1. Trang chủ
  2. » Giáo án - Bài giảng

4 nội suy và phương pháp bình phương tối thiểu

7 95 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 138,56 KB

Nội dung

Trần Hiếu 1.1 Lược đồ Horner Chia đa thức cho đơn thức P (x) = an xn + an−1 xn−1 + a1 x + a0 Tìm Q(x) r: P (x) = Q(x)(x − c) + r an + c → bn−1 an−1 c.bn−1 bn−2 an−2 a1 c.bn−2 c.b1 bn−3 b0 a0 c.b0 r Ví dụ: P (x) = x5 + x4 − 1, c = −2 1 0 -1 + -2 -4 -16 c = −2 -1 -4 -17 Khi đó: Q(x) = x4 − x3 + 2x2 − 4x + r = −17 1.2 Nhân đa thức với đơn thức P (x) = an xn + an−1 xn−1 + a1 x + a0 Tìm Q(x) = P (x)(x − c) c → an bn+1 an−1 c.an bn an−2 c.an−1 bn−1 a1 c.a2 b2 a0 c.a1 b1 c.a0 b0 Lúc Q(x) = bn+1 xn+1 + bn xn + + b1 x + b0 Ví dụ: P (x) = x5 + x4 − 1, c = −2 c = −2 1 0 -1 − -2 -2 0 0 -1 -2 ⇒ Q(x) = x6 + 3x5 + 2x4 − x − Trần Hiếu Đa thức nội suy Lagrange Công thức chung n Ln (x) = ω(x) k=0 yk với ω (x) = (x − x0 ) (x − x1 ) (x − xn ) Dk = ω (xk ) (x − xk ) Dk Bảng nội suy x0 x1 x x0 x − x0 x0 − x1 x1 x1 − x0 x − x1 xn xn − x0 xn − x1 xn x0 − xn x1 − xn x − xn D0 D1 Dn ω (x) Công thức sai số Giả sử hàm f (x) có đạo hàm đến cấp n + liên tục đoạn [a; b] Đặt M = max f (n+1) (x) , ta có: x∈[a;b] |f (x) − Ln (x)| ≤ M |ω (x)| (n + 1)! Ví dụ Cho hàm số y xác định bởi: x y = ex 2,7183 7,3891 20,0855 54,5982 Lập đa thức nội suy, tính gần đánh giá sai số điểm x = 1, Giải: Lập bảng nội suy: x x − −1 −2 −3 6(1 − x) x − −1 −2 2(x − 2) x − −1 2(3 − x) x−4 6(x − 4) (x − 1)(x − 2)(x − 3)(x − 4) ⇒ Đa thức nội suy là: L3 (x) = (x−1)(x−2)(x−3)(x−4) 2, 7183 7, 3891 20, 0855 54, 5982 + + + (1 − x) (x − 2) (3 − x) (x − 4) Trần Hiếu y (1, 5) ≈ L3 (1, 5) = 4, 9124 Có y (4) = ex → M = e4 e4 ⇒ |y (1, 5) − L3 (1, 5)| ≤ |(1, − 1) (1, − 2) (1, − 3) (1, − 4)| = 2, 1327 4! TH đặc biệt: Các điểm nút cách với bước h = xk+1 − xk Đặt q = x − x0 , ta có: h n n (q − k) Ln (x) = k=0 k=0 (−1)n−k yk k! (n − k)! (q − k) Đa thức nội suy newton Định nghĩa tỷ sai phân Trên đoạn [xk , xk+1 ] ta định nghĩa đại lượng f [xk , xk+1 ] = yk+1 − yk xk+1 − xk gọi tỉ sai phân cấp Tương tự f [xk , xk+1 , xk+2 ] = f [xk+1 , xk+2 ] − f [xk , xk+1 ] xk+2 − xk gọi tỉ sai phân cấp Bằng quy nạp, ta có tỉ sai phân cấp p f [xk , xk+1 , , xk+p ] = f [xk+1 , xk+2 , , xk+p ] − f [xk , xk+1 , , xk+p−1 ] xk+p − xk Xây dựng cơng thức Vì cơng thức chung đọc khó hiểu nên làm ví dụ sau: Xây dựng x 1,0 1,3 1,6 1,9 đa thức nội suy Newton: y 0,76 0,62 0,45 0,28 Giải: Lập bảng tỷ sai phân: Trần Hiếu xk f (xk ) 1,0 0,76 f [xk , xk+1 ] 0,62−0,76 1,3−1 1, −17 −7 30 − 15 1,6−1 = −17 30 0.45 0,28−0,45 1,9−1,6 1,9 −7 15 0,62 0,45−0,62 1,6−1,3 1.6 = f [xk , xk+1 , xk+2 ] f [xk , xk+1 , xk+2 , xk+3 ] = −17 30 −17 −17 30 − 30 1,9−1,3 = −1 0− −1 1,9−1 = 27 =0 0,28 Lúc có cách xây dựng đa thức nội suy Newton: - Công thức Newton tiến: (1) N3 (x) = 0, 76− (x − 1)− (x − 1) (x − 1, 3)+ (x − 1) (x − 1, 3) (x − 1, 6) 15 27 - Công thức Newton lùi: 17 (2) N3 (x) = 0, 28− (x − 1, 9)+0 (x − 1, 9) (x − 1, 6)+ (x − 1, 9) (x − 1, 6) (x − 1, 3) 30 27 Công thức tổng quát - Newton tiến: (1) Nn (x) = y0 + f [x0 , x1 ] (x − x0 ) + f [x0 , x1 , x2 ] (x − x0 ) (x − x1 ) + + f [x0 , x1 , , xn ] (x − x0 ) (x − x1 ) (x − xn−1 ) - Newton lùi: (2) Nn (x) = yn +f [xn−1 , xn ] (x − xn )+f [xn−2 , xn−1 , xn ] (x − xn ) (x − xn−1 )+ .+ f [x0 , x1 , , xn ] (x − xn ) (x − xn−1 ) (x − x1 ) Sai số Rn (x) = f [x, x0 , , xn ] (x − x0 ) (x − x1 ) (x − xn ) dùng sai số đa thức nội suy Lagrange TH đặc biệt: Các điểm nút cách với bước h = xk+1 − xk • Định nghĩa sai phân: Sai phân tiến cấp ∆yj = yj+1 − yj Sai phân tiến cấp k+1 ∆k+1 yj = ∆k yj+1 − ∆k yj Trần Hiếu • Cơng thức Newton tiến: Đặt q = x − x0 h ∆2 y0 ∆n y0 ∆y0 q+ q (q − 1) + q (q − 1) (q − n + 1) = y0 + 1! 2! n! x − xn • Cơng thức Newton lùi: Đặt p = h Nn(1) (x) Nn(2) (x) ∆2 yn−2 ∆n y0 ∆yn−1 p+ p (p + 1) + + p (p + 1) (p + n − 1) = yn + 1! 2! n! Phương pháp bình phương tối thiểu Bài tốn xấp xỉ thực nghiệm x x0 x1 xn y y0 y1 y n Tìm hàm f (x) xấp xỉ bảng (xk , yk ) theo phương pháp bình phương tối thiểu để (f (xk ) − yk )2 → g (f ) = Hàm f tổng quát đa dạng, số dạng thường gặp 4.1 Dạng f (x) = Ax + B Khi n (A + Bxk − yk )2 g (A, B) = k=1 Bài tốn quy tìm cực tiểu hàm biến:  n  ∂  g (A, B) = (A + Bxk − yk )  ∂A =0 k=1 n  ∂  (A + Bxk − yk ) xk =  ∂B g (A, B) = k=1  n n   nA + x B = yk  k k=1 k=1 ⇒ n n n   xk A + x2k B = xk yk  k=1 Ví dụ: k=1 k=1 x 1 2 3 y 2 4 5 Giải: Trần Hiếu n Ta có n = 10, n xk = 29, k=1 n x2k = 109, yk = 39, k=1 k=1 n xk yk = 140 Hệ phương k=1 trình xác định A, B có dạng: 10A + 29B = 39 29A + 109B = 140 ⇒ A = 0.7671 B = 1.0803 ⇒ f (x) = 1.0803x + 0.7671 4.2 Dạng f (x) = Ax2 + Bx + C Khi n A + Bxk + Cx2k − yk g (A, B, C) = k=1 Bài tốn quy tìm cực tiểu hàm biến:  n  ∂  =0 A + Bxk + Cx2k − yk g (A, B, C) =  ∂A   k=1   n ∂ g (A, B, C) = A + Bxk + Cx2k − yk xk = ∂B  k=1   n   ∂  g (A, B, C) = A + Bxk + Cx2k − yk x2k =  ∂C k=1  n n n   nA + x B + x C = yk  k k   k=1 k=1 k=1   n n n n xk A + xk B + xk C = x k yk ⇒  k=1 k=1 k=1 k=1   n n n n    xk A + xk B + xk C = x2k yk  k=1 4.3 k=1 k=1 k=1 Dạng f (x) = Ag(x) + Bh(x) Khi n (Ag (xk ) + Bh (xk ) − yk )2 g (A, B) = k=1 Trần Hiếu Bài tốn quy tìm cực tiểu hàm biến:  n  ∂  (Ag (xk ) + Bh (xk ) − yk )2  g (A, B) = 2g (xk ) ∂A ⇒ =0 k=1 n  ∂  (Ag (xk ) + Bh (xk ) − yk )2 =  ∂B g (A, B) = 2h (xk ) k=1  n n n   g (xk ) A + g (xk ) h (xk ) B = g (xk ) yk  k=1 n    k=1 n g (xk ) h (xk ) A + k=1 k=1 h2 (xk ) B k=1 n = h (xk ) yk k=1 Đối với dạng khác ta làm tương tự theo cách đưa tốn tìm cực tiểu hàm nhiều biến ... = yn + 1! 2! n! Phương pháp bình phương tối thiểu Bài toán xấp xỉ thực nghiệm x x0 x1 xn y y0 y1 y n Tìm hàm f (x) xấp xỉ bảng (xk , yk ) theo phương pháp bình phương tối thiểu để (f (xk... Đa thức nội suy là: L3 (x) = (x−1)(x−2)(x−3)(x? ?4) 2, 7183 7, 3891 20, 0855 54, 5982 + + + (1 − x) (x − 2) (3 − x) (x − 4) Trần Hiếu y (1, 5) ≈ L3 (1, 5) = 4, 91 24 Có y (4) = ex → M = e4 e4 ⇒ |y... 20,0855 54, 5982 Lập đa thức nội suy, tính gần đánh giá sai số điểm x = 1, Giải: Lập bảng nội suy: x x − −1 −2 −3 6(1 − x) x − −1 −2 2(x − 2) x − −1 2(3 − x) x? ?4 6(x − 4) (x − 1)(x − 2)(x − 3)(x − 4)

Ngày đăng: 30/05/2021, 12:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w