3. Về tư duy và thái độ: biết đưa những kiến thức và kĩ năng mới về kiến thức và kĩ năng quen thuộc, phân tích, tổng hợp.Biết nhận xét và đánh giá bài làm của bạn cũng như tự đánh giá k[r]
(1)CHƯƠNG I KHỐI ĐA DIỆN Số tiết BÀI DẠY: BÀI TẬP thể tích khối đa diện I MỤC TIÊU:
Qua học học sinh cần đạt yêu cầu tối thiểu sau
1 Về kiến thức: Nhớ cơng thức tính thể tích khối lăng trụ khối chóp. 2 Về kĩ năng: Tính thể tích khối lăng trụ khối chóp.
3 Về tư thái độ: biết đưa kiến thức kĩ kiến thức kĩ quen thuộc, phân tích, tổng hợp.Biết nhận xét đánh giá làm bạn tự đánh giá kết học tập Chủ động phát hiện, chiếm lĩnh tri thức Có tinh thần hợp tác học tập
II CHUẨN BỊ CỦA GV VÀ HS:
+ GV: Giáo án, cơng cụ vẽ hình, bảng phụ , phiếu học tập
+ HS: Vở ghi + đồ dùng học tập Kiến thức cũ cách vẽ hình biểu diễn khối chóp, khối lăng trụ Các quan hệ song song, vng góc Xác định góc…
III PHƯƠNG PHÁP DẠY HỌC:
Vận dụng linh hoạt PPDH nhằm giúp học sinh chủ động, tích cực phát hiện, chiếm lĩnh tri thức như: trình diễn, thuyết trình, giảng giải, gợi mở vấn đáp, nêu vấn đề PP sử dụng :giảng giải, gợi mở vấn đáp.
IV.TIẾN TRÌNH BÀI HỌC Ổn định tổ chức lớp.
2 Kiểm tra cũ : lúc giảng 3 Bài mới.
Hoạt động giáo viên Hoạt động học sinh Nội dung ghi bảng ,trình chiếu HOẠT ĐỘNG 1: Tính thể tích khối lăng trụ
HĐTP 1:Hiểu tốn u cầu HS vẽ hình lăng trụ HĐTP 2: Xây dựng chương trình giải.
Nêu cách tính thể tích khối lăng trụ
HĐTP 3: Thực chương trình giải.
Phân cơng nhóm học sinh Hãy tính diện tích đáy
Áp dụng cơng thức tính thể tích
HĐTP 4: Nghiên cứu kết quả bài toán.
Khi thay đổi giả thiết
*HS vẽ đáy tam giác
Vẽ cạnh bên song song vng góc với đáy
*Tính diện tích tam giác ABC có cạnh a
Áp dụng công thức V= Bh
3
*HS đại diện nhóm trình bày cách giải câu a)
*Nếu đáy hình vng cạnh a còn đỉnh A’ cách đỉnh A’B’C’D’ khoảng bằng a Khi cần xác định chiều cao
Cho lăng trụ đứng tam giác ABC.A’B’C’ có tất cạnh a
a)Tính thể tích khối lăng trụ ABC.A’B’C’
b)Tính thể tích khối tứ diện A’BB’C
c)Mặt phẳng qua A’B’và trọng tâm tam giác ABC cắt AC BC E F Tính thể tích khối chóp C.A’B’FE
(2)HĐTP 1:Hiểu toán Yêu cầu HS xác định tứ diện *Tứ diện hình chóp tam giác
Chọn mặt đáy nào?
Xác định đường cao hình chóp?
HĐTP 2: Xây dựng chương trình giải.
Nêu cách tính thể tích khối chóp
Đặc biệt khối tứ diện
HĐTP 3: Thực chương trình giải.
Hãy tính diện tích đáy
Áp dụng cơng thức tính thể tích
HĐTP 4: Nghiên cứu kết quả bài tốn.
Khi chọn đáy hình chóp tam giác tam giác A’BC thì gặp khó khăn gì?
*chọn đáy tam giác A’B’B Gọi I trung điểm AB CI (A’B’B)
Đó chiều cao tứ diện CA’B’B( hiểu hình chóp C.A’B’B )
*Tính CI
Tính diện tích tam giác A’B’B Áp dụng cơng thức thể tích
*HS đại diện nhóm trình bày cách giải câu b)
*Khó tính diện tích đáy như chiều cao tương ứng.
Lời giải
a)Đáy tam giác nên diện tích đáy
4
2
a
S
Vâỵ thể tích khối lăng trụ ABCA’B’C” V 12 3 a
b) Tứ diện A’BB’C hình chóp C.A’BB’
Chiều cao CI CI= a
2
Vậy thể tích tứ diện làV= a3 12
3
HOẠT ĐỘNG 3: Tính thể tích khối chóp tứ giác HĐTP 1:Hiểu toán
Yêu cầu HS vẽ thêm vào hình Tứ giác A’B’FE hình gì? Giải thích?
HĐTP 2: Xây dựng chương trình giải.
Nêu cách tính thể tích khối chóp
Tính diện tích A’B’FE?
Khoảng cách từ C đến mặt đáy A’B’FE ?
Nêu cách tính khoảng cách này?
HĐTP 3: Thực chương trình giải.
Phân cơng nhóm học sinh
HĐTP 4: Nghiên cứu kết quả bài tốn.
Tính thể tích khối đa diện A’B’C’EFC
*Tứ giác A’B’FE hình thang cân
Vì A’B’// (ABC) nên EF//A’B’
*EFKG EF=
3
a IG = a
6
KG= a
12 13
Tính diện tích A’B’FE SA’BFE =
3 13 12 5a2
*Khoảng cách từ C đến mặt đáy A’B’FE d d.KG=GC.KI d = 13
13 2a
*HS nêu cách giải. Kết hợp thêm khối chóp C.A’B’C’
Có thể xét tứ diện lớn cắt bỏ bớt tứ diện nhỏ
c)Ta có A’B’// (ABC) nên EF//A’B’
Tứ giác A’B’FE hình thang ABCC’ ABCI AB(CIKC’) ABKG EFKG
EF=
a IG = a
6
KG= a
12 13
Tính diện tích A’B’FE SA’BFE =
3 13 12 5a2
Khoảng cách từ C đến mặt đáy A’B’FE d d.KG=GC.KI d = 13
(3)4.Củng cố tồn bài.Cho HS hoạt động nêu lại cơng thức tính thể tích khối lăng trụ khối chóp 5.Hướng dẫn học nhà tập nhà:
HS soạn tập
Cho lăng trụ đứng tam giác ABC.A’B’C’ có tất cạnh đáy a chiều cao h=2a a)Tính thể tích khối tứ diện A’BB’C
b)E F trung điểm AC BC Tính thể tích khối đa diện A’B’C’FEC.
Theo cách giải tập để soạn 6 Phụ lục: