1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Đề dự đoán số 2

20 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 2,47 MB

Nội dung

Câu [2D1-1.3-2] Cho hàm số bậc bốn y  f  x  có đồ thị hình vẽ Hàm số cho nghịch biến khoảng ? A  2;3 B  3;  C  �; 2  Lời giải D  �;0  Chọn C Trên khoảng  �; 2  đồ thị xuống (tính từ trái qua phải) nên hàm số nghịch biến khoảng  �; 2  Câu [1D2-4.1-2] Cho đa giác lồi có 30 đỉnh Số đoạn thẳng có hai đầu mút hai đỉnh đa giác cho 2 A A30 B 60 C C30 D 30 Lời giải Chọn C Mỗi đoạn thẳng có hai đầu mút hai đỉnh đa giác cho tương ứng với tổ hợp chập 30 phần tử Vậy số đoạn thẳng có hai đầu mút hai đỉnh đa giác cho C302 Câu [2D3-1.2-1] Họ nguyên hàm hàm số f  x   A   x  1 C B  x  1 C x 1 C ln x   C D ln  x  1  C Lời giải Chọn C Ta có Câu 1 dx  � d  x  1  ln x   C � x 1 x 1 [2H3-2.6-1] Trong không gian Oxyz , khoảng cách từ điểm M  2;3;5  đến mặt phẳng  Ozx  A B C D Lời giải Chọn A r Ta có mặt phẳng  Ozx  qua điểm O  0;0;0  có vectơ pháp tuyến j   0;1;0  , nên  Ozx  có phương trình: y  Khoảng cách từ điểm M  2;3;5  đến mặt phẳng  Ozx  d  M ,  Ozx    Câu x 1 y  z    qua điểm 2 C M  1;0; 6  D M  2; 2;1 Lời giải [2H3-3.3-1] Trong không gian Oxyz , đường thẳng d : A M  1; 4; 4  Chọn A B M  1; 2;5   1   4     1 , nên đường thẳng d qua điểm M  1; 4; 4  2 r r rr [2H3-1.2-1] Trong không gian Oxyz , cho hai vectơ a   3; 2;1 b   2; 1;1 Tích a.b A 12 B 12 C 3 D Lời giải Chọn C rr Ta có a.b   2    2   1  1.1  6    3 Ta có Câu Câu [2H2-2.1-2] Cho đoạn thẳng AB cố định, tập hợp điểm M không gian cho � AMB  900 A mặt cầu B mặt trụ C mặt nón Lời giải D đường trịn Chọn A Câu [1D3-4.3-1] Cho cấp số nhân  un  có số hạng đầu u1  100 công bội q  Giá trị u2019 A 99 B 100 C 2118 Lời giải D 2119 Chọn B 2018  100.12018  100.1  100 Ta có u2019  u1.q Câu [2D1-5.1-2] Cho hàm số bậc ba y  f  x  có đồ thị hình vẽ Số nghiệm phương trình f  x   A B C Lời giải D Chọn C Từ giả thiết ta có đồ thị y  f  x  đường thẳng y  biểu diễn hình vẽ Do phương trình f  x   có ba nghiệm phân biệt B C D có đáy hình thoi cạnh a , góc Câu 10 [2H1-3.11-2] Cho hình lăng trụ đứng ABCD A���� �  600 AA�  2a Thể tích khối lăng trụ cho BAD A 3a B 3a C 3a D Lời giải Chọn A �  a.a.sin 600  3a Ta có S ABCD  S ABD  AB AD.sin BAD 2 3a � VABCD A����  3a B C D  AA S ABCD  2a Câu 11 [2D4-2.2-2] Cho số phức z  i  i  i bằng? A i B 1 C 1  2i Lời giải Chọn B Câu 12 [2D1-2.3-2] Cho hàm số y  f  x  có bảng biến thiên sau ? Mệnh đề sau ? A Giá trị cực tiểu hàm số cho x  B Giá trị cực tiểu hàm số cho y  1 C Giá trị cực tiểu hàm số cho y  2 D Giá trị cực tiểu hàm số cho x  1 Lời giải Chọn C Câu 13 [2D3-1.2-2] Cho  x  1 � dx , mệnh đề đúng? D 3a 2 0  x  1 dx B I  � xdx  � 1dx A I  � 2 0 x dx  � xdx  � dx C I  � 2 0 x dx  � dx D I  � Lời giải Chọn C Câu 14 [2D2-5.6-2] Số nghiệm dương phương trình log5  3x  12x    là? A B C D Lời giải Chọn B � 3x  12x   �x4 Ta có: phương trình log5  3x  12x    � � 3x  12x   � Câu 15 [2D2-3.1-2] Giá trị biểu thức 9log3 A bằng? B C D 2 Lời giải Chọn A Ta có : 9log3  32log3  log3  Câu 16 [2D2-5.4-2] Tích tất nghiệm phương trình 3x 1  x 1 bằng? A log 12 B log 16 C 1  log D log 2.log Lời giải Chọn C x Phương trình 1  42 x 1 �  x  1  log 4 x 1 � x  x log  log    * Phương trình (*) có hai nghiệm x1 ; x2 Khi đó, tích tất nghiệm phương trình x1.x2  1  log3 Câu 17 [2D1-2.3-2] Cho hàm số y  f  x  có bảng xét dấu đạo hàm sau: Số điểm cực tiểu hàm số cho A B C Lời giải Chọn C Câu 18 [2D1-5.1-2] Cho hàm số y  x  2x  có đồ thị hình vẽ, D Tìm tất giá trị thực tham số m để phương trình x  x   m   1 có ba nghiệm thực phân biệt A m � 4; 3 C m � 3; � B m  D m  3 Lời giải Chọn B Phương trình x  2x   2  m   Phương trình (1) có ba nghiệm thực phân biệt phương trình (2) có ba nghiệm thực phân biệt  m   3 � m  Câu 19 [2H3-2.7-2] Trong không gian Oxyz cho mặt cầu  S  :  x  1   y     z  3  Mặt phẳng tiếp xúc với mặt cầu  S  điểm A  0;0;1 có phương trình là? A 2x  y  z   B x  y  2z   C x  y  2z -2=0 2 D 2x  y  z   Lời giải Chọn C Mặt cầu  S  :  x  1   y     z  3  có I  1; 2;3 ; R  2 uu r Mặt phẳng tiếp xúc với mặt cầu  S  điểm A  0;0;1 có VTPT IA   1; 2;  qua A  0;0;1 x  y  2z -2=0  Câu 20 [1D5-2.1-2] Đạo hàm hàm số y   A  B  ln x   điểm x  bằng? C 2 ln D  ln Lời giải Chọn C B C có diện tích đáy ABC Câu 21 [2H1-3.12-3] Cho hình lăng trụ đứng ABC A��� BC tam giác A� A 45� Chọn B BC   ABC  Góc hai mặt phẳng  A� B 30� C 90� D 60� Lời giải diện tích Gọi H hình chiếu vng góc A lên BC �BC  AH � BC   AHA�  � BC  A� H Ta có: � �BC  AA�   � � A� BC  ,  ABC   � AHA�  � H BC �S A�BC  A� � � S ABC AH Vì �S ABC  AH BC nên   cos  � cos    �   30� 2 S A�BC A� H � AH � cos   � A� H � Câu 22 [2H3-2.2-2] Trong không gian Oxyz , cho điểm A  0;1;  mặt phẳng    : x  y  3z   Mặt phẳng chứa đường thẳng OA vng góc với mặt phẳng    có phương trình A  x  y  z   B x  y  C x  y  z  D x  y  z  Lời giải Chọn C Gọi    mặt phẳng cần tìm uur uuu r uur � OA Một véctơ pháp tuyến mặt phẳng    n  � � , n �  1; 2; 1 Phương trình mặt phẳng       : 1 x     y    1 z    �    : x  2y  z  Câu 23 [2D4-4.2-2] Gọi z1 , z2 hai nghiệm phức phương trình z  z   Giá trị biểu thức 1  z1 z2 A B C Lời giải Chọn C � 3  6i z1  � � z1  z2  Ta có: z  z   � � 3  6i � z2  � � D 1 1 2      z1 z2 z1 z2 z1 Khi đó: Câu 24 [2D3-2.2-2] Diện tích hình phẳng giới hạn hai đường y  x  x y   x  13 63 205 125 A B C D 2 6 Lời giải Chọn D - Phương trình hồnh độ giao điểm hai đồ thị hàm số y  x  x y   x  là: x 1 � x  x   x  � x  3x   � � x  4 � - Diện tích hình phẳng cần tìm là: S 1   x  x  dx  �x  x    x   dx  �x  3x  4dx  �x  3x  4dx  � 4 4 4 4 �1 125 � � 4x  x  x �  �4 � Câu 25 [2H2-1.2-2] Cho khối nón có đường cao h  , khoảng cách từ tâm đáy đến đường sinh Thể tích khối nón cho 2000 2000 80 16 A B C D 27 3 Lời giải Chọn B Xét hình nón hình vẽ Theo ra, ta có: SO  5; OH  Trong tam giác SOA vng O có: 1 1 20      � OA  R 2 OA OH SO 16 25 16.25 1 400 2000  Thể tích khối nón cho là: V   R h   3 27 Câu 26 [2D1-3.6-3] Hàm số có giá trị nhỏ tập xác định? A y   x  x  B y  x  x  C y  x  x  11 D y  x  x  Lời giải Chọn D Ta có: y  x  x    x  1  �7, x �� � Hàm số có giá trị nhỏ tập xác định Câu 27 [2D2-3.2-2] Với a, b số thực tùy ý lớn 1, ta có log ab a 1 A B  log a b C  log a b D log a b  log a b Lời giải Chọn D Ta có: log ab a  log a a 1   log a ab log a a  log a b  log a b Câu 28 [2D4-2.3-2] Cho số phức z thỏa mãn z   3i    i A z  4i C z    i 5 B z   2i D z   i 5 Lời giải Chọn C 1 i 2  4i �z   i  3i 10 5 Câu 29 [2H1-3.5-2] Cho hình chóp S ABCD có đáy hình chữ nhật có AB  a 3, AC  2a , SA vuông Ta có: z   3i    i � z  góc với mặt phẳng đáy SA  a Tính thể tích khối chóp S ABCD a3 a3 a3 A B a 3 C D Lời giải Chọn D Trong tam giác ABC vng B có: BC  AC  AB  a Diện tích đáy: S ABCD  AB.BC  a 1 a3 Thể tích khối chóp S ABCD là: VS ABCD  S ABCD SA  a 3.a  3 x 1 Câu 30 [2D1-4.3-2] Tìm tất tiệm cận đứng đồ thị hàm số y  x  x2 A x  B x  2; x  C x  D x  1; x  Lời giải Chọn A �x �1 �x  �0 �x �1 � � ��x �1 � � Điều kiện: � � �x �1 �x  x  �0 � �x �2 � Tập xác định: D   1; � \  1 x 1  � x �1 x �1  x  1  x   � Đường thẳng x  tiệm cận đứng đồ thị hàm số cho Vậy: Đồ thị hàm số cho có tiệm cận đứng x  Ta có: lim y  lim Câu 31 [2D3-1.4-3] Biết � a + b + c A x +1 dx = a + b ln + c ln với a, b, c số nguyên, giá trị x B C D Lời giải Chọn A dx � dx = 2tdt x +1 Đổi cận: x = � t = 1; x = � t = 3 � x +1 2t 1 � � � I =� dx = �2 dt = � 2+ d t = t + ln t ln t + = + ln - ln ( ) � � � � � � x t t t + 2 Đặt x +1 = t � dt = Vậy a + b + c = Câu 32 [2D1-5.7-3] Có giá trị nguyên tham số m để phương trình ( mx +1) log x +1 = có hai nghiệm phân biệt? A B Vô số C D 10 Lời giải Chọn C Điều kiện: x � 10 � mx +1 = � mx +1 = � �� ( mx +1) log x +1 = � � � log x +1 = � x= � � � 10 Để phương trình ( mx +1) log x +1 = có hai nghiệm phân biệt phương trình mx +1 = 1 > � - 10 < m < phải có nghiệm x =m 10 Do m nguyên nên m �{ - 9; - 8; - 7; - 6; - 5; - 4; - 3; - 2; - 1} Câu 33 [2D1-1.3-3] Cho hàm số y = f ( x) có bảng biến thiên sau Hàm số y = f ( x ) nghịch biến khoảng đây? A  2;0  B ( 1;+�) C  0;  D ( - �;- 2) Lời giải Chọn D Từ bảng biến thiên y = f ( x) ta suy bảng biến thiên hàm số y = f ( x ) sau: Vậy chọn phương án D � x - x >1 ( x) = � Câu 34 [2D3-1.10-3] Cho hàm số y = f ( x) liên tục R Biết f � f ( 2) = � x- � - 3e x 1 f ( x) = � � x- � - 3e + c2 x

Ngày đăng: 02/05/2021, 15:05

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w