Kì thi Đại học và Cao đẳng sắp đến rồi mời các bạn cùng tham khảo Đề thi thử Đại học và Cao đẳng năm 2014 môn Toán của Trường THPT Chuyên NĐC để nắm bắt thêm những kiến thức cơ bản để làm bài thi tốt hơn. Đề thi gồm có hai phần thi là phần chung và phần riêng với các câu hỏi tự luận có kèm đáp án và hướng dẫn giải chi tiết.
TRƯỜNG THPT CHUN NĐC ĐỀ THI THỬ LẦN 2 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2014 Mơn: TỐN; khối D Thời gian làm bài: 180 phút, khơng kể phát đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1: (2,0 điểm) Cho hàm số y = x3 - 3(2m + 1) x 2 + m(m + 1) x + 1 (1) với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1 b) Chứng tỏ rằng với mọi m, đồ thị của hàm số (1) ln ln có hai điểm cực trị và khoảng cách giữa hai điểm này là một hằng số. Câu 2: (1,0 điểm) Giải phương trình: + 3sin x + sin x = 3cos x + cos 6 x ì 1 + xy + xy = x ï Câu 3: (1,0 điểm) Giải hệ phương trình: í 1 +y y= + 3 y ï x ỵ x x p 2 sin x - sin 3 x Câu 4: (1,0 điểm) Tính tích phân I = ò dx cos 2x 0 Câu 5: (1,0 điểm) Cho lăng trụ tứ giác đều ABCD. A’B’C’D’. Chiều cao bằng h, hai đường chéo của hai mặt bên xuất phát từ một đỉnh hợp nhau một góc 60 o và O là tâm hình vng ABCD. Tính thể tích hình lăng trụ theo h. Tính góc tạo bởi AB’ và OC’. 2 ïì2 y - 3 ³ x Câu 6: (1,0 điểm) Cho x và y thuộc R thỏa: í ïỵ y £ x 2 + 3 x - 2 Tìm giá trị lớn nhất của biểu thức : P = y - x 3 + 5 x với x ³ 0 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (Phần A hoặc B) A. Theo chương trình Chuẩn Câu 7a: (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A (0; 3) ; B(- 2; 0) và C(2; 0) , đường cao BH. Tìm hai điểm M và N trên đường thẳng chứa đường cao BH sao cho ba tam giác MBC, NBC và ABC có chu vi bằng nhau. Câu 8a: (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, lập phương trình mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C sao cho H (2; 1; 1) là trực tâm của tam giác ABC. Câu 9a: (1,0 điểm) Một nhóm học sinh gồm 9 em trong đó có 3 nữ, được chia thành 3 tổ đều nhau. Tính xác suất để mỗi tổ có 1 nữ. B. Theo chương trình Nâng cao Câu 7b: (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho D ABC có A(2 ; 0); B(2 ; 0), góc giữa hai đường thẳng BC và AB bằng 60 o . Tính diện tích tam giác ABC biết rằng yC > 2. Câu 8b: (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình : x + y + z 2 - x - y - z = 0 và mặt phẳng (P) : x + y + z – 6 = 0. Chứng tỏ mặt phẳng (P) cắt mặt cầu (S) theo đường trịn (C). Tính thể tích khối nón có đỉnh là tâm của mặt cầu (S) và đáy là đường tròn (C). ( ) Câu 9b: (1,0 điểm) Cho số phức z thỏa mãn ( z + - i ) z + + 3 i là một số thực. Tìm giá trị nhỏ nhất của z Hết Thí sinh khơng được sử dụng tài liệu. Giám thị coi thi khơng giải thích gì thêm. Cảm ơn thầy Huỳnh Chí Hào chủ nhân của http://www.boxmath.vn/ gửi tới www.laisac.page.tl ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN 2 KHỐI D NĂM HỌC 2013 – 2014 Câu Câu 1 a) Khảo sát y = 2x 3 + 3x 2 + 1 + TXĐ: D = R + lim y = +Ơ lim y = -Ơ xđ+Ơ Nidung im (2im) 0.25 xđ-Ơ ộ x = y = + y’ = 6x 2 + 6x ; y’= 0 Û ê ë x = - 1; y = 2 + BBT x -¥ 1 y' + 0 y 0.25 -¥ 0 + +¥ +¥ 0.25 1 Hàm số ĐB trên các khoảng (-¥; -1),(0; +¥ ) , NB trên các khoảng (- 1; 0) Hàm số đạt cực đại : yCĐ = 2 tại xCĐ = 1. Hàm số đạt cực tiểu y CT = 1 tại x CT = 0 . 0.25 + Đồ thị Câu 2 Câu 3 b) y = 2x 2 – 3(2m + 1)x 2 + 6m(m + 1) x + 1 + y’ = 6x 2 – 6(2m + 1)x + 6m(m + 1); y’ = 0 Û x 2 (2m + 1)x + m(m +1) = 0 + D ’= 1 > 0 " m ® hs ln ln có 2 cực trị phương trình đường thẳng nối 2 điểm cực trị: y = x + 2m 3 + 3m 2 + m + 1 x 1 = m ® y 1 = 2m 3 + 3m 2 +1 x 2 = m + 1 ® y 2 = 2m 3 + 3m 2 Hai điểm cực trị của đồ thị hàm số :A(m; 2m 3 + 3m 2 + 1) ; B(m+1; 2m 3 + 3m 2 ) AB = ® đpcm Giải phương trình: 4 + 3sinx + sin 3 x = 3cos 2 x + cos 6 x Û 1 + 3(1 – cos 2 x) + 3sinx + sin 3 x = cos 6 x Û 1 + 3sin 2 x + 3sinx + sin 3 x = cos 6 x (*). Û (1 + sinx) 3 = (cos 2 x) 3 Xét hàm số f(t) = t 3 ; f’(t) = 3t 2 ³ ® hàm số f(t) ln ln đồng biến Từ (*) ta có f(1 + sinx) = f (cos 2 x) Û 1 + sinx = cos 2 x Û sin 2 x + sinx = 0 é x = k p ésin x = 0 Û ê Û ê ê x = - p + k 2 p sin x = 1 ë ë 2 ì 1 + xy + xy = x Giải hệ : ïí 1 +y y= + 3 y ï x î x x 0.25 0.25 0.25 0.25 (1 điểm) 0.25 0.25 0.25 0.25 (1 điểm) ĐK: x > 0 ; y > 0 Đặt : u = 1 x ; v = y với u > 0; v > 0 0.25 ì u + v 2 + uv = Ta có hệ : í 3 ỵ u + v = u + 3 v ì u = 1 Giải hệ ta được : í ỵ v = 0 Nghiệm của hệ phương trình là : ( x; y ) = (1; 0) Câu 4 0.25 0.25 0.25 (1 điểm) p 2 3 Tính tích phân I = ò sin x - sin x dx cos 2x - 0 p 2 sin x - sin x I=ò dx = cos 2x - p ò p sin x(1 - sin x) 2 cos 2 x sin x dx = dx 2 2 ò (2 cos x - 1) - 0 cos x - 0.25 Đặt t = cosx Þ dt = –sinx dx . p Đổi cận : x = 0 Þ t = 1 , x = Þ t = 0 0.25 1 t 2 æ 1 0.25 dt = ũ ỗ1+ ữ dt ũ t -4 0 è t - t + 2 ø 1 1 = ( t + ln | t - | - ln | t + |) 0 = (1 - ln 3 ) 0.25 2 Cho lăng trụ tứ giác đều ABCD. A’B’C’D’. Chiều cao bằng h, hai đường chéo của (1 điểm) hai mặt bên xuất phát từ một đỉnh hợp nhau một góc 60 o và O là tâm hình vng ABCD. Tính thể tích hình lăng trụ theo h. Tính góc tạo bởi AB’ và OC’. ÞI = Câu 5 Gọi x là cạnh hình vng ABCD và O = AC ∩ BD D Δ AB’C đều (do AB’ = B’C và ABˆ 'C = 60 0 ) O A Þ AB’ = B’C = AC = x 2 Mà AB’ = h 2 Þ x = h. Do đó VABCD A ' B 'C ' D' =h3 h GiO=AC ầ BD ị AO//OC. D' Ta có góc (AB’; OC’) = góc (AB’; AO’) O' ˆ = ? Thơng qua DO ' AB' Xét góc O 'AB' A' a h 2 AB’ = h , O’B’ = O’A’ = , 2 2 h 2 6 h 2 O’A 2 = AA’ 2 + O’A’ 2 = h 2 + = 4 4 6 h 2 a 2 2 + 2 h 2 2 2 4 = 3 h = 6 ˆ = O ' A + AB ' - O ' B ' = 4 cos O 'AB' 2O ' A AB ' 2 h 6 h 2 2 2 . 2 . h 2 2 Câu 6 ìï2 y - 3 ³ x Cho x và y thuộc R thỏa: í ïỵ y £ x 2 + 3 x - 2 Tìm giá trị lớn nhất của biểu thức : P = y - x 3 + 5 x với x ³ 0 é x £ -7 x 2 + 3 Từ gt ta có £ y £ x + x - Û x 2 + x - ³ 0 Û ê 2 ë x ³ 1 P £ - x 3 + 5 x + x 2 + 3 x - 2 = f ( x ) = - x 3 + x 2 + 8 x - 2 C B 0.25 0.25 C' B' 0.25 0.25 (1 điểm) 0.25 0.25 4 f’(x) = 3x 2 + 2 x + 8 ; f’(x) = 0 Û x = ; x = 2 3 Với x ³ 0 ta có f(x) £ 10 Þ P £ 10 ì x = 2 KQ : P max = 10 xảy ra khi í ỵ y = -8 0.25 0.25 Câu 7a Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A (0; 3) ; B(- 2; 0) (1 điểm) và C(2; 0) , đường cao BH. Tìm hai điểm M và N trên đường thẳng chứa đường cao BH sao cho ba tam giác MBC, NBC và ABC có chu vi bằng nhau. D ABC đều cạnh bằng 4, M và N cần tìm thỏa điều kiện MB + MC = NB + NC = 8 0.25 Nên M, N nằm trên (E) có hai tiêu điểm B(2;0) và C(2;0) Trục lớn 2a = 8 Þ a = 4. y Tiêu cự 2c = 4 Þ c = 2. A Trục bé b = a - c 2 = 12 0.25 2 (E) có phương trình x + y = 1 H 16 12 D ABC đều Þ H là trung điểm AC Þ H(1 ; ) Phương trình BH: x - y + = 0 x B O C 0.25 ìï x - 3 y + 2 = 0 Tọa độ M và N là nghiệm của hệ í 2 ïỵ3 x + 4 y 2 = 48 ỉ - 8 - 24 3 3 - 24 ư ỉ ữ KtquM ỗ -8+ 24 36 3+ 24ữ N çç ; ç 13 13 ÷ 13 13 ÷ è ø è 0.25 ø Câu 8a Trong khơng gian với hệ tọa độ Oxyz, lập phương trình mặt phẳng (P) cắt ba trục (1 điểm) Ox, Oy, Oz lần lượt tại A, B, C sao cho H (2; 1; 1) là trực tâm của tam giác ABC. · A(a;0;0) . B(0;b;0) . C(0;0;c) . H(2;1;1) 0.25 · AH = (2 – a; 1; 1), BC = (0; b; c) ; AH BC = 0 ® b = c 0.25 c · BH = (2; 1 – b; 1), AC = (a; 0; c) ; BH . AC = 0 ® 2a = c ® a = 2 x y z 0.25 · Phương trình mp (P): + + = 1 c c c (P) đi qua H(2; 1; 1) Û = 1 Û c = 6 & a = 3 0.25 c x y z Kq: phương trình của mp (P); + + = Û x + y + z - = 0 6 Câu 9a Một nhóm học sinh gồm 9 em trong đó có 3 nữ, được chia thành 3 tổ đều nhau. (1 điểm) Tính xác suất để mỗi tổ có 1 nữ. Gọi A là biến cố : “ chia 3 tổ học sinh đều nhau mỗi tổ có 1 nữ” Khơng gian mẫu W : “chia 3 tổ học sinh đều nhau” 0.25 Ta có : W = C93 C63 C3 3 = 1680 A = 3!C62 C42 C2 2 = 540 0.5 A 540 27 P( A) = = = W 1680 84 0.25 Câu 7b Trong mặt phẳng với hệ tọa độ Oxy, cho D ABC có A(2 ; 0); B(2 ; 0), góc giữa hai (1 điểm) đường thẳng BC và AB bằng 60 o . Tính diện tích tam giác ABC biết rằng y C > 2. C(x; y) với y > 2 ; AB = (4; 0), AC = (x +2 ; y), BC = (x – 2 ; y) ì 3 4 ( x + 2 ) uuur uuur = ìcos 30o = cos AB, AC ï 2 4 . ( x + 2 ) 2 + y 2 Theo gt ta có ïí Û ïí uuuu r uuu r 4 ( x - 2 ) ïcos 30o = cos BC , AB ï 1 = ỵ ï 2 4 ( x - 2 ) 2 + y 2 ỵ ( ( ) ) ìï x = 1 ® y = ± 3 ìï3 y 2 = ( x + 2 ) 2 Û í 2 Û í ùợ y = 3(x- 2)2 ùợ x= 4đ y= 3 Từ đó suy ra C(4; 2 ) 1 AB thuộc trục Ox Þ S ABC = AB.d (C; Ox) = = 4 3 đvdt 2 0.25 0.25 0.25 0.25 Câu 8b Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình : (1 điểm) x + y + z 2 - x - y - z = 0 và mặt phẳng (P) : x + y + z – 6 = 0. Chứng tỏ mặt phẳng (P) cắt mặt cầu (S) theo đường trịn (C). Tính thể tích khối nón có đỉnh là tâm của mặt cầu (S) và đáy là đường trịn (C). 3 ỉ 3 3 0.25 · Mặt cầu (S) tâm I ç ; ; ÷ và bán kính R = 2 è 2 2 2 ø 0.25 3 · d(I; (P)) =