Nghiên cứu, mô phỏng và chế tạo vật liệu bán dẫn hữu cơ β znpc và β cupc ứng dụng trong linh kiện điện tử

145 13 0
Nghiên cứu, mô phỏng và chế tạo vật liệu bán dẫn hữu cơ β  znpc và β  cupc ứng dụng trong linh kiện điện tử

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LỤC NHƢ QUỲNH NGHIÊN CỨU, MÔ PHỎNG VÀ CHẾ TẠO VẬT LIỆU BÁN DẪN HỮU CƠ β- ZnPc VÀ β- CuPc ỨNG DỤNG TRONG LINH KIỆN ĐIỆN TỬ LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU HÀ NỘI – 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LỤC NHƢ QUỲNH NGHIÊN CỨU, MÔ PHỎNG VÀ CHẾ TẠO VẬT LIỆU BÁN DẪN HỮU CƠ β- ZnPc VÀ β- CuPc ỨNG DỤNG TRONG LINH KIỆN ĐIỆN TỬ Ngành: Khoa học vật liệu Mã số: 9440122 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƢỜI HƢỚNG DẪN KHOA HỌC: PGS.TS MAI ANH TUẤN TS ĐẶNG VŨ SƠN HÀ NỘI – 2021 LỜI CAM ĐOAN Tơi xin cam đoan kết trình bày luận án cơng trình nghiên cứu dƣới hƣớng dẫn tập thể hƣớng dẫn PGS.TS Mai Anh Tuấn TS Đặng Vũ Sơn Các số liệu, kết trình bày luận án hồn tồn trung thực chƣa đƣợc cơng bố cơng trình trƣớc Hà Nội, ngày tháng năm 2021 THAY MẶT TẬP THỂ HƢỚNG DẪN NGHIÊN CỨU SINH PGS.TS Mai Anh Tuấn Lục Nhƣ Quỳnh LỜI CẢM ƠN Lời đầu tiên, xin bày tỏ lòng biết ơn chân thành sâu sắc tới tập thể hƣớng dẫn khoa học PGS.TS Mai Anh Tuấn TS Đặng Vũ Sơn bảo, hƣớng dẫn tận tình tạo điều kiện giúp đỡ suốt thời gian nghiên cứu luận án tâm huyết quan tâm ngƣời thầy đến nghiên cứu sinh Xin chân thành cảm ơn Ban yếu phủ, Học viện kỹ thuật mật mã, Khoa mật mã nơi công tác quan tâm, tạo điều kiện, hỗ trợ mặt để tơi hồn thành đƣợc luận án Xin chân thành cảm ơn tới thầy cô Viện Đào tạo Quốc tế Khoa học Vật liệu (ITIMS), Trƣờng Đại học Bách khoa Hà Nội giúp đỡ tơi tồn q trình học tập nghiên cứu trƣờng Nghiên cứu sinh xin gửi lời cảm ơn tới thầy cô, anh, chị em Phịng thí nghiệm MEM/NEM Viện Nacentech,…đã nhiệt tình giúp đỡ để nghiên cứu sinh hồn thành chƣơng trình Tiến sĩ Cuối cùng, nghiên cứu sinh đặc biệt gửi lời cảm ơn tới tất thành viên gia đình, ngƣời tin tƣởng dành cho điều kiện tốt suốt trình làm nghiên cứu sinh Sự kiên nhẫn lịng tin ngƣời thân yêu động lực lớn để tơi vƣợt qua giai đoạn khó khăn cơng việc TÁC GIẢ Lục Nhƣ Quỳnh MỤC LỤC DANH MỤC TỪ VIẾT TẮT iii DANH MỤC HÌNH VẼ iv DANH MỤC BẢNG BIỂU viii LỜI NÓI ĐẦU CHƢƠNG 1: TỔNG QUAN 1.1 Bán dẫn hữu dựa sở phức chất Pc với kim loại chuyển tiếp 1.1.1 Phthalocyanine phức chất kim loại-phthalocyanine 1.1.2 Phƣơng pháp tổng hợp tinh chế 1.1.3 Tính chất vật lý 1.1.4 Tính đa hình tinh thể MPc 1.2 Tƣơng tác xếp chồng điện tử π tinh thể phân tử hữu 10 1.2.1 Tƣơng tác nội phân tử tƣơng tác liên phân tử 10 1.2.2 Tƣơng tác điện tử π-π 11 1.3 Mơ hình dịng giới hạn vùng điện tích khơng gian cho bán dẫn hữu 15 1.3.1 Cơ chế vận chuyển hạt tải tiếp giáp kim loại – bán dẫn hữu 15 1.3.2 Mơ hình giới hạn vùng điện tích không gian cho bán dẫn hữu 17 1.4 Linh kiện cảm biến nhạy quang 23 1.5 Công cụ mô phiếm hàm mật độ DFT 24 1.6 Kết luận chƣơng 26 CHƢƠNG 2: 27 NGHIÊN CỨU, TỔNG HỢP VẬT LIỆU BÁN DẪN HỮU CƠ DỰA TRÊN PHỨC CHẤT KIM LOẠI CHUYỂN TIẾP-PHTHALOCYANINE 27 2.1 Các phƣơng pháp tính tốn phiếm hàm mật độ cho toán MPc 29 2.1.1 Phƣơng pháp TD-DFT phần mềm Gaussian cho toán cấu trúc phân tử MPc 29 2.1.2 Phƣơng pháp DFT phần mềm Quantum-Espresso cho toán tinh thể βMPc 31 2.2 Các phƣơng pháp thực nghiệm chế tạo vật liệu bán dẫn hữu MPc 32 2.2.1 Quy trình tổng hợp vật liệu bán dẫn hữu MPc 32 2.2.2 Lắng đọng pha tạo đơn tinh thể β-MPc 33 2.2.3 Phƣơng pháp tính độ rộng vùng cấm quang vật liệu bán dẫn hữu β-MPc 35 2.3 Đánh giá tính chất vật liệu bán dẫn hữu -MPc 36 2.3.1 Vật liệu ZnPc 37 2.3.2 Vật liệu CuPc 41 2.4 Cấu trúc phân tử vật liệu bán dẫn hữu MPc dựa tính tốn DFT thực nghiệm 44 2.4.1 Cấu trúc phân tử phổ IR ZnPc 44 2.4.2 Cấu trúc phân tử phổ IR CuPc 51 i 2.5 Cấu trúc điện tử tinh thể β-MPc dựa tính tốn DFT 56 2.6 Phổ hấp thụ UV-VIS độ rộng vùng cấm quang vật liệu β-MPc 62 2.7 Kết luận chƣơng 65 CHƢƠNG 3: 66 NGHIÊN CỨU CHẾ TẠO LINH KIỆN BÁN DẪN TRÊN CƠ SỞ CẤU TRÚC KIM LOẠI-BÁN DẪN-KIM LOẠI SỬ DỤNG VẬT LIỆU β-MPc 66 3.1 Chế tạo linh kiện nhạy quang cấu trúc kim loại-bán dẫn hữu cơ-kim loại sử dụng vật liệu β-MPc 66 3.2 Đo lƣờng, đánh giá đặc trƣng linh kiện cấu trúc M-S-M sử dụng vật liệu βMPc 68 3.2.1 Giản đồ lƣợng cấu trúc M-S-M đặc tuyến I-V 69 3.2.2 Đặc trƣng dòng tối linh kiện cấu trúc M-S-M sử dụng vật liệu bán dẫn hữu -MPc 73 3.3 Đáp ứng quang linh kiện cấu trúc M-S-M vùng bƣớc sóng ngắn 76 3.3.1 Dịng quang điện linh kiện cấu trúc Ag-ZnPc-Ag đáp ứng với nguồn sáng có bƣớc sóng ngắn 76 3.3.2 Đặc tuyến linh kiện Ag- ZnPc-Ag với nguồn sáng bƣớc sóng ngắn 81 3.4 Đáp ứng quang linh kiện cấu trúc Ag-ZnPc-Ag vùng khả kiến 87 3.4.1 Đặc trƣng dòng quang điện linh kiện Ag- ZnPc-Ag với nguồn sáng trắng 88 3.4.2 Đặc tuyến linh kiện Ag-ZnPc-Ag đáp ứng với nguồn sáng trắng 92 3.5 Kết luận chƣơng 97 KẾT LUẬN LUẬN ÁN 98 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 99 TÀI LIỆU THAM KHẢO 100 Phụ lục A: Tinh thể -ZnPc -CuPc 110 Phụ lục B: Định hƣớng chế tạo mạch INVERTER sử dụng vật liệu bán dẫn hữu -MPc 112 Phụ lục C: Một số kết thuật tốn mật mã dƣới dạng mơ 124 ii DANH MỤC TỪ VIẾT TẮT Ký hiệu CB DC DFT EF EG MO GTO HOMO Tiếng Anh Conduction Band DC power supply Density Functional Theory Fermi Energy Energy Bandgap Molecular Orbital Gaussian type orbital Highiest Occupied Molecular Orbital Intrinsic Polymer Conduction Infrared spectra X-Ray diffraction Lowiest Un-occupied Molecular Orbital Tiếng Việt Vùng dẫn Nguồn điện chiều Lý thuyết phiếm hàm mật độ Năng lƣợng Fermi Năng lƣợng vùng cấm Obital phân tử Obital kiểu Gauss Obital phân tử bị chiếm cao Polime dẫn Phổ hồng ngoại Nhiễu xạ tia X Obital phân tử không bị chiếm LUMO thấp Obital phân tử bị chiếm SOMO Singly occupied molecular orbital điện tử MOS Metal-Oxide-Semiconductor Cấu trúc kim loại-Oxit-Bán dẫn Transistor hiệu ứng trƣờng cấu MOSFET Metal-Oxide-Semiconductor FET trúc Kim loại – Oxide-Bán dẫn NMOS N-channel MOS transistor Transistor MOS kênh N OFET Organic Field Effect Transistor Transistor hiệu ứng trƣờng hữu Organic Thin-film Field Effect Transistor hiệu ứng trƣờng màng OTFT Transistor mỏng hữu OLED Organic Light Emitting Diode Điôt phát quang hữu IPES Inverse photoemission spectroscopy Phổ phát xạ photon đảo OSC Organic solar cells Pin mặt trời hữu PANi Polyaniline Poli-ani-lin PCB Printed Circuit Boards Bảng mạch in PMOS P-channel MOS transistor Transistor MOS kênh P RF Radio Frequency Tần số vô tuyến SEM Scanning Electron Microscopy Hiển vi điện tử quét TEM Transmission Electron Microscopy Hiển vi điện tử truyền qua UV-VIS Ultraviolet–visible spectroscopy Phổ tử ngoại-khả kiến VB Valance Band Vùng hóa trị VDS Drain-Source Voltage Điện nguồn-máng VGS Gate-Source Voltage Điện cổng-nguồn PWP Plane wave pseudopotential Giả sóng phẳng IPC IR XRD iii DANH MỤC HÌNH VẼ Hình 1.1 Tốc độ tăng mức độ tích hợp transistor theo định luật Moore (Nguồn www.sciencedirect.com) [1] Hình 1.2 Cấu trúc hóa học phối tử phthalocyanine phức chất với kim loại [18] Hình 1.3 Sự xếp phân tử cấu trúc tinh thể dạng thù hình α β [25] Hình 1.4 So sánh lƣợng tƣơng tác phân tử liên phân tử [28] 10 Hình 1.5 Sự tăng nhanh số lƣợng cơng trình khoa học liên quan đến tƣơng tác điện tử π-π thập kỷ gần [29] 11 Hình 1.6 Cấu trúc phân tử benzene trạng thái điện tử π bất định xứ [33] 12 Hình 1.7 Các dạng hình học đặc trƣng tƣơng tác điện tử π-π: tƣơng tác xếp chồng, tƣơng tác hình chữ T, tƣơng tác song song lệch tƣơng tác song song toàn phần 13 Hình 1.8 Các mơ hình xếp phân tử tiêu biểu tinh thể bán dẫn hữu dựa tƣơng tác liên phân tử xếp chồng điện tử π-π [35] 14 Hình 1.9 Giản đồ lƣợng mơ tả: Cơng kim loại lớp tiếp giáp kim loại-bán dẫn 16 Hình 1.10 Sự hình thành vùng điện tích khơng gian tiếp xúc p-n (a) ống tia âm cực (b) 17 Hình 1.11 Đồ thị logI-logV với đặc trƣng dòng điện SCLC khơng bẫy lƣợng tử [41] 19 Hình 1.12 Đồ thị logI-logV với đặc trƣng dịng điện SCLC có mặt bẫy lƣợng tử [44] 20 Hình 1.13 Bẫy lƣợng tử nơng bẫy lƣợng tử sâu xuất bán dẫn hữu [47].22 Hình 2.1 Cấu trúc hóa học CuPc ZnPc 30 Hình 2.2 Phản ứng tổng hợp phức chất MPc 32 Hình 2.3 Tổng hợp phức chất CuPc (a) Cu(CH3COO)2 nitrobenzene, (b) hỗn hợp phản ứng máy gia nhiệt-khuấy từ, chất lỏng ổn định nhiệt độ bên ngồi bình phản ứng, (c) CuPc kết tủa sau làm nguội, (d) CuPc dạng bột 33 Hình 2.4 Mơ tả hệ lắng đọng pha tạo tinh thể β-MPc (A) giản đồ mô tả gradient nhiệt độ vùng hệ (B) 34 Hình 2.5 Ảnh SEM tinh thể ZnPc (a) tinh thể kích thƣớc micromet dạng hình kim, (b) (c) ảnh phóng đại tinh thể, (d) hiển thị ảnh 3D tinh thể hình c 37 Hình 2.6 Cấu trúc phân tử ZnPc từ nhiễu xạ tia X đơn tinh thể 38 Hình 2.7 Cấu trúc hóa học ZnPc, Pc gốc isoindole 39 Hình 2.8 Cấu trúc tinh thể β-ZnPc (a) sở; (b) quan sát theo trục b; (c) quan sát theo trục a; (d) quan sát theo trục c 39 Hình 2.9 (a) Cấu trúc dạng “xƣơng cá” tinh thể ZnPc chiều dài tinh thể theo hƣớng [010] 40 Hình 2.10 Ảnh SEM tinh thể CuPc độ phóng đại khác 41 Hình 2.11 Cấu trúc phân tử từ nhiễu xạ tia X đơn tinh thể (a) cấu trúc hóa học (b) 42 Hình 2.12 Cấu trúc tinh thể β-CuPc (a) ô sở; (b) quan sát theo trục b; (c) quan sát theo trục a; (d) quan sát theo trục c 43 Hình 2.13 Cấu trúc herringbone β-CuPc (d) chiều dài tinh thể theo hƣớng [010].43 Hình 2.14 (a) ZnPc thực nghiệm, (b) ZnPc tối ƣu TD-DFT, (c) phân bố điện tích iv Mulliken trạng thái 45 Hình 2.15 Orbital phân tử biên ZnPc (a) HOMO, (b) LUMO 47 Hình 2.16 Giản đồ mức lƣợng phân bố mật độ xác suất điện tử HOMO, LUMO LUMO+1 48 Hình 2.17 (a) Phổ FTIR thực nghiệm phổ IR mô ZnPc, (b) đƣờng hồi quy tuyến tính tần số dao động IR thực nghiệm tính tốn 50 Hình 2.18 (a) CuPc thực nghiệm, (b) CuPc tối ƣu TD-DFT, (c) phân bố điện tích Mulliken trạng thái 51 Hình 2.19 Giản đồ lƣợng phân bố mật độ xác suất điện tử HOMO, LUMO LUMO+1 CuPc Trục lƣợng E (eV), bên phải α-MO bên trái β-MO 53 Hình 2.20 Phổ FTIR thực nghiệm phổ IR mô CuPc 54 Hình 2.21 Ơ sở β-ZnPc (a) β-CuPc (b) liệu XRD hiển thị QuantumEspresso; (c) Ô mạng nguyên thủy cấu trúc đơn tà (monoclinic-P) với trục b đối xứng (áp dụng vùng Brillouin phần mềm Xcrysden) 56 Hình 2.22 Cấu trúc vùng điện tử (BAND) mật độ trạng thái thành phần (PDOS) β-ZnPc 58 Hình 2.23 (a) Chi tiết PDOS nguyên tử, (b) PDOS orbital d nguyên tử Zn, (c) PDOS orbital p nguyên tử N 59 Hình 2.24 Cấu trúc vùng điện tử (BAND), mật độ trạng thái thành phần (PDOS) βCuPc 60 Hình 2.25 PDOS orbital p, d, s Cu (a), PDOS orbital d Cu (b), PDOS orbital đặc trƣng CuPc, Cấu trúc CuPc (d) Mức Fermi 2.879 eV (đƣờng đứt đoạn) 61 Hình 2.26 Phổ hấp thụ UV-VIS β-ZnPc (a) xác định độ rộng vùng cấm quang từ phổ hấp thụ (b) 63 Hình 2.27 Phổ hấp thụ UV-VIS β-CuPc (a) xác định độ rộng vùng cấm quang từ phổ hấp thụ (b) 64 Hình 3.1 (a) Sơ đồ mơ tả quy trình chế tạo, (b) mơ tả linh kiện cấu trúc M-S-M, (c) Kích thƣớc hai điện cực tiếp xúc mặt nạ in lƣới 67 Hình 3.2 Cấu trúc M-S-M với hai điện cực tiếp xúc bên độ rộng kênh dẫn mm, kết nối đầu đo SMU hệ Keithley 69 Hình 3.3 Giản đồ lƣợng linh kiện cấu trúc M-S-M: (a) Ag-ZnPc-Ag, (b) AgCuPc-Ag 70 Hình 3.4 (a) Mô tả sơ đồ mạch linh kiện cấu trúc M-S-M, (b) Giản đồ lƣợng vùng tiếp xúc cấu trúc M-S-M (b) mô tả thay đổi theo điện áp (c) (d) 71 Hình 3.5 Đặc tuyến I-V linh kiện Ag-ZnPc-Ag (a) Ag-CuPc-Ag (b) điều kiện không chiếu sáng (bên trái), đặc tuyến I-V biểu diễn dạng semi-log (bên phải) 72 Hình 3.6 Đặc tuyến I-V VDS > linh kiện Ag-ZnPc-Ag (bên trái) đƣờng LogI-logV tƣơng ứng (bên phải) 73 Hình 3.7 Đặc tuyến I-V VDS > linh kiện Ag-CuPc-Ag (bên trái) đƣờng logI-logV (bên phải) 75 Hình 3.8 Đặc trƣng hoạt động quang điện linh kiện cấu trúc M-S-M dƣới chiếu v xạ UV: Đặc tuyến I-V (hình bên trái) đặc tuyến dạng semi-log (hình bên phải) 77 Hình 3.9 Giản đồ lƣợng mơ tả khác dịng tối (a) (b) tƣơng ứng với điều kiện chiếu UV (c) (d) 77 Hình 3.10 Mật độ dịng quang điện (a) hệ số đáp ứng (b) phụ thuộc vào VDS 79 Hình 3.11 Sự thay đổi mật độ dòng cảm biến ZnPc theo trạng thái bật-tắt (onoff) nguồn UV VDS = V 82 Hình 3.12 Ảnh hƣởng điện áp (VDS >0) đến đặc trƣng tín hiệu cảm biến: (a) Đặc trƣng J-t VDS từ V đến 15 V, (b) đặc trƣng J-t VDS từ V đến V, (c) thay đổi Jon/off theo VDS 83 Hình 3.13 Ảnh hƣởng điện áp (VDS < 0) đến đặc trƣng tín hiệu cảm biến 84 Hình 3.14 Thời gian hồi đáp linh kiện Ag-ZnPc-Ag với nguồn UV-265 nm số giá trị điện áp, (a) thời gian hồi đáp tăng (b) thời gian hồi đáp giảm 86 Hình 3.15 Sơ đồ mơ tả hệ đo cảm biến: (1) linh kiện Ag-ZnPc-Ag, (2) hệ phân tích thơng số bán dẫn Keithley, (3) nguồn ánh sáng trắng cƣờng độ sáng/chế độ bật-tắt quang, (4) đo cƣờng độ sáng (5) buồng tối 87 Hình 3.16 Đặc tuyến I-V linh kiện cấu trúc Ag-ZnPc-Ag đáp ứng với ánh sáng trắng với cƣờng độ sáng khác (a) đồ thị dạng semi-log (b) 88 Hình 3.17 Đặc tuyến I-V linh kiện cấu trúc Ag-ZnPc-Ag VDS > đáp ứng với thay đổi cƣờng độ ánh sáng (a), phụ thuộc tuyến tính cƣờng độ dịng quang điện vào cƣờng độ ánh sáng VDS khác (b) 89 Hình 3.18 Hệ số đáp ứng linh kiện Ag-ZnPc-Ag với thay đổi cƣờng độ ánh sáng trắng điện áp khác (a) hiệu suất lƣợng tử ngoại điện áp V (b) 91 Hình 3.19 Sự thay đổi mật độ dòng linh kiện Ag-ZnPc-Ag theo trạng thái bậttắt (on-off) nguồn sáng trắng VDS = V (a) tỉ số mật độ dòng bật-tắt với cƣờng độ ánh sáng chiếu tới khác (b) 92 Hình 3.20 Thời gian phản hồi linh kiện Ag-ZnPc-Ag với nguồn sáng trắng điện áp V: (a) xác định thời gian phản hồi tăng (tr), (b) xác định thời gian phản hồi giảm (td), (c) biến thiên tr theo cƣờng độ sáng (d) biến thiên td theo cƣờng độ sáng 95 Hình A.1 Tính khoảng cách tƣơng tác liên phân tử d β-ZnPc 111 Hình A.2 Tính khoảng cách tƣơng tác liên phân tử d β-CuPc 111 Hình B.1 Thiết kế mạch logic INV từ CMOS 114 Hình B.2 Kết layout cho mạch logic INV 115 Hình B.3 Bộ bốn mặt nạ cho trình chế tạo INV 116 Hình B.4 Kết mơ tính chất điện INV sử dụng P3HT 118 Hình B.5 Ngun lý kết mơ INV sử dụng tranzitor có sẵn 118 Hình B.6 Phƣơng thức đo đặc trƣng INV hoạt động VDD = 5V 119 Hình B.7 Đặc trƣng hoạt động INV theo giá trị VDD khác 120 Hình B.8 Một số hình ảnh trình tổng hợp F16CuPc 121 Hình B.9 Quy trình chế tạo phần tử INV 121 Hình B.10 Mặt nạ quang chế tạo phần tử INV 122 Hình C.1 Kiến trúc mơ đun bảo mật AES 124 Hình C.2 Mạch RTL Schematic mơ đun AES 128 vi ... DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LỤC NHƢ QUỲNH NGHIÊN CỨU, MÔ PHỎNG VÀ CHẾ TẠO VẬT LIỆU BÁN DẪN HỮU CƠ β- ZnPc VÀ β- CuPc ỨNG DỤNG TRONG LINH KIỆN ĐIỆN TỬ Ngành: Khoa học vật liệu. .. chọn hai vật liệu ZnPc CuPc làm hƣớng nghiên cứu cho tác giả với tên luận án: ? ?Nghiên cứu, mô chế tạo vật liệu bán dẫn hữu β- ZnPc β- CuPc ứng dụng linh kiện điện tử? ?? Với định hƣớng nghiên cứu... hóa học -vật lý, đặc tính vật liệu đƣợc mô cho phép chế tạo vật liệu đáp ứng đƣợc yêu cầu ứng dụng linh kiện điện tử Rất nhiều nghiên cứu vật liệu bán dẫn hữu nhƣng chủ yếu tập trung vào phân

Ngày đăng: 07/06/2021, 15:56

Tài liệu cùng người dùng

Tài liệu liên quan