1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Sáng kiến kinh nghiệm) giúp học sinh lớp 12 học tốt phần ứng dụng tích phân tính diện tích hình phẳng

22 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 325,61 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRUNG TÂM GDNN – GDTX THỌ XUÂN SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI GIÚP HỌC SINH LỚP 12 HỌC TỐT PHẦN ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG Người thực hiện: Mai Phương Thảo Chức vụ: Giáo viên SKKN thuộc lĩnh mực (mơn): Tốn học THANH HỐ NĂM 2019 MỤC LỤC Trang PHẦN I MỞ ĐẦU Lý chọn đề tài ………………………………………… Mục đích đề tài ………………………… …………… Đối tượng nghiên cứu ……………………………………… Phương pháp nghiên cứu …………………………………… PHẦN II NỘI DUNG SÁNG KIẾN KINH NGHIỆM Cơ sở lý luận sáng kiến kinh nghiệm …………………… Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm … 3 Diện tích hình phẳng ……………………………………… 3.1 Hình phẳng giới hạn đồ thị hàm số trục hoành 3.2 Hình phẳng giới hạn hai đồ thị hàm số 11 Hiệu đạt sau áp dụng SKKN ……………… 17 PHẦN III: KẾT LUẬN VÀ KIẾN NGHỊ Kết luận …………………………………………………… 18 Kiến nghị …………………………………………………… 18 Tài liệu tham khảo …………………………………………… 19 PHẦN I: MỞ ĐẦU Lí chọn đề tài: Vấn đề diện tích hình quen thuộc tam giác, tứ giác, ngũ giác, lục giác,… gọi chung đa giác học sinh biết cơng thức tính diện tích từ lớp Đây vấn đề thực tế để học tốt vốn khơng đơn giản học sinh có tư hình học yếu, đặc biệt tư cụ thể hoá, trừu tượng hoá.Việc dạy học vấn đề chương trình tốn lớp vốn gặp nhều khó khăn Do học vấn đề mới: vấn đề diện tích hình phẳng, chương trình giải tích 12 học sinh gặp nhiều khó khăn Hầu hết em học sinh thường có cảm giác “sợ” tốn tính diện tích hình phẳng Khi học vấn đề nhìn chung em thường vận dụng công thức cách máy móc chưa có phân tích, thiếu tư thực tế trực quan nên em hay bị nhầm lẫn, học không giải được, đặc biệt tốn cần phải có hình vẽ để “chia nhỏ” diện tích tính Thêm vào sách giáo khoa sách tham khảo có ví dụ minh hoạ cách chi tiết để giúp học sinh học tập khắc phục “những sai lầm đó” Càng khó khăn cho học sinh có kỹ tính tích phân cịn yếu kỹ “đọc đồ thị” cịn hạn chế Vì tơi chọn đề tài sáng kiến kinh nghiệm với tên là: “ GIÚP HỌC SINH LỚP 12 HỌC TỐT PHẦN ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG” Mục đích đề tài: Nhằm giúp cho học sinh lớp 12 rèn kỹ tính tích phân, đặc biệt tích phân có chứa dấu giá trị tuyệt đối, rèn kỹ đọc đồ thị hàm số, khắc phục khó khăn , sai lầm gặp tốn tính diện tích hình phẳng Từ giúp học sinh phát huy tốt kiến thức diện tích mà học sinh học lớp dưới, thấy tính thực tế liên hệ nội vấn đề chương trình tốn , học sinh cảm thấy hứng thú, thiết thực học tốt vấn đề ứng dụng tích phân Đây tài liệu tham khảo tốt cho học sinh để luyện thi THPT quốc gia Đối tượng nghiên cứu: Kiến thức mơn tốn trình bày đóng vai trị tảng Vì để giúp học sinh lớp 12 học tốt phần ứng dụng tích phân tính diện tích hình phẳng vấn đề khơng riêng cá nhân giáo viên dạy toán Tuy nhiên, để đạt hiệu rõ ràng việc nghiên cứu thể nghiệm đề tài chủ yếu tập trung sâu vào phương pháp dạy học toán rèn kỹ phân tích, kỹ đọc đồ thị để xét dấu biểu thức, kỹ “ chia nhỏ” hình phẳng để tính, kỹ cộng , trừ diện tích phát huy tính linh hoạt sáng tạo cho học sinh lớp 12 Các toán đề cập đến đề tài thuộc phạm vi sách giáo khoa, sách tập, sách tham khảo đảm bảo tính vừa sức em Phương pháp nghiên cứu: - Nghiên cứu phương pháp dạy học sinh lớp 12 thi THPT quốc gia năm giảng dạy - Đề tài hoàn thành phương pháp thống kê, tổng hợp, trao đổi tổng kết năm học, quan sát, phân tích nguyên nhân phương pháp thực nghiệm sư phạm Kinh nghiệm đồng chí giáo viên thân qua nhiều năm dạy học PHẦN II NỘI DUNG SÁNG KIẾN KINH NGHIỆM Cơ sở lí luận Xuất phát từ việc giải tốn kèm với tư duy, tính tốn Mặt khác Tốn học mơn khoa học u cầu phải xác học sinh dễ nhàm chán, cảm thấy khó khăn tiếp thu Việc học tập mơn Tốn có tính kế thừa, tiết sau vận dụng tiết trước kiến thức khác học qua trước đó học sinh lơ không ý tiết, nội dung khó khăn học, tiếp thu kiến thức tiết sau Thực trạng vấn đề : Chủ đề ứng dụng tích phân kiến thức chương trình tốn giải tích lớp 12 Việc dạy học vấn đề học sinh giúp học sinh hiểu rõ ý nghĩa hình học tích phân, đặc biệt tính diện tích hình phẳng giới hạn đồ thị hàm số Đây nội dung thường gặp đề thi THPT quốc gia Nhìn chung học vấn đề này, đại đa số học sinh thường gặp khó khăn, sai lầm : - Nếu khơng có hình vẽ thi học sinh thường khơng hình dung hình phẳng Do dó học sinh có cảm giác “xa lạ” so với học diện tích hình phẳng học trước Học sinh không tận dụng kiểu “tư liên hệ cũ với mới” vốn có nghiên cứu vấn đề -Học sinh chưa thực hứng thú có cảm giác nhẹ nhàng học vấn đề này, trái lại học sinh có cảm giác nặng nề, khó hiểu - Học sinh thường nhớ cơng thức tính diện tích hình phẳng cách máy móc, khó phát huy tính linh hoạt sáng tạo, đặc biệt kỹ đọc đồ thị để xét dấu biểu thức, kỹ “ chia nhỏ” hình phẳng để tính; kỹ cộng, trừ diện tích Đây khó khăn lớn mà học sinh thường gặp phải Trước thực sáng kiến mình, kết khảo sát lực học 102 học sinh khối 12 phần ứng dụng tích phân tính diện tích hình phẳng sau: Lớp Tổng số HS Nhận biết 52 SL 25 Tỉ lệ% 48.1 12 A2 50 Tổng : 102 26 51 52 50 12 A1 Vận dụng Thông hiểu SL Tỉ lệ% 17 32.7 SL Tỉ lệ% 10 19.2 16 34 08 18 32 33.3 16 16.7 Vận dụng cao SL Tỉ lệ% 0 0 Diện tích hình phẳng 3.1 Hình phẳng giới hạn đồ thị hàm số trục hồnh a/ Cơng thức tính diện tích hình phẳng giới hạn đồ thị hàm số y = f(x) , trục hoành hai đường thẳng x = a , x = b Chú ý : Giả sử hàm số y = f(x) liên tục đoạn  a ; b  Khi hình thang cong giới hạn đồ thị hàm số y = f(x) , trục hoành hai đường thẳng x = a , x = b có diện tích S tính theo cơng thức : b S   f ( x ) dx (1) a  Để tính diện tích S ta phải tính tích phân (1) , muốn ta phải “phá” dấu giá trị tuyệt đối  Nếu  Nếu f ( x ) 0 , x   a ; b  f ( x ) 0 , x   a ; b  b b S  f ( x ) dx  f ( x ) dx a a b b a a S  f ( x) dx    f ( x)  dx  Muốn “phá” dấu giá trị tuyệt đối ta phải xét dấu biểu thức f(x) Thường có hai cách làm sau : - Cách 1: Dùng định lí “dấu nhị thức bật nhất” , định lí “dấu tam thức bậc hai” để xét dấu biểu thức f(x) ; phải giải bất phương trình f(x) ≥ , f(x) ≤ đoạn  a ; b  - Cách 2: Dựa vào đồ thị hàm số y =f(x) đoạn  a ; b  để suy dấu f(x) đoạn  Nếu đoạn [a ; b] đồ thị hàm số y = f(x) nằm phía “trên” trục hồnh f ( x) 0 , x   a ; b   Nếu đoạn [a ; b] đồ thị hàm số y = f(x) nằm phía “dưới” trục hồnh f ( x ) 0 , x   a ; b  -Cách Nếu f(x) không đổi dấu [a ; b] ta có : b b a a S  f ( x) dx  f ( x) dx b/ Một vài ví dụ minh hoạ cách tính tích phân có chứa dấu giá trị tuyệt đối Ví dụ1 : Tính I  2 x  dx 2 Giải: Xét dấu nhị thức bậc f(x) = 2x + x -∞ f(x)=2x + Suy x  0 -2 +∞ + , x   - 2;0 0 2 2 Do I  2 x  dx  (2 x  4)dx ( x  x) 0  ( 2)  4( 2) 4    Ví dụ : J  x  x  dx Giải: Xét dấu tam thức f(x) = - x2 + 2x – , có =-1

Ngày đăng: 18/06/2021, 10:23

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w