P  TÀI LIỆU ÔN THi THPT QUỐC GIA Trang ĐỀ THI THỬ:2020-2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT x x  gián đoạn điểm x0 sau đây? Câu 11 Hàm số x  2018 x 1 x 0 A B C �x  x �2 � f ( x )  �x  � m x  2 liên tục x  2 � Câu 12 Tìm m để hàm số A m  4 B m  C m  y f ( x)  D x0  1 D m  x  1 x( x  1) liên tục điểm x  Câu 13 Chọn giá trị f (0) để hàm số A B C � x  2a x  f  x   �2 �x  x  x �0 liên tục x  Câu 14 Tìm a để hàm số 1 A B C Câu 15 Tìm khẳng định khẳng định sau: D D x 1 x  liên tục với x �1  II  f  x   sin x liên tục � x f x    III   x liên tục x   I  f  x   I   II  C Chỉ  I   III  D Chỉ  II   III  B Chỉ f  x   x –1000 x  0, 01 f  x  Câu 16 Cho hàm số Phương trình có nghiệm thuộc khoảng khoảng sau đây?  1;0   0;1  1;  I II III A Chỉ I B Chỉ I II C Chỉ II D Chỉ III Câu 17 Trong không gian cho điểm O bốn điểm A , B , C , D không thẳng hàng Điều kiện cần A B , C , D tạo thành hình bình hành đủ để uuu r ,uuu r uuur uuur r uuu r uuur uuu r uuur A OA  OB  OC  OD  B OA  OC  OB  OD uuu r uuu r uuur uuur uuu r uuur uuu r uuur OA  OB  OC  OD OA  OC  OB  OD 2 2 C D r r r r r r u r r r r r r r a , b , c x  a  b ; y  a  b  c; z   b  2c Câu 18 Cho ba vectơ không đồng phẳng Xét vectơ Chọn khẳng định đúng? r u r r r r x ; y ; z A Ba vectơ đồng phẳng B Hai vectơ x; a phương r r r u r r C Hai vectơ x; b phương D Ba vectơ x; y; z đôi phương � � Câu 19 Cho hình chóp S ABC có AB  AC SAC  SAB Tính số đo góc hai đường thẳng chéo SA BC A 30� B 45� C 60� D 90� A Chỉ Trang  I TÀI LIỆU ÔN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN AC  ĐỀ THI THỬ:2020-2021 �  DAB �  60� AD, CAB , CD  AD Gọi  góc AB Câu 20 Cho tứ diện ABCD có CD Chọn khẳng định cos   A B   60� cos   C   30� D � � �  90� , CAD Câu 21 Cho tứ diện ABCD có AB  AC  AD, BAC  BAD  60� Gọi I J uuu r uu r trung điểm AB CD Hãy xác định góc cặp véc tơ AB, IJ ? A 120� B 90� C 60� D 45� Câu 22 Cho hình chóp S ABC có đáy ABC tam giác vuông B , cạnh bên SA vng góc với đáy Gọi H chân đường cao kẻ từ A tam giác SAB Khẳng định sai? A SA  BC B AH  BC C AH  SC D AH  AC Câu 23 Cho tứ diện ABCD Gọi H trực tâm tam giác BCD AH vng góc với mặt phẳng đáy Khẳng định đúng? A CD  BD B AC  BD C AB  CD D AB  CD SA   ABC  Câu 24 Cho hình chóp S ABC , biết Khẳng định sau sai? A SA  AB B SA  AC C SA  BC D SA  SB Câu 25 Cho hình chóp S ABC , biết SA, SB, SC đơi vng góc Khẳng định sau đúng? AB   SAC  SA   SBC  SB   ABC  AC   SAB  A B C D Câu 26 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật tâm O có SA  SC , SB  SD Đường Câu 27 Câu 28 Câu 29 Câu 30 thẳng SO vuông góc với mặt phẳng sau đây?  ABCD   SAB   SAC   SCD  A B C D SA   ABC  Cho hình chóp S ABC , biết tam giác ABC vuông A Khẳng định sau đúng? AB   SAB  AB   SAC  BC   SAC  BC   SAB  A B C D SA   ABCD   ABC  Cho hình chóp S ABCD có Góc SB với � � � � A SAB B SBA C SBC D SCD  ABCD  Cho lăng trụ đứng ABCD A ' B ' C ' D ' Góc C ' A với � � � � A C ' AB B C ' AD C C ' AC D C ' CA Cho hình chóp S ABC có đáy ABC tam giác vng có cạnh huyền BC  a Hình chiếu vng góc S lên mặt phẳng ( ABC ) trùng với trung điểm H BC Biết SB  a Số đo góc SA ( ABC ) 0 0 A 30 B 45 C 60 D 75 Câu 31 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a Tam giác SAB SC  a Hình chiếu vng góc S lên mặt phẳng ( ABC ) trùng với trung điểm H AB Cosin góc SC ( SHD ) A B TÀI LIỆU ÔN THi THPT QUỐC GIA C D Trang ĐỀ THI THỬ:2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT Câu 32 Mệnh đề sau đúng? A Hai mặt phẳng vng góc với đường thẳng nằm mặt phẳng vng góc với mặt phẳng B Hai mặt phẳng phân biệt vng góc với mặt phẳng vng góc với C Hai mặt phẳng phân biệt vng góc với mặt phẳng song song với D Hai mặt phẳng vng góc với đường thẳng nằm mặt phẳng vng góc với giao tuyến hai mặt phẳng vng góc với mặt phẳng Câu 33 Cho hình chóp S ABC có đáy ABC tam giác vng cân B , SA vng góc với đáy Gọi M trung điểm AC Khẳng định sau sai?  SBM    SAC  C  SAB    SBC  D  SAB    SAC  A BM  AC B Câu 34 Cho hình chóp S.ABCD có đáy ABCD hình vng tâm I, cạnh bên SA vng góc với đáy Khẳng định sau sai? A ( SCD)  ( SAD) B ( SDC )  ( SAI ) C ( SBC )  ( SAB) D ( SBD)  ( SAC ) Câu 35 Cho hình chóp S.ABC có đáy ABC tam giác vng A, cạnh bên SA vng góc với đáy Khẳng định sau đúng? A ( SBC )  ( SAB) B ( SAC )  ( SAB) C ( SAC )  ( SBC ) D ( ABC )  ( SBC ) II PHẦN TỰ LUẬN (GỒM 03 CÂU TỪ CÂU ĐẾN CÂU 3) � x -5 x5 � f  x   � x -1 - �  x - 5  x �5 Xét tính liên tục hàm số x0  � Câu Cho hàm số lim Câu Câu Tính giới hạn sau: x � � x2  2x   x  4x2   x  a, SA   ABCD  , SA  3a Cho hình chóp S.ABCD có đáy hình vng cạnh Gọi M,N trung điểm CD,BC a) Chứng minh rằng:  SAM    SDN   SBD  b) Tính sin góc đường thẳng SC mặt phẳng Trang TÀI LIỆU ƠN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TOÁN ĐỀ THI THỬ:2020-2021 ĐÁP ÁN ĐỀ 03 I PHẦN TRẮC NGHIỆM (GỒM 35 CÂU TỪ CÂU ĐẾN CÂU 35) 1.A 11.D 21.B 31.C 2.B 12.A 22.C 32.D 3.A 13.A 23.D 33.D 4.C 14.A 24.D 34.B 5.D 15.D 25.B 35.B 6.A 16.B 26.A 7.C 17.B 27.B 8.A 18.A 28.B 9.D 19.D 29.C 10.C 20.D 30.C II PHẦN TỰ LUẬN (GỒM 03 CÂU TỪ CÂU ĐẾN CÂU 3) lim f  x   lim f  x   f   x �5 Câu HD: x �5 lim Câu Câu x �� ĐS: Hình vẽ: x2  2x   4x  4x2   x   a) HD: Chứng minh rằng: SA  DN AM  DN   209 � � � � sin CSH  � SC ;  SBD     SC ; SH   CSH 209 b) HD:  TÀI LIỆU ÔN THi THPT QUỐC GIA Trang ĐỀ THI THỬ:2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT LỜI GIẢI CHI TIẾT ĐỀ 03 I PHẦN TRẮC NGHIỆM (GỒM 35 CÂU TỪ CÂU ĐẾN CÂU 35) lim 2n  Câu Tính B A C Lời giải D Chọn A Câu 1 lim  lim n  0 20 2n  2 n Ta có Phát biểu sau sai? A lim C  C ( C số) lim  n C n  q  1 B lim q  lim k   k  1 n D Lời giải Chọn B Câu n  q  1 Theo định nghĩa giới hạn hữu hạn hàm số lim q  2n  lim n2 Tính B A D C Lời giải Chọn A � 1� n �2  � 2 2n  n � lim n  20  lim  lim �  2.0 n2 � 2� 1 n� 1 � n � n� Ta có Câu lim Tính A 5n  3n  B C � Lời giải D � Chọn C n �1 � 1 � � n 1 �5 � lim n  lim n n 1 �3 � �1 �  �� �� �5 � �5 � Ta có: n n n n n � �1 � � �3 � �1 � * lim �  � ��  lim �3 � �1 �  �� �� � � � � 0, n �� � �5 �� �5 � �5 � � � Vì , �5 � �5 � Trang TÀI LIỆU ÔN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN Vậy Câu 5n   � 3n  lim 2x 1 Tính giới hạn x �2 x  A 1 B lim Chọn D Ta có Câu lim x �2 D x  2.2    x 1 1 x �� Tính A x �2 x �1 x �2 x �1 x2  5x  4x 1   B Chọn C lim D 3 lim � �f  x   g  x  � � lim f  x   lim g  x     2   1 lim Câu C Lời giải lim �f  x   g  x  � lim f  x   1; lim g  x   2 � x �1 Cho x �1 Tính x ��� A 1 B C Lời giải Chọn A Ta có Câu ĐỀ THI THỬ:2020-2021 C Lời giải     x  3 x  x   lim  x    x  3 x    lim x �2  x  2 x �2 4x 1  lim Cho biết x�3 A 2021 x 1  a a  x 3 b ( b phân số tối giản) Tính B 2023 C 2024 D  4x 1   3 a  b  2018 D 2022 Lời giải Chọn A x    lim x �3 lim  x  3 x �3 x 3 x3  1  x    lim x �3 x 1  2  Suy a  1; b  a  b  2018    2018  2021 Câu �4 x  3x  � lim �  ax  b � x �� � x2 � Khi a  b hai số thực a b thỏa mãn A 4 B C D 7 Lời giải Chọn D TÀI LIỆU ÔN THi THPT QUỐC GIA Trang ĐỀ THI THỬ:2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT �4 x  x  � 4a  � 23 � lim �  ax  b � � lim �  a  x  b  11  0 ��  � � x �� x �� 11  b  x2� � x2 � � � �a  �� b  11 � a  b  7 � lim  x �� Câu 10 Biết A P  32  x  ax   bx  1 Tính giá biểu thức P  a  2b B P  C P  16 D P  Lời giải Chọn C TH1: b   � lim  � lim x �� x �� ax   lim  x  ax   x a x  ax   bx   1 �   1 � a  4 x  ax   x  xlim �� a x � �  4 x a  2 x x2  a  �� � � � a �khi b >  lim � x�     b � �  � � � x �� x  ax   bx x x �khi b < � �� � �  � lim x �� TH2: b �2 a  4, b  � P  a  2b3  Vậy x y x  gián đoạn điểm x0 sau đây? Câu 11 Hàm số x  2018 x 1 x 0 x  1 A B C D Lời giải Chọn D x y x  có TXĐ: D  �\  1 nên hàm số gián đoạn điểm x0  1\ Vì hàm số �x  x �2 � f ( x )  �x  � m x  2 liên tục x  2 � Câu 12 Tìm m để hàm số A m  4 B m  C m  Lời giải Chọn A Hàm số liên tục x  2 D m  �x  � lim � � f  2  x �2 �x  �  x  2  x  2  f  2  x2 lim  x    f  2  lim x �2 x �2 m  4 Trang TÀI LIỆU ÔN THU THPT QUỐC GIA NHÓM WORD  BIÊN SOẠN TOÁN Câu 13 Chọn giá trị f (0) để hàm số A B ĐỀ THI THỬ:2020-2021 f ( x)  x  1 x( x  1) liên tục điểm x  C D Lời giải Chọn A lim f ( x)  lim x �0 x �0 Ta có : 2x 1 1 2x  lim 1 x � x( x  1) x( x  1) x     Vậy ta chọn f (0)  � x  2a x  f  x   �2 �x  x  x �0 liên tục x  Câu 14 Tìm a để hàm số 1 A B C Lời giải Chọn A lim f ( x)  lim ( x  x  1)  x �0 Ta có : x�0 lim f ( x )  lim ( x  2a )  2a x �0 D x �0 x0� a Suy hàm số liên tục Câu 15 Tìm khẳng định khẳng định sau: x 1 x  liên tục với x �1  II  f  x   sin x liên tục � x f x     III  x liên tục x   I  f  x  A Chỉ  I B Chỉ  I  II  C Chỉ  I   III  Lời giải D Chỉ  II   III  Chọn D  II  hàm số lượng giác liên tục khoảng tập xác định Ta có �x , x �0 x � �x f  x   � x �x  , x   III  �x Ta có Khi lim f  x   lim f  x   f  1  x �1 x �1 x x liên tục x  Vậy hàm số f  x   x –1000 x  0, 01 f  x  Câu 16 Cho hàm số Phương trình có nghiệm thuộc khoảng khoảng sau đây?  1;0   0;1  1;  I II III y  f  x  TÀI LIỆU ÔN THi THPT QUỐC GIA Trang ĐỀ THI THỬ:2020-2021 A Chỉ I NHÓM WORD  BIÊN SOẠN TOÁN THPT B Chỉ I II C Chỉ II Lời giải D Chỉ III Chọn B TXĐ: D  � f  x   x3  1000 x  0, 01  1; 0 ,  0;1  1; 2 ,  1 Hàm số liên tục � nên liên tục f  1  1000,99 f    0, 01 f  1 f      Ta có ; suy ,  1   suy phương trình f  x   có nghiệm khoảng  1;  Từ f    0, 01 f  1  999,99 f   f  1   3 Ta có ; suy ,  1  3 suy phương trình f  x   có nghiệm khoảng  0;1 Từ f  1  999,99 f    39991,99 f  1 f      Ta có ; suy ,  1   ta chưa thể kết luận nghiệm phương trình f  x   khoảng  1;  Từ Câu 17 Trong không gian cho điểm O bốn điểm A , B , C , D không thẳng hàng Điều kiện cần A B , C , D tạo thành hình bình hành đủ để uuu r ,uuu r uuur uuur r uuu r uuur uuu r uuur A OA  OB  OC  OD  B OA  OC  OB  OD uuu r uuu r uuur uuur uuu r uuur uuu r uuur OA  OB  OC  OD OA  OC  OB  OD 2 2 C D Lời giải Chọn B uuur uuu r uuur Trước hết, điều kiện cần đủ để ABCD hình bình hành BD  BA  BC Với điểm O khác A , B , C , D , ta có: uuur uuu r uuur uuur uuu r uuu r uuu r uuur uuu r BD  BA  BC � OD  OB  OA  OB  OC  OB uuu r uuur uuu r uuur � OA  OC  OB  OD r r r r r r u r r r r r r r a , b , c x  a  b ; y  a  b  c; z   b  2c Câu 18 Cho ba vectơ không đồng phẳng Xét vectơ Chọn khẳng định đúng? r u r r r r x ; y ; z A Ba vectơ đồng phẳng B Hai vectơ x; a phương r r r u r r C Hai vectơ x; b phương D Ba vectơ x; y; z đôi phương Lời giải Chọn A u r r r r u r r y  xz x ; y ; z đồng phẳng Ta có: nên ba vectơ   � � Câu 19 Cho hình chóp S ABC có AB  AC SAC  SAB Tính số đo góc hai đường thẳng chéo SA BC A 30� B 45� C 60� D 90� Trang 10 TÀI LIỆU ÔN THU THPT QUỐC GIA NHÓM WORD  BIÊN SOẠN TOÁN ĐỀ THI THỬ:2020-2021 Lời giải Chọn D uur uuur uur uuu r uur uur uuu r uur uur SA.BC  SA SC  SB  SA.SC  SA.SB Xét uur uuu r uur uuu r uur uur uur uur  SA SC cos SA, SC  SA SB cos SA, SB       �  SA.SB.cos BSA �  SA.SC.cos CSA (1) �SAchung �SC  SB � � AB  AC �  SAB   SAC c g c �    2 � �� ASC  � ASB �� � � Ta có �SAB  SAC ur uuur  1   ta có uSA BC  � SA  BC Từ �  DAB �  60� AC  AD, CAB , CD  AD ABCD Câu 20 Cho tứ diện có Gọi  góc AB CD Chọn khẳng định cos   cos   4 A B   60� C   30� D Lời giải Chọn D uuu r uuur uuu r uuur AB.CD AB.CD cos  AC , CD   uuu r uuur  AB.CD AB CD Ta có uuu r uuur uuu r uuur uuur uuu r uuur uuu r uuur AB.CD  AB AD  AC  AB AD  AB AC Xét uuur uuur uuur uuur uuur uuur uuu r uuur  AB AD cos AB, AD  AB AC cos AB, AC        AB AD.cos 600  AB AC.cos 600 TÀI LIỆU ÔN THi THPT QUỐC GIA Trang 11 ĐỀ THI THỬ:2020-2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT 1  AB AD  AB AD  AB AD   AB.CD 2 4  AB.CD 1 cos   cos  AB, CD    AB.CD Vậy Do � � �  90� , CAD Câu 21 Cho tứ diện ABCD có AB  AC  AD, BAC  BAD  60� Gọi I J uuu r uu r trung điểm AB CD Hãy xác định góc cặp véc tơ AB, IJ ? A 120� B 90� C 60� D 45� Lời giải Chọn B uu r uur uur � IJ  IC  ID Xét tam giác ICD có J trung điểm đoạn CD � Tam giác ABC có AB  AC , BAC  60�� ABC � CI  AB Tương tự ta có ABD � DI  AB uu r uuu r uur uur uuu r uur uuu r uur uuu r IJ AB  IC  ID AB  IC AB  ID AB  2 Ta có uu r uuur uu r uuur � IJ  AB � IJ , AB  90� Câu 22 Cho hình chóp S ABC có đáy ABC tam giác vuông B , cạnh bên SA vng góc với đáy Gọi H chân đường cao kẻ từ A tam giác SAB Khẳng định sai? A SA  BC B AH  BC C AH  SC D AH  AC       Lời giải Chọn C SA   ABC  BC � ABC  � SA  BC Theo ra, ta có mà Tam giác ABC vng B , ta có AB  BC � BC   SAB  � BC  AH �AH  SB � AH   SBC  � AH  SC � AH  BC � Khi AC   SAH  � AC  AB Nếu có AH  AC , SA  AC (vơ lý ) Trang 12 TÀI LIỆU ƠN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ:2020-2021 Câu 23 Cho tứ diện ABCD Gọi H trực tâm tam giác BCD AH vng góc với mặt phẳng đáy Khẳng định đúng? A CD  BD B AC  BD C AB  CD D AB  CD Lời giải Chọn D  BCD  nên AH  CD  1 Vì AH vng góc với  2 Do H trực tâm tam giác BCD nên BH  CD CD  AH � � CD   ABH  � CD  AB � 1 2   CD  BH � Từ suy SA   ABC  Câu 24 Cho hình chóp S ABC , biết Khẳng định sau sai? A SA  AB B SA  AC C SA  BC D SA  SB Lời giải Chọn D SA   ABC  mp  ABC   Đáp án A,B,C nên SA vng với đường nằm  Đáp án sai D Câu 25 Cho hình chóp S ABC , biết SA, SB, SC đơi vng góc Khẳng định sau đúng? AB   SAC  SA   SBC  SB   ABC  AC   SAB  A B C D Lời giải Chọn B  Chọn đáp án B vì: �SA  SB � SA   SBC  � SA, SB, SC đơi vng góc nên �SA  SC SB   SAC  , SC   SAB  Tương tự ta có TÀI LIỆU ÔN THi THPT QUỐC GIA Trang 13 ĐỀ THI THỬ:2020-2021 Câu 26 NHĨM WORD  BIÊN SOẠN TỐN THPT Cho hình chóp S ABCD có đáy ABCD hình chữ nhật tâm O có SA  SC , SB  SD Đường thẳng SO vng góc với mặt phẳng sau đây? A  ABCD  B  SAB   SAC  C Lời giải D  SCD  Chọn A Câu 27 Câu 28 Câu 29 Câu 30  Chọn A SA  SC , SB  SD ABCD hình chữ nhật tâm O �SO  AC � SO   ABCD  � SO  BD � nên SA   ABC  Cho hình chóp S ABC , biết tam giác ABC vuông A Khẳng định sau đúng? AB   SAB  AB   SAC  BC   SAC  BC   SAB  A B C D Lời giải Chọn B �AB  AC � AB   SAC  � AB  SA ( SA   ABC  ) �  Ta có SA   ABCD   ABC  Cho hình chóp S ABCD có Góc SB với � � � � A SAB B SBA C SBC D SCD Lời giải Chọn B SA   ABCD   ABC   Vì nên AB hình chiếu SB �  ABC  SBA Vậy góc SB với  ABCD  Cho lăng trụ đứng ABCD.A ' B ' C ' D ' Góc C ' A với � � � � A C ' AB B C ' AD C C ' AC D C ' CA Lời giải Chọn C  ABCD   Vì ABCD A ' B ' C ' D ' lăng trụ đứng nên CA hình chiếu C ' A  ABCD  C�' AC Vậy góc C ' A với Cho hình chóp S ABC có đáy ABC tam giác vng có cạnh huyền BC  a Hình chiếu vng góc S lên mặt phẳng ( ABC ) trùng với trung điểm H BC Biết SB  a Số đo góc SA ( ABC ) A 30 B 45 C 60 D 75 Lời giải Chọn C Trang 14 TÀI LIỆU ÔN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ:2020-2021 a BC  2 Do H trung điểm BC , ta có: Ta có: SH  ( ABC ) � HA hình chiếu vng góc SA lên mặt phẳng ( ABC ) � Góc SA mặt phẳng ( ABC ) góc SAH AH  BH  CH  Ta có: SH  SB  HB  a  a2 a  a SH �  tan SAH   a AH �  600 � SAH Trong tam giác vng SAH ta có: Câu 31 Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a Tam giác SAB SC  a Hình chiếu vng góc S lên mặt phẳng ( ABC ) trùng với trung điểm H AB Cosin góc SC ( SHD ) A B C D Lời giải Chọn C Dựng CE  HD Ta có: SH  ( ABCD) � SH  CE � CE  ( SHD ) � SE hình chiếu vng góc SC lên mặt phẳng ( SHD) � Do đó: Số đo góc SC lên mặt phẳng ( SHD) với số đo góc CSE �  SE cos CSE SC Ta có: Ta có: S CHD  a2 S ABCD � CE.HD  a � CE  HD TÀI LIỆU ÔN THi THPT QUỐC GIA Trang 15 ĐỀ THI THỬ:2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT a 2a � CE  a 30 SE  SC  CE  a 30 �   � cos CSE a Câu 32 Mệnh đề sau đúng? A Hai mặt phẳng vng góc với đường thẳng nằm mặt phẳng vuông góc với mặt phẳng B Hai mặt phẳng phân biệt vng góc với mặt phẳng vng góc với C Hai mặt phẳng phân biệt vng góc với mặt phẳng song song với D Hai mặt phẳng vng góc với đường thẳng nằm mặt phẳng vuông góc với giao tuyến hai mặt phẳng vng góc với mặt phẳng Lời giải Chọn D - Mệnh đề A sai xảy trường hợp hai mặt phẳng vng góc với đường thẳng thuộc mặt phẳng song song với mặt phẳng - Mệnh đề B sai xảy trường hợp hai mặt phẳng song song - Mệnh đề C sai xảy trường hợp hai mặt phẳng vng góc Chọn đáp án D Câu 33 Cho hình chóp S ABC có đáy ABC tam giác vng cân B , SA vng góc với đáy Gọi M trung điểm AC Khẳng định sau sai? HD  AD  AH  A BM  AC B  SBM    SAC   SAB    SBC  C Lời giải D  SAB    SAC  Chọn D Ta có: BM  AC � �� BM   SAC  +) BM  SA � A; B BC  BA� �� BC   SAB  �  SBC    SAB  BC  SA � +) C Câu 34 Cho hình chóp S.ABCD có đáy ABCD hình vng tâm I, cạnh bên SA vng góc với đáy Khẳng định sau sai? A ( SCD)  ( SAD) B ( SDC )  ( SAI ) C ( SBC )  ( SAB) D ( SBD)  ( SAC ) Lời giải Trang 16 TÀI LIỆU ÔN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ:2020-2021 Chọn B CD  AD � � CD  ( SAD) � CD  SA ( SCD)  ( SAD) � Ta có: + �BC  SA � BC   SAB  � + ( SBC )  ( SAB) �BC  AB �BD  SA � BD   SAC  � BD  AC ( SBD )  ( SAC ) � + ( SDC ) vng góc với ( SAI ) + Khơng có đường thẳng nằm mp Câu 35 Cho hình chóp S.ABC có đáy ABC tam giác vng A, cạnh bên SA vng góc với đáy Khẳng định sau đúng? A ( SBC )  ( SAB) B ( SAC )  ( SAB) C ( SAC )  ( SBC ) D ( ABC )  ( SBC ) Lời giải Chọn B �AC  AB � AC   SAB  � AC  SA Ta có: � �AC   SAB  � ( SAC )   SAB  � �AC �( SAC ) II PHẦN TỰ LUẬN (GỒM 03 CÂU TỪ CÂU ĐẾN CÂU 3) � x -5 x5 � f  x   � x -1 - �  x - 5  x �5 Xét tính liên tục hàm số x0  � Câu Cho hàm số Lời giải Ta có : lim f  x   lim x �5 x �5     x  5 2x    x  5 2x 1  x 5  lim  lim x �5 2x 1 x  10 x   x �5 TÀI LIỆU ÔN THi THPT QUỐC GIA  Trang 17 ĐỀ THI THỬ:2020-2021  lim x �5 NHÓM WORD  BIÊN SOẠN TOÁN THPT  x    x   3  x  5  lim x �5  2x 1   2.5    2 lim f  x   lim �     f  5  x    3� � � x � Lại có: lim f  x   lim f  x   f   � x  x �5 Vì x �5 hàm số liên tục Vậy hàm số liên tục x0  x �5 x2  2x   x  lim Câu Tính giới hạn sau: x � � 4x2   x  Lời giải Ta có: x  2x   4x 1 lim x � � 4x2   x   lim x �� � 3� x2 �   � x  x � x x �  lim x � � � 2� x �  � x  � x � � 3�   � x  � � x x � x 4  x2 x � 1�  x     � � x 1   4x 1 x x2 x � 3 x x �  lim  lim  x � � x � � � 1 2� x   x  x �   1 � x x x� � Câu a, SA   ABCD  , SA  3a Cho hình chóp S.ABCD có đáy hình vng cạnh Gọi M,N trung điểm CD,BC a) Chứng minh rằng:  SAM    SDN   SBD  b) Tính sin góc đường thẳng SC mặt phẳng Lời giải  SAM    SDN  a) Chứng minh rằng: SA  DN  SA   ABCD  �DN  Ta có : AM  DN (tính chất hình vng) � DN   SAM  Mà Trang 18 DN � SDN  nên  SAM    SDN  (đpcm) TÀI LIỆU ƠN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ:2020-2021  SBD  b) Tính sin góc đường thẳng SC mặt phẳng  SAC    SBD  theo giao tuyến SO Ta có : CH   SBD   SBD  Dựng CH  SO nên Suy H hình chiếu C lên mặt phẳng � � SC ;  SBD    � SC ; SH   CSH  Do 2 Ta có : SC  9a  2a  a 11 AK  SO � AK  CH  AOK  CHO  Dựng a 3a AO.SA 19 AK    19 a AO  SA2  9a 2 Mà   HC 3 209 � sin CSH    SC 209 19 11 Vậy TÀI LIỆU ÔN THi THPT QUỐC GIA Trang 19 ...    SC ; SH   CSH 209 b) HD:  TÀI LIỆU ÔN THi THPT QUỐC GIA Trang ĐỀ THI THỬ :2020- 2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT LỜI GIẢI CHI TIẾT ĐỀ 03 I PHẦN TRẮC NGHIỆM (GỒM 35 CÂU TỪ CÂU ĐẾN... SC mặt phẳng Trang TÀI LIỆU ÔN THU THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ :2020- 2021 ĐÁP ÁN ĐỀ 03 I PHẦN TRẮC NGHIỆM (GỒM 35 CÂU TỪ CÂU ĐẾN CÂU 35) 1.A 11. D 21.B 31.C 2.B 12.A 22.C... điểm H AB Cosin góc SC ( SHD ) A B TÀI LIỆU ÔN THi THPT QUỐC GIA C D Trang ĐỀ THI THỬ :2020- 2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT Câu 32 Mệnh đề sau đúng? A Hai mặt phẳng vng góc với đường thẳng

Ngày đăng: 24/06/2021, 16:53

w