1. Trang chủ
  2. » Trung học cơ sở - phổ thông

De thi va dap an thi hoc ki 2 mon toan 11 nam 20112012

4 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 206,33 KB

Nội dung

Theo ch ươ ng trình nâng cao.. Theo ch ươ ng trình nâng cao.[r]

(1)

http://toanhocmuonmau.violet.vn

http://toanhocmuonmau.violet.vn

SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIÁNG

ĐỀ KIỂM TRA HỌC KÌ II NĂM HỌC 2011-2012

Mơn: Tốn lớp 11 Thời gian làm bài: 90 phút Phần chung (8 ñiểm)

Câu I (2 điểm) Tính giới hạn sau:

2

2 lim

3 2

x

x x

− − −

2 ( )

1

lim

xx + x+

Câu II (2 ñiểm) Cho hàm số y= +x3 3x2+4 1( ) Giải bất phương trình 'y ≤0

2 Viết phương trình tiếp tuyến đồ thị hàm số (1), biết hệ số góc tiếp tuyến

Câu III (3 điểm) Cho hình chóp S.ABCD có đáy hình vng cạnh a, SA vng góc với mặt phẳng (ABCD); H hình chiếu vng góc A lên SD, SA = a

1 Chứng minh CD vuông góc với mặt phẳng (SAD) Chứng minh AH vng góc với SC

3 Tính góc hai mặt phẳng (SBC) (SCD)

Câu IV (1 ñiểm ) Cho tam giác có độ dài ba cạnh a, b, c nửa chu vi p (p<3) Chứng minh phương trình sau có nghiệm thuộc (0; 1):

3 1 1 1

2

x x

p a p b p c a b c

   

− + +  +  + + − =

− − −  

 

Phần riêng (2 điểm): Thí sinh chỉđược làm hai phần (phần A B) A Theo chương trình chuẩn

Câu Va (2 điểm ) Cho hàm số y = x.sinx Tính ñạo hàm hàm số

2 Chứng minh '' 'x yy +x y = −2 sinx

B Theo chương trình nâng cao Câu Vb Theo chương trình nâng cao

Câu Vb (2 ñiểm ) Cho hàm số y= −x3 3mx2+3(m+2)x+5

1 Tìm m để x = nghiệm phương trình y’ =

2 Tìm m để y’ = có hai nghiệm phân biệt x1, x2 thỏa mãn x1 – 2x2 =

(2)

http://toanhocmuonmau.violet.vn

http://toanhocmuonmau.violet.vn

HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KÌ NĂM HỌC 2011-2012

MƠN TỐN, LỚP 11

Chú ý : Dưới ñây sơ lược bước giải cách cho ñiểm phần Bài làm của học sinh yêu cầu tiết, lập luận chặt chẽ Nếu học sinh giải cách khác chấm cho ñiểm phần tương ứng

Câu Hướng dẫn giải Điểm

1 (1ñ)

( )( )

x x x

x 3x 2

x 3x 2

lim lim lim

3x 3

3x 2

→ → →

− − +

− = = − + =

− − −

1,0 I

(2ñ)

2 (1ñ)

( )

x

lim 2x 4x

→ + + = 1,0

1 (1ñ) TXĐ :ℝ

2

y '=3x +6x 0,25

2

y '≤ ⇔0 x +2x≤0 0,25

2 x

⇔ − ≤ ≤ 0,25

KL 0,25

2 (1ñ)

Gọi (x ; y0 0)là tiếp ñiểm

0,25

Tìm x0 =1 x0 = −3 0,25

Với x0 =1 y0 =8, viết phương trình tiếp tuyến: y=9x 1− 0,25 II

(2ñ)

Với x0 = −3 y0 =4, viết phương trình tiếp tuyến: y=9x+31 0,25 1.(1đ)

H

D

B

A

C S

K

SA⊥(ABCD)⇒SA⊥CD(1) 0,25

ABCD hình vng ⇒CD⊥AD(2) 0,25

III (3ñ)

(3)

http://toanhocmuonmau.violet.vn

http://toanhocmuonmau.violet.vn (1đ)

Theo phần a) ta có CD⊥(SAD), mà AH⊂(SAD)⇒CD⊥AH(3) 0,25

Theo giả thiết AH⊥SD(4) 0,25

Từ (3) (4) ta có AH⊥(SCD) ,25

AH SC

⇒ ⊥ 0,25

3 (1ñ)

Ta có SA BD SC BD(5)

AC BD

⊥ 

⇒ ⊥

 ⊥ 

Kẻ BK⊥SC K (6)

Từ (5) (6) ta có DK⊥SC (7)

0 ,25

Từ (6) (7) ta có ((SBC , SCD) ( ))=(BK, DK) 0,25 BD=SD=a

Ta có tam giác SCD vng D, có DK đường cao

2 2 2

1 1 1 a

DK

DK SD CD 2a a 2a

⇒ = + = + = ⇒ =

Tương tự BK a =

0 ,25

Theo định lí cơsin tam giác BDK ta có

BK2 DK2 BD2 (( ) ( ))

cosBKD BKD 120 SBC , SCD 60

2.BK.DK

+ −

= = − ⇒ = °⇒ = ° 0,25

1 (1ñ)

Xét hàm số f (x) x3 1 x 1

p a p b p c a b c

   

= − + +  +  + + −

− − −  

  ℝ

Ta có f(x) liên tục ℝ 1

f (0) 2

a b c

 

=  + + −

 

1 1 1

f (1)

p a p b p c a b c

   

= − − + − + − +  + + −

 

 

0,25

Do p < nên 2 f (0) a + + > >b c p

⇒ > 0,25

Chứng minh : 1 1

p a p b p c a b c

 

+ + ≥  + + 

− − −  (*)

Thật : theo cosi cho hai số dương ta có :

( )( )

1 4

p a− +p b− ≥ p a− p b− ≥ p a− + −p b = c Tương tự ta có : 1

p−b+p c− ≥a ;

1

p c− +p a− ≥b Từđó (*) chứng minh ( dấu xảy a=b=c)

0,25 IV

(1ñ)

Từ (*) ta có f (1)<0

Vậy : f (0).f (1)<0⇒ phương trình cho có nghiệm thuộc khoảng (0 ;1) 0,25 Va

(2ñ)

1 (1ñ) TXĐ:ℝ

y '=x '.sin x+x.(sin x) '

(4)

http://toanhocmuonmau.violet.vn

http://toanhocmuonmau.violet.vn sin x x.cos x

= + 0,25

KL 0,25

2.(1ñ)

( ) ( )

y ''= sin x '+ x cos x ' 0,25

=cos x+cos x−x sin x=2 cos x−x sin x 0,25

Ta có: x.y '' 2y ' x.y− + =x cos x( −x sin x) (−2 sin x+x cos x)+x.x sin x= −2sin x 0,25

KL… 0,25

1.( 1ñ ) TXĐ:ℝ

( )

2

y '=3x −6mx+3 m+2

0,25

x=2 nghiệm phương trình y’=0 y’(2)=0⇔ =m

0,5

KL… 0,25

2.(1ñ)

y’ = có hai nghiệm phân biệt ⇔x2−2mx+ + =m 0có hai nghiệm phân biệt

⇔ ∆ > 0,25

2 m

m m (*)

m

>  ⇔ − − > ⇔  < −

 0,25

Theo vi-et ta có

1

x x 2m (1) x x m (2)

+ =

 

= + 

GT x1−2x2 =3 (3)

Giải (1) (3) ta ñược:x1 4m 3, x2 2m

3

+ −

= =

Thay vào (2) ta ñược

m 3(tm)

8m 15m 27 9

m (tm)

8 =   − − = ⇔

= − 

0,25 Vb

(2ñ)

KL… 0,25

Ngày đăng: 22/05/2021, 04:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w