1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương pháp chia miền đối với phương trình song điều hòa

87 376 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 87
Dung lượng 677,27 KB

Nội dung

Phương pháp chia miền đối với phương trình song điều hòa

Trang 1

ĐẠI HỌC THÁI NGUYÊN

TRƯỜNG ĐẠI HỌC KHOA HỌC

Trang 2

ĐẠI HỌC THÁI NGUYÊN

TRƯỜNG ĐẠI HỌC KHOA HỌC

ĐỖ DIỆP ANH

PHƯƠNG PHÁP CHIA MIỀN ĐỐI VỚI PHƯƠNG TRÌNH SONG ĐIỀU HÒA

Chuyên ngành: Toán ứng dụng Mã số: 60 46 36

LUẬN VĂN THẠC SĨ TOÁN HỌC

Người hướng dẫn khoa học:

TS VŨ VINH QUANG

Trang 3

Mục lục

Chương 1 Các kiến thức cơ bản 61.1 Các kiến thức cơ bản về các không gian hàm 61.2 Lý thuyết về phương trình elliptic 141.3 Phương pháp lặp và các sơ đồ lặp cơ bản 21Chương 2 Phương pháp chia miền giải phương trình elliptic cấp 2 282.1 Giới thiệu về phương pháp chia miền 282.2 Phương pháp chia miền Saito-Fujita 332.3 Phương pháp chia miền Dang Quang A-Vu Vinh Quang 392.4 Phương pháp chia miền giải bài toán biên hỗn hợp mạnh 47Chương 3 Phương pháp chia miền giải bài toán song điều hòa 553.1 Giới thiệu về phương trình song điều hòa 553.2 Phương pháp giải bài toán song điều hòa bằng phương pháp

phân rã về dãy hai bài toán elliptic 563.3 Phương pháp chia miền giải bài toán song điều hòa với điều

kiện biên Dirichlet 583.4 Phương pháp chia miền giải bài toán song điều hòa với điều

kiện biên hỗn hợp mạnh 74

Trang 4

Mở đầu

Trên thực tế, nhiều bài toán trong khoa học kỹ thuật thông qua mô hìnhhóa toán học được đưa đến việc giải các bài toán biên đối với phương trìnhđạo hàm riêng Trong đó rất ít bài toán là các trường hợp đơn giản (miềnhình học là miền đơn giản, hệ số của phương trình là hệ số hằng, ) có thểtìm được nghiệm tường minh bằng phương pháp giải tích Còn đại đa số cáctrường hợp khác thì nghiệm tường minh không có hoặc rất phức tạp Hơnnữa, một số bài toán trong thực tế chỉ yêu cầu tìm nghiệm của bài toán tạimột số điểm rời rạc nào đó Khi đó, chúng ta buộc phải sử dụng các phươngpháp giải gần đúng, chủ yếu là phương pháp số như phương pháp sai phân,phương pháp phần tử hữu hạn Các phương pháp này rời rạc hóa bài toán vàhầu hết đều đưa về việc giải hệ phương trình đại số tuyến tính cỡ lớn, dẫnđến nhu cầu phát triển các phương pháp hữu hiệu để giải các hệ phương trìnhlưới Tuy nhiên, khi miền hình học là miền phức tạp, dữ liệu hoặc các hệ sốcủa phương trình là gián đoạn thì việc áp dụng một phương pháp nào đó chocả miền sẽ gặp rất nhiều khó khăn Vì vậy trong nhiều năm qua, người ta đãvà đang phát triển các phương pháp với mục đích chính là đưa các bài toánbiên trong miền hình học phức tạp về một dãy các bài toán biên trong miềnhình học đơn giản để có thể sử dụng các thuật toán hữu hiệu đã được pháttriển cho các miền đơn giản này Các phương pháp trên có tên gọi là cácphương pháp chia miền (Domain Decomposition Methods) Tư tưởng chínhcủa các phương pháp chia miền là tìm cách xác định các giá trị biên trên cácđường biên phân chia thông qua một phương pháp lặp để chuyển việc giảibài toán trong miền phức tạp về việc giải các bài toán trong các miền đơngiản từ đó thu được nghiệm của bài toán gốc.

Trong nhiều năm qua, lý thuyết về phương pháp chia miền đã và vẫn đangđược liên tục phát triển Các bài toán thường được xét đến là các bài toán

Trang 5

biên elliptic tuyến tính dạng Lu = f, x ∈ Ω, trong đó L là toán tử elliptic, Ωlà miền d chiều (d = 2, 3) với biên Lipschitz ∂Ω, f là hàm thuộc không gianL2(Ω) Giả sử miền Ω được chia thành hai miền con không giao nhau Ω1, Ω2.Ta kí hiệu Γ = Ω1∩ Ω2, giả sử Γ là biên Lipschitz (d−1) chiều Xuất phát từcông thức đa miền và phương trình Steklov-Poincare, các phương pháp chiamiền được phát triển từ các sơ đồ lặp cơ bản sau:

1 Sơ đồ Dirichlet-Neumann: Xuất phát từ λ là giá trị hàm chưa biết trênbiên phân chia, tiến hành giải lần lượt hai bài toán trong hai miền: Bài toánDirichlet trong miền Ω1 và bài toán Neumann trong miền Ω2 Từ đó, ngườita xây dựng sơ đồ lặp để hiệu chỉnh giá trị hàm trên biên phân chia Phươngpháp này đã được xét đến bởi các tác giả Bjorstad và Windlund (1986),Bramble, (1986), Funaro, (1988), Marini và Quarteroni (1988, 1989).

2 Sơ đồ Neumann-Neumann: Xuất phát từ λ là giá trị hàm chưa biết trênbiên phân chia, tiến hành giải lần lượt hai bài toán trong hai miền: Bài toánDirichlet trong miền Ω1 và bài toán Dirichlet trong miền Ω2 Việc xây dựngsơ đồ lặp để hiệu chỉnh giá trị hàm trên biên phân chia phải dựa vào kếtquả của hai bài toán dạng Neumann trong hai miền Phương pháp này đượcnghiên cứu bởi các tác giả Agoshkov, Lebedev (1985), Bourgat, (1989).

3 Sơ đồ Robin: Xuất phát từ u(0)

2 trong miền Ω2, tiến hành giải lần lượthai bài toán Robin trong hai miền Ω1, Ω2 Việc hiệu chỉnh giá trị hàm trênbiên phân chia được thực hiện thông qua sơ đồ lặp khi giải lần lượt hai bàitoán đó Phương pháp này được nghiên cứu bởi tác giả Agoshkov (1988),Lion (1990).

Ta thấy rằng, cơ sở của các phương pháp trên đều xuất phát từ việc xácđịnh giá trị hàm trên biên phân chia, từ đó xây dựng các sơ đồ lặp dạng hai lớpđối với các phương trình toán tử Việc nghiên cứu tính hội tụ của các sơ đồlặp sử dụng kết quả của các không gian Sobolev và toán tử Steklov-Poincare.Phương trình đạo hàm riêng cấp cao mà tiêu biểu là phương trình songđiều hòa là lớp phương trình vẫn còn đang thu hút sự quan tâm rất lớn của

Trang 6

rất nhiều nhà cơ học, kỹ sư và các nhà toán học Trong vòng ba thập niênqua nhiều phương pháp mới, hữu hiệu giải phương trình trên đã được nghiêncứu và phát triển Cùng với sự phát triển mạnh mẽ của máy tính điện tử , cácphương pháp số đã trở thành công cụ đắc lực để giải quyết các bài toán kỹthuật tuy nhiên vẫn có không ít tác giả đã sử dụng phương pháp gần đúnggiải tích như phương pháp bình phương cực tiểu, phương pháp nghiệm cơbản để giải lớp phương trình song điều hòa Việc nghiên cứu thuật toán chiamiền giải phương trình song điều hòa là một lĩnh vực cần nghiên cứu.

Nội dung chính của luận văn trình bày các kết quả về lý thuyết và thựcnghiệm tính toán đối với phương pháp chia miền giải bài toán biên chophương trình elliptic cấp hai và bài toán song điều hòa với điều kiện biênDirichlet hoặc điều kiện biên hỗn hợp mạnh với tư tưởng hiệu chỉnh giá trịhàm hoặc đạo hàm trên biên phân chia Nội dung luận văn gồm có ba chương:Chương 1: Trình bày một số kiến thức cơ bản về các không gian Sobolev,phương trình elliptic, lý thuyết về phương pháp lặp giải phương trình toántử đây là những kiến thức quan trọng làm nền tảng cho các kết quả sẽ trìnhbày trong các chương tiếp theo của luận văn.

Chương 2: Trình bày ba phương pháp chia miền: Phương pháp Fujita, phương pháp Dang Quang A-Vu Vinh Quang và phương pháp chiamiền giải bài toán biên hỗn hợp mạnh trên cơ sở của phương pháp chia miềntổng quát Trong đó phương pháp Saito-Fujita xuất phát từ tư tưởng hiệuchỉnh hàm trên biên phân chia thông qua phương pháp lặp trên cơ sở sơ đồlặp Dirichlet-Neumann, còn phương pháp Dang Quang A-Vu Vinh Quangxuất phát từ việc hiệu chỉnh giá trị đạo hàm trên biên phân chia bằng cáchtiến hành giải lần lượt hai bài toán trong hai miền: Bài toán Neumann trongmiền Ω1 và bài toán Dirichlet trong miền Ω2.

Saito-Chương 3: Giới thiệu tổng quan về phương trình song điều hòa và trìnhbày các kết quả của phương pháp chia miền đối với bài toán song điều hòa,trên cơ sở phân rã bài toán song điều hòa về dãy hai bài toán elliptic cùng

Trang 7

các kết quả về phương pháp chia miền cho bài toán biên elliptic cấp hai, luậnvăn đã trình bày phương pháp chia miền giải bài toán song điều hòa với điềukiện biên Dirichlet, đưa ra một số kết quả thực nghiệm tính toán để kiểmtra sự hội tụ của hai phương pháp SF và phương pháp AQH, cải tiến các sơđồ chia miền và so sánh tốc độ hội tụ của các phương pháp, đồng thời cũngtrình bày phương pháp chia miền giải bài toán song điều hòa với điều kiệnbiên hỗn hợp mạnh.

Các kết quả thực nghiệm tính toán trong luận văn đã sử dụng thư việnchương trình TK2004 trên cơ sở thuật toán thu gọn khối lượng tính toán củaSamarskij A - Nikolaev E được lập trình trong môi trường Matlab trên máytính PC.

Mặc dù đã rất cố gắng song luận văn không tránh khỏi những thiếu sót.Em rất mong nhận được sự chỉ bảo đóng góp ý kiến của các thầy cô giáo vàbạn bè đồng nghiệp cho bản luận văn hoàn chỉnh hơn.

Thái Nguyên, ngày 18 tháng 09 năm 2009.Học viên

Đỗ Diệp Anh

Trang 8

Chương 1

Các kiến thức cơ bản

Trong chương này, chúng tôi trình bày những kết quả lý thuyết quan trọngvề các không gian Sobolev, phương trình elliptic với khái niệm nghiệm yếuvà định lý tồn tại duy nhất nghiệm, các bất đẳng thức Poincare, lý thuyết vềphương pháp lặp giải phương trình toán tử Những kiến thức cơ sở và kếtquả được tham khảo từ các tài liệu [ 4, 5, 6, 7, 11, 17].

1.1 Các kiến thức cơ bản về các không gian hàm

1.1.1 Không gian Ck( ¯Ω)

Giả sử Ω là một miền bị chặn trong không gian Euclid n chiều Rn và ¯Ωlà bao đóng của Ω Ta ký hiệu Ck( ¯Ω)(k = 0, 1, 2, ) là tập các hàm có đạohàm đến cấp k kể cả k trong Ω, liên tục trong ¯Ω Ta đưa vào Ck( ¯Ω) chuẩn

kukCk( ¯Ω) = X|α|=k

maxx∈ ¯Ω

|Dαu(x)|, (1.1)trong đó α = (α1, , αn) được gọi là đa chỉ số là vectơ với các tọa độnguyên không âm, |α| = α1 + ã ã ã + αn,

Dαu = ∂

Sự hội tụ theo chuẩn này là sự hội tụ đều trong ¯Ω của các hàm và tất cảđạo hàm của chúng đến cấp k kể cả k Rõ ràng tập Ck( ¯Ω) với chuẩn (1.1)là một không gian Banach.

Trang 9

|f (x) + g(x)|p 6 (|f (x)| + |g(x)|)p 6 2p(|f (x)|p+ |g(x)|p)nên rõ ràng LP(Ω) là một không gian véc tơ.

Ta đưa vào LP(Ω)phiếm hàm ||.||p được xác định bởi||u||p =

(1.3)Định lí 1.1 (Bất đẳng thức Hoder) Nếu 1 < p < ∞ và u ∈ LP(Ω), v ∈LP(Ω) thì uv ∈ LP(Ω) và

|u(x)v(x)|dx 6 ||u||p||v||p,

(1.4)trong đó p, = p/(p − 1), tức là 1

p +1

p, = 1, p, được gọi là số mũ liên hợpđối với p.

Định lí 1.2 (Bất đẳng thức Minkowski) Nếu 1 < p < ∞ thì

||f + g||p 6 ||f ||p+ ||g||p (1.5)Định lí 1.3 Không gian LP(Ω) với 1 6 p 6 ∞ là một không gian Banach.

Trang 10

1.1.3 Không gian W1,p(Ω)

Định nghĩa 1.1 Cho Ω là miền trong Rn Hàm u(x) được gọi là khả tích địaphương trong Ω nếu u(x) là một hàm cho trong Ω và với mỗi x0 ∈ Ω đềutồn tại một lân cận ω của x0 để u(x) khả tích trong ω.

Định nghĩa 1.2 Cho Ω là miền trong Rn Giả sử u(x), v(x) là hai hàm khảtích địa phương trong Ω sao cho ta có hệ thức

u ∂kϕ

∂x1k1 ∂xnkndx = (−1)kZ

đối với mọi ϕ(x) ∈ Ck

0(Ω), k = k1 + + kn, ki ≥ 0 (i = 1, 2, , n) Khiđó, v(x) được gọi là đạo hàm suy rộng cấp k của u(x).

Kí hiệu

v(x) = ∂ku∂x1k1 ∂xnkn.

Định nghĩa 1.3 Giả sử p là một số thực, 1 ≤ p < ∞, Ω là miền trong Rn.Không gian Sobolev W1,p(Ω) được định nghĩa như sau:

W1,p(Ω) =

u | u ∈ Lp(Ω), ∂u

∂xi ∈ Lp(Ω), i = 1, 2, , n

trong đó các đạo hàm trên là các đạo hàm suy rộng.Với p = 2, ta kí hiệu W1,2(Ω) = H1(Ω), nghĩa là

H1(Ω) =

u | u ∈ L2(Ω), ∂u

∂xi ∈ L2(Ω), i = 1, 2, , n

∂xi Lp(Ω).

ii) Không gian H1(Ω) là không gian Hilbert với tích vô hướng(u, v)H1(Ω) = (u, v)L2(Ω) +

 ∂u∂xi,

, ∀u, v ∈ H1(Ω).

Trang 11

1.1.4 Khái niệm biên liên tục Lipschitz Định lý nhúng

Định nghĩa 1.4 Miền Ω được gọi là có biên liên tục Lipschitz nếu nó giớinội và tồn tại các hằng số dương α, β và một số hữu hạn m các hệ tọa độđịa phương x(r)

1 , x(r)2 , , x(r)n và m hàm ar(x(r)1 , x(r)2 , , x(r)n−1), r = 1, 2, , mliên tục trong các khối (n − 1) chiều K(r)

ar(x(r)1 , x(r)2 , , x(r)n−1) < x(r)n < ar(x(r)1 , x(r)2 , , x(r)n−1) + βhoặc

ar(x(r)1 , x(r)2 , , x(r)n−1) − β < x(r)n < ar(x(r)1 , x(r)2 , , x(r)n−1)nằm trong hoặc nằm ngoài Ω.

iii) Mỗi hàm ar(x(r)1 , x(r)2 , , x(r)n−1), r = 1, 2, , m thỏa mãn điều kiện chitz trên khối K(r), tức là với mọi (x(r)

Lips-1 , x(r)2 , , x(r)n−1), (y1(r), y2(r), , yn−1(r) ) ∈K(r), tồn tại hằng số dương L sao cho

n.

Trang 12

- Nhúng liên tục với q = p∗.

ii) Nếu p = n thì W1,n(Ω) ⊂ Lq(Ω) là nhúng compact nếu q ∈ [1, +∞).iii) Nếu p > n thì W1,p(Ω) ⊂ C0(Ω) là nhúng compact.

1.1.5 Khái niệm vết của hàm

Định nghĩa 1.5 Không gian Sobolev W1,p

0 (Ω)được định nghĩa như các baođóng của không gian các hàm khả vi vô hạn có giá compact trong Ω tươngứng với chuẩn của W1,p(Ω).

p∗ = 1p − 1

n.- Nhúng liên tục với q = p∗.

ii) Nếu p = n thì W1,n

0 (Ω) ⊂ Lq(Ω) là nhúng compact nếu q ∈ [1, +∞).iii) Nếu p > n thì W1,p

0 (Ω) ⊂ C0(Ω) là nhúng compact.Định lí 1.6 (định lý vết)

Giả sử Ω là tập mở trong Rn với biên ∂Ω là liên tục Lipschitz Khi đó,tồn tại duy nhất một ánh xạ tuyến tính liên tục

Trang 13

|u(x) − u(y)|2

|x − y|n+1 dSxdSy.

ii) Tồn tại một hằng số Cγ(Ω) sao cho:

kγ(u)kH1/2(∂Ω) ≤ Cγ(Ω)kukH1(Ω), ∀u ∈ H1(Ω).

Khi đó, Cγ(Ω) được gọi là hằng số vết.

Bổ đề 1.2 Giả sử biên ∂Ω là liên tục Lipschitz Không gian H1/2(∂Ω) cócác tính chất sau:

i) Tập {u|∂Ω, u ∈ C∞(Rn)} trù mật trong H1/2(∂Ω).ii) Nhúng H1/2(∂Ω) ⊂ L2(∂Ω) là compact.

iii) Tồn tại ánh xạ tuyến tính liên tục

kukL2(Ω) ≤ CΩk∇ukL2(Ω), ∀u ∈ H01(Ω).

Chứng minh

Giả sử I là một khoảng trong Rn chứa Ω, u ∈ H1

0(Ω) Ta kí hiệu eu là mởrộng bởi 0 của u vào I Ta có u ∈ He 01(I) và

kukL2(Ω) = kuke L2(I); k∇ukL2(Ω) = k∇eukL2(I) (1.6)

Trang 14

để chứng minh định lý đúng với Ω là khoảng bất kỳ trong Rn, không mấttính tổng quát ta chứng minh định lý đúng với Ω = (0, a)n.

Với ∀u ∈ C∞

0 (Ω) ta có

u(x) = u(x0, xn) =Z xn

0, t)dt.

Ta lại có

|u(x)|2 =

Z xn

0, t).1dt 2

≤xnZ xn

0, t) ... 2

Phương pháp chia miền giải phương trìnhelliptic cấp 2

2.1 Giới thiệu phương pháp chia miền< /h3>

Trong phần này, đưa sở toán học phương pháp chiamiền bao gồm... giải toán miền Ω đưa việc giải toántrong hai miền Nghiệm hai toán hai miền phải đảmbảo điều kiện chuyển tiếp qua biên phân chia điểm mấu chốt phải xácđịnh điều kiện biên phân chia hai miền con.

Kí... văn trình bày hai phương pháp khácnhau tiếp cận đến việc giải tốn biên cho phương trình elliptic với điềukiện biên Dirichlet nhóm tác giả Nhật Bản Việt Nam nhữngnăm gần đây.

2.2 Phương

Ngày đăng: 09/11/2012, 16:13

HÌNH ẢNH LIÊN QUAN

Hình 1.1 - Phương pháp chia miền đối với  phương trình song điều hòa
Hình 1.1 (Trang 19)
1. Sơ đồ Dirichlet-Neumann: - Phương pháp chia miền đối với  phương trình song điều hòa
1. Sơ đồ Dirichlet-Neumann: (Trang 33)
2. Sơ đồ Neumann-Neumann: - Phương pháp chia miền đối với  phương trình song điều hòa
2. Sơ đồ Neumann-Neumann: (Trang 34)
3. Sơ đồ Robin: - Phương pháp chia miền đối với  phương trình song điều hòa
3. Sơ đồ Robin: (Trang 34)
Hình 2.2 Trong trường hợp này, nghiệm của bài toán - Phương pháp chia miền đối với  phương trình song điều hòa
Hình 2.2 Trong trường hợp này, nghiệm của bài toán (Trang 46)
Sơ đồ lặp (3.18) chính là sơ đồ lặp hai lớp có dạng tổng quát Φ (k+1) − Φ (k) - Phương pháp chia miền đối với  phương trình song điều hòa
Sơ đồ l ặp (3.18) chính là sơ đồ lặp hai lớp có dạng tổng quát Φ (k+1) − Φ (k) (Trang 62)
Bảng 3.1: M ì N= 64 ì 64, θ1 = θ2 =0 .5 Hàm nghiệm đúngerrt (giây) - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.1 M ì N= 64 ì 64, θ1 = θ2 =0 .5 Hàm nghiệm đúngerrt (giây) (Trang 64)
Bảng 3.1: M ì N = 64 ì 64, θ 1 = θ 2 = 0.5 Hàm nghiệm đúng err t (gi©y) - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.1 M ì N = 64 ì 64, θ 1 = θ 2 = 0.5 Hàm nghiệm đúng err t (gi©y) (Trang 64)
Bảng 3.2: Hàm nghiệm đúng u∗ (x 1, x2 )= sinx1 sinx2 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.2 Hàm nghiệm đúng u∗ (x 1, x2 )= sinx1 sinx2 (Trang 65)
Bảng 3.2: Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = sinx 1 sinx 2 Sơ đồ cũ Sơ đồ cải tiến Tham số lặp θ - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.2 Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = sinx 1 sinx 2 Sơ đồ cũ Sơ đồ cải tiến Tham số lặp θ (Trang 65)
Bảng 3.4: Hàm nghiệm đúng u∗ (x 1, x2 )= ex1 sinx 2+ ex2 sinx1 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.4 Hàm nghiệm đúng u∗ (x 1, x2 )= ex1 sinx 2+ ex2 sinx1 (Trang 66)
Bảng 3.3: Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = (1 − x 1 ) 2 sinx 2 +(1 − x 2 ) 2 sinx 1 Sơ đồ cũ Sơ đồ cải tiến - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.3 Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = (1 − x 1 ) 2 sinx 2 +(1 − x 2 ) 2 sinx 1 Sơ đồ cũ Sơ đồ cải tiến (Trang 66)
Bảng 3.4: Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = e x 1 sinx 2 + e x 2 sinx 1 Sơ đồ cũ Sơ đồ cải tiến - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.4 Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = e x 1 sinx 2 + e x 2 sinx 1 Sơ đồ cũ Sơ đồ cải tiến (Trang 66)
Bảng 3.5: u∗ (x 1, x2 )= sinx1 ex 2+ sinx2 ex1 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.5 u∗ (x 1, x2 )= sinx1 ex 2+ sinx2 ex1 (Trang 67)
Bảng 3.5: u ∗ (x 1 , x 2 ) = sin x 1 e x 2 + sin x 2 e x 1 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.5 u ∗ (x 1 , x 2 ) = sin x 1 e x 2 + sin x 2 e x 1 (Trang 67)
Bảng 3.7: u∗ (x 1, x2 )= sinx1 sinx2 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.7 u∗ (x 1, x2 )= sinx1 sinx2 (Trang 68)
Bảng 3.7: u ∗ (x 1 , x 2 ) = sin x 1 sin x 2 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.7 u ∗ (x 1 , x 2 ) = sin x 1 sin x 2 (Trang 68)
Bảng 3.9: M ì N= 64 ì 64, θ1 = θ2 =0 .5 Hàm nghiệm đúngerrt (giây) - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.9 M ì N= 64 ì 64, θ1 = θ2 =0 .5 Hàm nghiệm đúngerrt (giây) (Trang 72)
Bảng 3.9: M ì N = 64 ì 64, θ 1 = θ 2 = 0.5 Hàm nghiệm đúng err t (gi©y) - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.9 M ì N = 64 ì 64, θ 1 = θ 2 = 0.5 Hàm nghiệm đúng err t (gi©y) (Trang 72)
Bảng 3.11: Hàm nghiệm đúng u∗ (x 1, x 2) =( 1− x1 )2 sinx2 +( 1− x2 )2 sinx1 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.11 Hàm nghiệm đúng u∗ (x 1, x 2) =( 1− x1 )2 sinx2 +( 1− x2 )2 sinx1 (Trang 74)
Bảng 3.10: Hàm nghiệm đúng u∗ (x 1, x2 )= sinx1 sinx2 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.10 Hàm nghiệm đúng u∗ (x 1, x2 )= sinx1 sinx2 (Trang 74)
Bảng 3.10: Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = sinx 1 sinx 2 Sơ đồ cũ Sơ đồ cải tiến Tham số lặp θ - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.10 Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = sinx 1 sinx 2 Sơ đồ cũ Sơ đồ cải tiến Tham số lặp θ (Trang 74)
Bảng 3.12: Hàm nghiệm đúng u∗ (x 1, x2 )= ex1 sinx 2+ ex2 sinx1 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.12 Hàm nghiệm đúng u∗ (x 1, x2 )= ex1 sinx 2+ ex2 sinx1 (Trang 75)
Bảng 3.12: Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = e x 1 sinx 2 + e x 2 sinx 1 Sơ đồ cũ Sơ đồ cải tiến Tham số lặp θ - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.12 Hàm nghiệm đúng u ∗ (x 1 , x 2 ) = e x 1 sinx 2 + e x 2 sinx 1 Sơ đồ cũ Sơ đồ cải tiến Tham số lặp θ (Trang 75)
Chia miền Ω= Ω1 ∪ Ω2 bằng biên chung Γ (hình 3.1). Đặt η= ∂v ∂ν | Γ , ξ = ∂u ∂ν|Γ - Phương pháp chia miền đối với  phương trình song điều hòa
hia miền Ω= Ω1 ∪ Ω2 bằng biên chung Γ (hình 3.1). Đặt η= ∂v ∂ν | Γ , ξ = ∂u ∂ν|Γ (Trang 77)
Bảng 3.13: Kết quả thực nghiệm tính toán với =b =1 ,M ì N= 64ì64, err= 10−4 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.13 Kết quả thực nghiệm tính toán với =b =1 ,M ì N= 64ì64, err= 10−4 (Trang 78)
Sơ đồ lặp (3.52)-(3.53) chính là sơ đồ lặp giải bài toán elliptic với điều kiện biên Dirichlet, sự hội tụ của sơ đồ lặp đã được khẳng định trong [13]. - Phương pháp chia miền đối với  phương trình song điều hòa
Sơ đồ l ặp (3.52)-(3.53) chính là sơ đồ lặp giải bài toán elliptic với điều kiện biên Dirichlet, sự hội tụ của sơ đồ lặp đã được khẳng định trong [13] (Trang 78)
Sử dụng phương pháp chia miền Ω= Ω1 ∪ Ω2 bằng biên chung Γ (hình 3.1). Đặtη=∂v - Phương pháp chia miền đối với  phương trình song điều hòa
d ụng phương pháp chia miền Ω= Ω1 ∪ Ω2 bằng biên chung Γ (hình 3.1). Đặtη=∂v (Trang 79)
Bảng 3.14: Kết quả thực nghiệm tính toán với =b =1 ,M ì N= 64ì64, err= 10−4 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.14 Kết quả thực nghiệm tính toán với =b =1 ,M ì N= 64ì64, err= 10−4 (Trang 80)
Sơ đồ lặp (3.57)-(3.58) chính là sơ đồ lặp giải bài toán elliptic với điều kiện biên hỗn hợp mạnh bằng thuật toán chia miền, sự hội tụ đã được khẳng - Phương pháp chia miền đối với  phương trình song điều hòa
Sơ đồ l ặp (3.57)-(3.58) chính là sơ đồ lặp giải bài toán elliptic với điều kiện biên hỗn hợp mạnh bằng thuật toán chia miền, sự hội tụ đã được khẳng (Trang 80)
Sử dụng phương pháp chia miền Ω= Ω1 ∪ Ω2 bằng biên chung Γ (hình 3.1). Đặtη=∂v - Phương pháp chia miền đối với  phương trình song điều hòa
d ụng phương pháp chia miền Ω= Ω1 ∪ Ω2 bằng biên chung Γ (hình 3.1). Đặtη=∂v (Trang 81)
Bảng 3.15: Kết quả thực nghiệm tính toán với =b =1 ,M ì N= 64ì64, err= 10−4 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.15 Kết quả thực nghiệm tính toán với =b =1 ,M ì N= 64ì64, err= 10−4 (Trang 82)
Bảng 3.15: Kết quả thực nghiệm tính toán với a = b = 1, M ì N = 64 ì 64, err = 10 −4 - Phương pháp chia miền đối với  phương trình song điều hòa
Bảng 3.15 Kết quả thực nghiệm tính toán với a = b = 1, M ì N = 64 ì 64, err = 10 −4 (Trang 82)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w