Các cách giải khác nếu đúng vẫn cho điểm tối đa.. 4.[r]
(1)SỞ GIÁO DỤC VÀ ĐÀO TẠO TUYÊN QUANG
Đề thức
ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2011 - 2012
MƠN THI: TỐN
Thời gian: 120 phút (khơng kể thời gian giao đề)
Đề có 01 trang
Câu (3,0 điểm)
a) Giải phương trình: x2 6x 9 0
b) Giải hệ phương trình:
4
3 10
x y
y x
c) Giải phương trình: x2 6x 9 x 2011 Câu (2,5 điểm)
Một ca nô chạy xi dịng từ A đến B chạy ngược dòng từ B đến A hết tất
4 Tính vận tốc ca nơ nước n lặng, biết quãng sông AB dài 30 km vận tốc dòng nước km/giờ
Câu (2,5 điểm)
Trên đường tròn (O) lấy hai điểm M, N cho M, O, N không thẳng hàng Hai tiếp tuyến M , N với đường tròn (O) cắt A Từ O kẻ đường vng góc với OM cắt AN S Từ A kẻ đường vng góc với AM cắt ON I Chứng minh:
a) SO = SA
b) Tam giác OIA cân Câu (2,0 điểm)
a) Tìm nghiệm nguyên phương trình: x2 + 2y2 + 2xy + 3y – = 0
b) Cho tam giác ABC vuông A Gọi I giao điểm đường phân giác Biết AB = cm, IC = cm Tính BC
(2)Hết
-Hướng dẫn chấm, biểu điểm
MÔN THI: TOÁN CHUNG
Nội dung Điểm
Câu (3,0 điểm)
a) Giải phương trình: x2 6x 9 0 1,0
Bài giải: Ta có ' ( 3)2 0 0,5 Phương trình có nghiệm:
6
x
0,5
b) Giải hệ phương trình:
4 (1)
3 10 (2)
x y y x 1,0
Bài giải: Cộng (1) (2) ta có: 4x - 3y + 3y + 4x = 16 8x = 16 x = 2 0,5
Thay x = vào (1): – 3y = y =
3 Tập nghiệm: 2 x y 0,5
c) Giải phương trình: x2 6x 9 x 2011 (3)
1,0
Bài giải: Ta có
2
2 6 9 3 3
x x x x 0,5
Mặt khác:
2 6 9 0 2011 0 2011 3 3
x x x x x x
Vậy: (3) x 3 x 2011 3 2011 Phương trình vơ nghiệm
0,5
Câu (2,5 điểm )Một ca nô chạy xi dịng từ A đến B chạy ngược dịng từ B đến A hết tất Tính vận tốc ca nô nước yên lặng, biết rằng qng sơng AB dài 30 km vận tốc dịng nước km/giờ.
2,5
Bài giải: Gọi vận tốc ca nô nước yên lặng x km/giờ ( x > 4) 0,5 Vận tốc ca nơ xi dịng x +4 (km/giờ), ngược dòng x - (km/giờ) Thời gian ca nơ xi dịng từ A đến B
30
x giờ, ngược dòng
từ B đến A
30
x
0,5
Theo ta có phương trình:
30 30
4
x x (4) 0,5
2
(4) 30(x 4)30(x4)4(x4)(x 4) x 15x 16 0 x 1
hoặc x = 16 Nghiệm x = -1 <0 nên bị loại 0,5
(3)Vậy vận tốc ca nô nước yên lặng 16km/giờ 0,5 Câu (2,5 điểm) Trên đường tròn (O) lấy hai điểm M, N cho M, O, N không thẳng hàng Hai tiếp tuyến M , N với đường tròn (O) cắt tại A Từ O kẻ đường vng góc với OM cắt AN S Từ A kẻ đường vng góc với AM cắt ON I Chứng minh: a) SO = SA b) Tam giác OIA cân
A
S
O N
M
I 0,5
a) Chứng minh: SA = SO 1,0
Vì AM, AN tiếp tuyến nên: MAO SAO (1) 0,5
Vì MA//SO nên: MAO SOA (so le trong) (2)
0,5 Từ (1) (2) ta có: SAO SOA SAO cân SA = SO (đ.p.c.m)
b) Chứng minh tam giác OIA cân 1,0
Vì AM, AN tiếp tuyến nên: MOA NOA (3) 0,5 Vì MO//AI nên: MOA OAI (so le trong) (4)
0,5 Từ (3) (4) ta có: IOA IAO OIA cân (đ.p.c.m)
Câu (2,0 điểm)
a) Tìm nghiệm nguyên phương trình: x2 + 2y2 + 2xy + 3y – = (1) 1,0
Bài giải: (1) (x2 + 2xy + y2) + (y2 + 3y – 4) = 0
0,5 (x+ y)2 + (y - 1)(y + 4) = 0
(y - 1)(y + 4) = - (x+ y)2 (2)
(4)Vì - (x+ y)2 với x, y nên: (y - 1)(y + 4) -4 y 1
0,5 Vì y nguyên nên y 4; 3; 2; 1; 0; 1
Thay giá trị nguyên y vào (2) ta tìm cặp nghiệm nguyên (x; y) PT cho là: (4; -4), (1; -3), (5; -3), ( -2; 0), (-1; 1)
b) Cho tam giác ABC vuông A Gọi I giao điểm đường phân giác trong Biết AB = cm, IC = cm Tính BC.
5
x
D
B
A
C I
E Bài giải:
Gọi D hình chiếu vng góc C đường thẳng BI, E giao điểm AB CD.BIC
có DIC góc ngồi nên: DIC=
1( ) 90 : 20 450
IBC ICB B C
DIC vuông cân DC = :
Mặt khác BD đường phân giác đường cao nên tam giác BEC cân B EC = DC = 12:
và BC = BE
0,5
Gọi x = BC = BE (x > 0) Áp dụng định lý Pi-ta-go vào tam giác vuông ABC ACE ta có: AC2 = BC2 – AB2 = x2 – 52= x2 -25
EC2 = AC2 + AE2 = x2 -25 + (x – 5)2 = 2x2 – 10x (12: 2)2 = 2x2 – 10x
x2 - 5x – 36 =
Giải phương trình ta có nghiệm x = thoả mãn Vậy BC = (cm)
O,5
Chú ý: Đáp án trình bày cách giải toán Các cách giải khác cho điểm tối đa.