1. Trang chủ
  2. » Cao đẳng - Đại học

Chuyen de day them phan phuong trinh mu logarit

7 12 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 546 KB

Nội dung

Phương pháp: Ý tưởng là sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ só vẫn còn chứa ẩn x.. Khi đó thường ta được một phương trình b[r]

(1)

Giáo viên: Lê Anh Dũng. Tài liệu ôn thi ĐH, CĐ. CHƯƠNG II – PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ – LOGARIT

PHẦN I – PHƯƠNG TRÌNH MŨ 1. Dạng 1: Sử dụng phép biến đổi tương đương.

hoặc 0

( 1)( ( ) ( )) 0 

 

  

a

a f x g x

B1 Giải phương trình sau: 4 82 3

x x .

2 3 1 18 32 2 1

x x x x . (04) 1 (625)6 5

x x .

4 2 33 52 1 4000

x x x .

5 52 1 3.52 1 550

 

x x .

6 16 1010 0,125.8 155

 

  

x x

x x

7 1

10  

x x .

8 3 5 6

2   

x x x .

9 22 1 8   

x x .

10 ( 2) 3 1

x

x

11 ( 2)2 23 2 ( 2) 23 6

x x   x x

x x

12 ( 3)3 25 2 ( 6 9) 2 4

x x    x x

x x x

13 (3 2 2) (3 2 1)

x xsinx   x xcosx

14 (2 2) (2 2) 

 x x sinx   x x cosx

(2)

B2 Cho phương trình: 24 1 8 

x m

x , với |m| > a) Giải phương trình với m =

b) CMR với |m| > phương trình ln có nghiệm B3 Cho phương trình: 2 3 2 2

8     

mx x x mx x . a) Giải phương trình m =

b) Tìm m để phương trình có nghiệm phân biệt B4 Giải biện luận phương trình:

a) ( 2) 22 | 2 |

x x   a

x x

b) ( 1)1 2 ( 1)  2

x   a x

x x

B5 Cho phương trình: 4 5

3  

x x m. a) Giải phương trình với m =

b) Tìm m để phương trình có nghiệm trái dấu

B6 Giải biện luận phương trình: (x2 1)1 x2 (x2 1)ax2

  

2. Dạng 2: Phương pháp logarit hóa đưa số. Phương pháp:

Dạng 1: ( ) 0 1, 0 ( )

f x

a

a b

a b

f x log b

  

   

 

.

Dạng 2: f x( ) g x( ) f x( ) g x( ) ( ) ( )

a a a

ablog alog bf xg x log b.

(3)

1 4 2

2x 3x

2 23x 32x

3 5 8x xx1 500 

4

1 3

2x 2x 2x 2x 3x 3x 3x 3x

      

5 2x2 3x1

6 3 7x2 x1 x 245

7 8 4.34 x

x x   2 5x x1 x2 12

9 5x 5x1 5x3 3x 3x1 3x3

    

10  

1

2

2x x  4 x 2 4 x  4 4x 8. 3. Dạng 3: Phương pháp đặt ẩn phụ dạng 1.

- Phương trình kx 1 (k 1)x 2 (k 2)x 1 x 0

ka k a k a a

      

 

      , ta đặt t = ax, t > 0. - Phương trình 1ax 2bx 3

    , với a.b = Khi đặt t a tx, 0 bx 1

t

    , ta được phương trình: 1t23t2 0.

- Phương trình 1a2x 2( )ab x 3b2x

    Chia hai vế cho a2 x b2 x ta được

1 0

x x

a a

b b

       

   

, đặt , 0 x

a

t t

b

    

 

.

B1 Cho phương trình: (m 3)16x (2m 1)4x m

     

1 Giải phương trình với 3 4

m 

2 Tìm m để phương trình có nghiệm trái dấu

B2 Cho phương trình  2 3xm 2 3x 4 Giải phương trình với m =

2 Tìm m để phương trình có nghiệm x x1, thỏa x1 x2 log2 33 B3 Giải phương trình 7 3 x 3 2  3x 2 0

B4 Giải biện luận phương trình: 3 5x a3 5x 2x3

   

B5 Cho phương trình 1 1 1

2.4xm6x 9x

 

1 Giải phương trình m =

2 Tìm m để phương trình có nghiệm B6 Giải phương trình:

i 25x10x22x1. ii 6.9x13.6x6.4x 0.

iii 125x50x 23 1x . iv

 3  sinx 3 sinx 4

v

5 24 x 5 24x 10

vi 2

4sin x 2cos x 2

  

vii 2

9sin x 9cos x 10

 

B7 Giải biện luận phương trình sau: 4.3x 3 m 32x

  

2 (m 2)2x m2x m

   

3 m.3x m3x 8

 

4 (m 2)2x (m 5)2x 2(m 1)

     

B8 Cho phương trình: 22x1 2x3 2m 0

  

1 Giải phương trình với m = 32

2 Tìm m để phương trình có hai nghiệm phân biệt B9 Cho phương trình: m16x 2.81x 5.36x

 

1 Giải phương trình với m =

(4)

4. Dạng 4: Sử dụng phương pháp đặt ẩn phụ - dạng 2:

Phương pháp: Ý tưởng sử dụng ẩn phụ chuyển phương trình ban đầu thành phương trình với ẩn phụ hệ só cịn chứa ẩn x Khi thường ta phương trình bậc 2 theo ẩn phụ có biệt số số phương.

B1 Giải phương trình:

a) 9x2 (x2 3)3x2 2x2 2 0

    

b) 42x 23 1x 2x3 16 0

   

B2 Cho phương trình: 32x 2 3m 2x m23x m 1 0

    

a) Giải phương trình với m = + m 2

b) Xác định m để phương trình có nghiệm phân biệt B3 Cho phương trình: m2 32 x 3 2m 2x (m2 2)2x m 0

    

a) Giải phương trình với m =

b) Xác định m để phương trình có nghiệm phân biệt 5. Dạng 5: Sử dụng phương pháp đặt ẩn phụ - dạng 3:

Phương pháp: Lựa chọn ẩn phụ thích hợp chuyển phương trình hệ đơn giản. B1 Giải phương trình:

a) 1 1 ( 1)2

4x  2x 2x 1

b) 3 2 6 5 2 3 7

4xx 4xxxx

  

c) 83x32x 24 6 x. B2 Giải biện luận phương trình:

a) 5 6 1 6 5

2x x x 2.2 x

m     m

  

b) 2 2 3 ( 2) 12

9xx m 3xm 3x 

  

c) 2 2 1 ( 1)2

4x  x m 2xm 2x

  

6. Dạng 6: Sử dụng phương pháp đặt ẩn phụ - dạng 4: B1 Giải phương trình:

a) 22x 2x6 6 .

b) 81 2 1 181

2 1 2 2 2 2 2

x

x  xx x

   

Dạng 7: Sử dụng tính chất đơn điệu hàm số:

B1 Cho phương trình: 3x 4xm CMR m phương trình ln có nghiệm nhất. B2 Giải phương trình:

1 1 82 3

x x

 

2 3x x 4 0

  

3 3x 4x 5x

 

4 152 1 4

x

x

 

5 32x3(3x10)3x2 3 x0.

6 22x132x52x12x3x15x2. 3.4x (3x 10)2x x

    

8 23x 2x 2x (1 )2x2 x x

     

9 |2 5| | 1| 1 1

| 2 5 | | 1|

x x

e e

x x

    

 

10

PHẦN – PHƯƠNG TRÌNH LOGARIT 1. Dạng 1: Phương pháp logarit hóa đưa số:

0 1

( )

( )

a b

a

log f x b

f x a

  

  

 

0 1

( ) ( )

( ) ( ) 0

a a

a

log f x log g x

f x g x

  

  

 

Chú ý: việc lựa chọn f(x) > hay g(x) > tùy thuộc vào độ phức tạp f(x) g(x) B1 Giải phương trình:

(5)

b)

4 2

1

2 [1 (1 3 )

2

{ ]}

log logloglog x

c) log x x( 6) 3

d)

2

2

x log

x        

e) log x2( 1)2 2log x2( 3 x 1)

f) log x log x log x log x2    10

g) 2

2

( 1) ( 1)

log x  log x .

h) x lg(1 )x xlg5 lg6

   

B2 Cho phương trình: 2

2

2log (2xx2m 4m )log x( 62mx 2m ) 0 . a) Giải phương trình m =

b) Tìm m để phương trình có nghiệm x x1, 2 thỏa mãn x12x22 1 B3 Cho phương trình: log2m(x2mx)log2m(x m 1)

a) Giải phương trình với m =

b) Tìm m để phương trình có nghiệm

B4 Cho phương trình: logmx2  (6m1)x9m2 2m1 0 a) Giải phương trình với m =

b) Xác định m để phương trình có nghiệm phân biệt 2. Dạng 2: Phương pháp đặt ẩn phụ - dạng 1:

Chú ý: Nếu đặt t log x xa ,( 0)

1

; ,0 1

k k

a x

log x t log a x

t

   

Nếu đặt t alog xb txlog abalog cbclog ab

B1 Giải phương trình sau: log2(3x 1)log2(2.3x 2)

  

2 log2(5x 1)log2(2.5x 2)

  

3 log2(2 ).x log2 2x2 1 log5x 5 log x52 1

x 

5 22 24 3

x

loglog x .

6 log5x5 log x52 1

x 

7 3log x2 xlog236

8

2

9(3 2) 3(3 2)

log xx  log xx

9 (x1)log24(x1) 4(x1)3

10 (x1)log24(x1) 8(x1)3

B2 Cho phương trình: log2(5x 1)log4(2.5x 2) m

  

a) Giải phương trình với m =

b) Tìm m để phương trình có nghiệm x 1

B3 Giải phương trình: 2

1

( ) ( ) ,0 1

a x a

log ax log ax log a

a

  

B4 Cho phương trình: (m 2)2log x22 (2m 6)xlog x2  2(m1) 0

a) Giải phương trình với m = 10

b) Tìm m để phương trình có nghiệm phân biệt 1;2 2

x   

  B5 Cho phương trình: 2(3 3) ( 5) 3 3x 2( 1)

x

mlog m log m

     

a) Giải phương trình với m =

b) Tìm m để phương trình có nghiệm phân biệt dương B6 Cho phương trình: (x 2)log39(x2) 9(x 2)m

c) Giải phương trình m =

d) Tìm m để phương trình có nghiệm thỏa: 3x x1 2 6(x1x2) 11 0  3. Dạng 3: Phương pháp đặt ẩn phụ - dạng 2:

Phương pháp số biến thiên.

B1 Cho phương trình: lg x4 (2m 1)lg x m m3 ( 2)lg x2 (m2 m 1)lgx 1 m 0

         

(6)

b) Tìm m để phương trình có nghiệm phân biệt B2 Giải phương trình:

2

2(4 ) 2

lg x lgxlogxlog x

4 2 9 9 0

lg x lg x  lg xlgx 

2( 1) ( 5) ( 1) 5 0

lg x   xlg x   x

2

3( 1) ( 5) 3( 1)

log x  xlog x  x 

2

3

(x3)log x( 2) 4( x2)log x( 2) 16 0 

3

(x2)log x( 1) 4( x1)log x( 1) 16 0 

2 ( 4)

log xxlog x x  

4. Dạng 4: Phương pháp đặt ẩn phụ - dạng 3:

Sử dụng ẩn phụ cho biểu thức logarit phương trình khéo léo biến đổi phương trình thành phương trình tích.

B1 Giải phương trình:

a) log x x2 ( 1)2log xlog x2 2( 2 x) 0  b) log x log x log x log xlog x22  2  3  2 3 0 c) (2 2)log x2 x(2 2)log x2  1 x2

B2 Cho phương trình: log xlog x2 2( 2 2x3) mlog x2  2log x2( 2 2x3) 2 m0 a) Giải phương trình m =

b) Tìm m để phương trình có nghiệm phân biệt 5. Dạng 5: Phương pháp đặt ẩn phụ - dạng 4:

B1 Giải phương trình: 2

2( 1) 2( 1)

log xx   log xx  

B2 Với giá trị a phương trình sau có nghiệm: 3

2

1 log x 1log xa

B3 Giải phương trình:

a) 2 lgx  1 lgx1

b) 2

2

3log x(  4x5) 5  log x(  4x5) 6

B4 Giải biện luận phương trình:

a) log x3  4 log x3 m

b) lgx 1 lg x2 m

  

6. Dạng 6: Sử dụng phương pháp đặt ẩn phụ - dạng 5:

Sử dụng ẩn phụ chuyển phương trình ban đầu thành hệ phương trình với ẩn phụ một ẩn x Ta thực bước:

Đặt điều kiện có nghĩa cho phương trình. Biến đổi phương trình dạng: f(x; (x)) = 0. Đặt y = (x) đưa hệ: ( )

( ; ) 0

y x

f x y

   

 

.

Chú ý: Đối với phương trình logarít có dạng đặc biệt, phương trình dạng

( )

ax b

s

sc log dx ex

    Với dac;e bc . Cách giải: Điều kiện có nghĩa phương trình: 0 1

0

s dx e

  

  

Đặt ay b log dx e  s(  ) phương trình cho trở thành:

( ) ( ) (1)

( ) (2)

ax b ax b ax b

ay b ay b

s

s c ay b x s acy x bc s acy d ac x e

ay b log dx e s dx e s dx e

   

  

 

              

 

  

        

. Lấy (1) trừ cho (2) ta được: sax b acx say b acy (3).

Xét hàm số f x( )sat b act hàm số dơn điệu R Từ (3) ta có f(x) = f(y) x = y, (2) ax b

sdx e

   (4) dùng phương pháp hàm số để xác định nghiệm phương trình (4).

B1 Giải phương trình:

(7)

b) lgx 1 lg x2 4lgx5

c) 3log x2  1 4log x22 13log x2 

d) 3

2 3

log x  log x

BT1 Giải phương trình:

a) 7x1 6log7(6x 5)

  

b) lgx 1 lg x2 4lgx 5

   

c) 3log x2  1 4log x22 13log x2 

d) 3

2 3

log x  log x

e) x3 1 23 x1.

f) 6x 3log6(5x 1) 2x

   

7. Dạng 7: Sử dụng tính chất đơn điệu hàm số: BT1 Giải phương trình:

a) log x2( 2 4) x log28(x2)

b) 2log x3( 1) x

c)

2( ) log x

log x log x

d) x23log x2 xlog25

e) log2(3log2(3x1) 1) x BT2 Giải phương trình:

a) log x 2 2x 2 2

 

b)

2 3

1

2x 1 log x

 

c) log x22 (x 5)log x2  2x 5

d) lg x( 2 x 6) x lg x( 2) 4

e)

2(1 )

logxlog x

f) log x log7  3( x1)

g) log x log3  2( x1)

Ngày đăng: 20/04/2021, 00:51

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w