1. Trang chủ
  2. » Giáo án - Bài giảng

De thi KSCL Hoc ky II Toan 9

4 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 23,71 KB

Nội dung

Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không thay đổi.. Từ điểm A bên ngoài đường tròn, kẻ 2 tiếp tuyến AB, AC với đ[r]

(1)§Ò THI KSCL HỌC KỲ II – NĂM HỌC 2011-2012 Môn: Toán Lớp Thời gian 90 phút Câu 1: 1) Rót gän biÓu thøc : a) √ 27 + √ 12 - √ x 1   x x  , với x ≥ và x ≠ b) x  2) Trên hệ trục tọa độ Oxy biết đờng thẳng y=ax+b qua điểm A(3;2) vµ điểm B (1;-2) T×m các hÖ sè a , b Câu 2: Cho phương trình (ẩn x): x2 – 2(m-1)x + m2 -5 = (1) a/ Giải phương trình (1) m = b/ Tìm giá trị m để phương trình (1) có hai nghiệm phân biệt x 1, x2 thoả mãn hệ thức : x + x =8 2 Câu 3: Một ruộng hình chữ nhật có chiều rộng ngắn chiều dài 45m Tính diện tích ruộng, biết chiều dài giảm lần và chiều rộng tăng lần thì chu vi ruộng không thay đổi Câu 4: Cho đường tròn tâm O, bán kính R Từ điểm A bên ngoài đường tròn, kẻ tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm) Từ B, kẻ đường thẳng song song với AC cắt đường tròn D (D khác B) Nối AD cắt đường tròn (O) điểm thứ hai là K Nối BK cắt AC I a) Chứng minh tứ giác ABOC nội tiếp đường tròn b) Chứng minh : IC2 = IK.IB c) Cho ∠ BAC=600 Chứng minh ba điểm A, O, D thẳng hàng Bµi : Gi¶i ph¬ng tr×nh : x+ √ x −2=2 √ x −1 _ PHÒNG GD –ĐT CAN LỘC §¸p ¸n chÊm to¸n C©u (3đ) 1) (2®: mçi c©u ®iÓm) (2) a) √ 27 + √ 12 - √ =3 √ +2 √ - √ =4 √ x 1   x x 2 b) Với x ≥ và x ≠ ta có : x  √ x( √ x +2) x x +2 √ x −2 x +2 √ x +√ + = = = = x − x −4 x − x −4 ( √ x+2)( √ x − 2) √x √x− 2) (1đ) Vì đờng thẳng y=ax+b qua điểm M (3;2) nên ta có : 2=3a +b T¬ng tù ta cã : -2=a+b (0,25đ) ¿ a+ b=2 Ta có hệ phương rình : a+b=− ¿{ ¿ ⇔ a=4 ¿ a+b=− a+ b=2 ⇔ Giải hệ a+b=− ¿{ ¿ a=2 ¿ b=− ¿{ (0,25đ) (0,25đ) (0,25đ) Câu 2: (2đ) a) ( 1đ) Khi m=2 phương trình (1) trở thành : x2 – 2x -1 = =1+1=2 ❑ Δ phương trình có hai nghiệm: x 1= 1− √ , x2= 1+ √ Δx b) (1đ) ❑ =(m-1)2 –(m2 -5)= - 2m Phương trình có nghiệm phân biệt ⇔ Theo định lý Viét ta có : x 1+ x ¿2 − x x x + x =¿ x1 + x2 ⇔ m=1 ¿ m=3 ¿ ¿ ¿ ¿ ¿ 2 =8 Δx ❑ = 6-2m >0 ⇔ m < ¿ −b x 1+ x 2= =2(m− 1) a c x1 x 2= =m2 −5 a ¿{ ¿ =4( m-1)2 -2( m2 -5) =2m2 -8m +14 ⇔ 2m2 -8m +14 =8 ⇔ 2m2 -8m +6 =0 ⇔ m2 -4m+3=0 (loại) (3) Vậy m=1 là giá trị cần tìm C©u : Gọi chiều dài ruộng là x(m) , ĐK:x>45 (0,5đ) Thì chiều rộng là x-45 (m) ,chu vi là 2(2x-45) (0,25đ) sau chiều dài giảm lần và chiều rộng tăng lần thì chu vi là : [ x +3 (x − 45) ] (0,25đ) Theo bài ta có phương trình : 2(2x-45) =2 [ x +3 (x − 45) ] (0,25 đ) Giải phương trình x= 60 (TMĐK đặt ra) (0,5đ) Vậy chiều dài ruộng là 60m,chiều rộng là 15 m.Diện tích ruộng là 60.15=900 (m2) Câu (2,5 điểm): A K (0,25đ) B O D I C 11 ¿ AB ⊥ BO a) Ta có AC ⊥ CO ( t/c tiếp tuyến) ¿{ ¿ ⇒ ∠ABO=900 ∠ACO=90 ⇒ ∠ ABO+∠ ACO=900 +90 0=1800 ¿{ ( 0,25đ) (0,5đ) Vậy tứ giác ABOC nội tiếp (0,25đ) Δ Δ ∠Ichung ; ∠ICK =∠IBC b) xét IKC và IC B có ( góc tạo tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung CK) (0,5đ) ⇒ Δ IKC ∞ Δ ICB(g − g)⇒ IC IK = ⇒IC2=IK IB IB IC (0,5đ) c) (0,5đ) 0 ∠ BOC=180 −∠ BAC=120 ⇒∠ BDC= ∠BOC=60 (góc nội tiếp và góc tâm cùng chắn cung BC) ⇒∠ C =∠BDC=60 ( so le trong) Mà BD//AC (gt) ⇒ ∠ODC=∠OCD=900 −600 =300 ⇒ ∠BDO =∠CDO=300 ⇒ ∠BOD =∠COD=120 suy ra: ΔBOD=ΔCOD(c − g − c)⇒BD=CD (4) Mà AB = AC (t/c 2tt cắt nhau); OB = OC = R Do đó điểm A,O,Dcùng thuộc đường trung trực BC Vậy điểm A, O, D thẳng hàng Bµi : (0,5 ®) §K: x x+ √ x −2=2 √ x −1 ⇔ x-1 - √ x −1 +1+ √ x −2 =0 ¿ ⇔ √ x −1 −1 ¿2 +¿ ¿ x − 1=1 x − 2=0 ¿{ ¿ ¿ √ x −2 =0 ⇔ √ x −1 −1=0 √ x −2=0 ¿{ ¿ ¿ ⇔ √ x −1=1 x −2=0 ¿{ ¿ ⇔ x=2(TM) VËy ph¬ng tr×nh cã nghiÖm nhÊt x=2 Phßng GD- §T Can Léc ⇔ (5)

Ngày đăng: 12/06/2021, 12:57

w