Phòng GD-ĐT TP kỳ thi chọn hoc sinh giỏi Trờng THCS lớp 9 thCS năm học 2007 - 2008 Môn : Toán (Vòng 1) Đề chính thức Thời gian: 120 phút (không kể thời gian giao đề) Bài 1: (8 điểm) Cho parabol 2 1 ( ) : 3 P y x= . 1. Viết phơng trình các tiếp tuyến của (P), biết các tiếp tuyến này đi qua điểm (2;1)A . 2. Gọi d là đờng thẳng đi qua điểm (2;1)A và có hệ số góc m. Với giá trị nào của m thì đờng thẳng d cắt (P) tại hai điểm phân biệt M và N, khi đó tìm quĩ tích trung điểm I của đoạn thẳng MN khi m thay đổi. 3. Tìm quĩ tích các điểm M0 từ đó có thể kẻ đợc hai tiếp tuyến của parabol (P) và hai tiếp tuyến này vuông góc với nhau. Bài 2: (4điểm) Giải hệ phơng trình: 2 2 19 7 x y xy x y xy + = + + = Bài 3: (8 điểm) Cho nửa đờng tròn đờng kính AB cố định. C là một điểm bất kì thuộc nửa đờng tròn. ở phía ngoài tam giác ABC, vẽ các hình vuông BCDE và ACFG. Gọi Ax, By là các tiếp tuyến của nửa đờng tròn. 1. Chứng minh rằng khi C di chuyển trên nửa đờng tròn đã cho thì đờng thẳng ED luôn đi qua một điểm cố định và đờng thẳng FG luôn đi qua điểm cố định khác. 2. Tìm quĩ tích của các điểm E và G khi C di chuyển trên nửa đờng tròn đã cho. 3. Tìm quĩ tích của các điểm D và F khi C di chuyển trên nửa đờng tròn đã cho. Hết 1 lớp 9 thCS năm học 2007 - 2008 Môn : toán (Vòng 1) Đáp án và thang điểm: Bài 1 ý Nội dung Điểm 1. 8,0 1.1 (2,0 điểm) Phơng trình đờng thẳng d 1 đi qua A(2; 1) có dạng: y = ax + b và 1 = 2a + b, suy ra b = 1 - 2a, do đó d 1 : y = ax - 2a+1. 0,50 Phơng trình cho hoành độ giao điểm của d 1 và (P) là: 2 2 1 2 1 3 6 3 0 3 x ax a x ax a= + + = 0.50 Để d 1 là tiếp tuyến của (P) thì cần và đủ là: ' = 2 2 9 24 12 0 2 3 a a a a = = + = = 2,0 Vậy từ A(2; 1) có hai tiếp tuyến đến (P) là: 1 2 2 1 : 2 3; : 3 3 d y x d y x= = 0,50 1.2 (4,0 điểm) Phơng trình đờng thẳng d đi qua A(2; 1) có hệ số góc m là: 1 2y mx m= + 0,50 Phơng trình cho hoành độ giao điểm của d và (P) là: 2 2 1 2 1 3 6 3 0 (2) 3 x mx m x mx m= + + = 0,50 Để d cắt (P) tại 2 điểm phân biệt thì cần và đủ là: 2 2 8 4 9 24 12 0 9 0 3 3 m m m m = + > + > ữ 2 4 4 4 2 0 3 9 3 3 m m > > ữ 4 3 4 2 2 3 3 (*) 3 4 2 3 4 2 3 3 m m m m m m > < > < > 1,5 2 Với điều kiện (*), d cắt (P) tại 2 điểm M và N có hoành độ là x 1 và x 2 là 2 nghiệm của phơng trình (2), nên toạ độ trung điểm I của MN là: 1 2 2 2 2 2 2 ; 2 1; 3 3 3 3 3 3 2 2 2 4 1 2 1 3 3 x x x m x x x x m x I y mx m y x x = < > < > + ữ = = = + = + 1,0 Vậy khi m thay đổi, quĩ tích của I là phần của parabol 2 2 4 1 3 3 y x x= + , giới hạn bởi 1; 3x x< > . 0,50 1.3 (2,0 điểm) Gọi 0 0 0 ( ; )M x y là điểm từ đó có thể vẽ 2 tiếp tuyến vuông góc đến (P). Ph- ơng trình đờng thẳng d' qua M 0 và có hệ số góc k là: y kx b= + , đờng thẳng này đi qua M 0 nên 0 0 0 0 y kx b b y kx= + = , suy ra pt của d': 0 0 y kx kx y= + . 0,50 Phơng trình cho hoành độ giao điểm của d và (P) là: 2 2 0 0 0 0 1 3 3 3 0 3 x kx kx y x kx kx y= + + = (**) 0,50 Để từ M 0 có thể kẻ 2 tiếp tuyến vuông góc tới (P) thì phơng trình: 2 0 0 9 12 12 0k kx y = + = có 2 nghiệm phân biệt 1 2 ,k k và 1 2 1k k = 0 0 12 3 1 9 4 y y = = 0,50 Vậy quĩ tích các điểm M 0 từ đó có thể vẽ đợc 2 tiếp tuyến vuông góc của (P) là đờng thẳng 3 4 y = 0,50 2. (4,0 điểm) ( ) 2 2 2 2 19 3 19 3 19 7 7 7 S x y x y xy S P x y xy P xy x y xy S P x y xy = + + = = + = ữ = + + = + = + + = (1) 1,0 Giải hệ (1) ta đợc: ( 1; 6), ( 2; 5)S P S P= = = = 1,0 Giải các hệ phơng trình tích, tổng: 1 6 x y xy + = = và 2 5 x y xy + = = ta có các nghiệm của hệ phơng trình đã cho là: 3 2 1 6 1 6 ; ; ; 2 3 1 6 1 6 x x x x y y y y = = = = + = = = + = 2,0 3 3. 8,0 3.1 Gọi K là giao điểm của Ax và GF, I là giao điểm của By và ED. Ta có: ã ã 0 90BEI BCA= = ã ã EBI CBA= (góc có các cạnh tơng ứng vuông góc) BE BC = , Do đó: BEI BCA BI BA = = mà By cố định, suy ra điểm I cố định. + Tơng tự, K ccố định. + Vậy khi C di chuyển trên nửa đờng tròn (O) thì dờng thẳng ED đi qua điểm I cố định và đờng thẳng GF đi qua điểm K cố định. 3,0 3.2 Suy ra quĩ tích của I là nửa đờng tròn đờng kính BI (bên phải By, ,C A E I C B E B ); quĩ tích của K là nửa đờng tròn đờng kính AK(bên trái Ax, ,C A G A C B G K ). 2,0 3.3 Xét 2 tam giác BEI và BDK, ta có: 1 2 BE BI BD BK = = ã ã ã ã ã ã 0 45EBI IBD KBD IBD EBI KBD + = + = = Do đó: ã ã 0 90 BEI BDK BDK BEI = = : + Vậy: Quĩ tích của D là nửa đờng tròn đờng kính BK. + Tơng tự, quĩ tích của F là nửa đờng tròn đờng kính AI. 3,0 4 Phòng GD-ĐT TP kỳ thi chọn hoc sinh giỏi Trờng THCS lớp 9 thCS năm học 2007 - 2008 Môn : Toán (Vòng 2) Đề chính thức Thời gian: 120 phút (không kể thời gian giao đề) Bài 1: (7 điểm) 1. Giải phơng trình: 4 4 1 2 9 6 2x x x x+ + + = 2. Chứng minh rằng nếu a, b, c là các số không âm và b là số trung bình cộng của a và c thì ta có: 1 1 2 a b b c c a + = + + + Bài 2: (6 điểm) 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của 2 2 3 5 1 x x y x + + = + . 2. Tìm nghiệm nguyên của phơng trình: 2 2 2 3 2 4 3 0x y xy x y+ + + = Bài 3: (7 điểm) Cho đờng tròn tâm O, bán kính R, hai đờng kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung AD. Nối EC cắt OA tại M, nối EB cắt OD tại N. 1. Chứng minh rằng tích OM ON AM DN ì là một hằng số. Suy ra giá trị nhỏ nhất của tổng OM ON AM DN + , khi đó cho biết vị trí của điểm E ? 2. Gọi GH là dây cung cố định của đờng tròn tâm O bán kính R đã cho và GH không phải là đờng kính. K là điểm chuyển động trên cung lớn GH. Xác định vị trí của K để chu vi của tam giác GHK lớn nhất. Hết 5 Phòng GD-ĐT TP kỳ thi chọn hoc sinh giỏi Trờng THCS lớp 9 thCS năm học 2007 - 2008 Môn : toán (Vòng 2) Đáp án và thang điểm: Bài ý Nội dung Điểm 1. 7,0 1.1 (2,0 điểm) 4 4 1 2 9 6 2x x x x+ + + = ( ) ( ) 2 2 4 4 1 3 2x x + = ( ) 4 4 4 1 3 2 (1) 1 3 2 0; 0 (2)x x y y y x x + = + = = (1) 1,0 0 1: 1 0, 3 0y y y < , nên (2) 1 3 2 1y y y + = = (thoả ĐK) 1x = là một nghiệm của phơng trình (1) 1 3: 1 0, 3 0y y y< > , nên pt (2) 1 3 2 0 0y y y + = = do đó pt (2) có vô số nghiệm y ( 1 3y< ), suy ra pt (1) có vô số nghiệm x ( 1 81x < ). 1,0 3: 1 0, 3 0y y y> > > , nên pt (2) 1 3 2 3y y y + = = , pt vô nghiệm. Vậy tập nghiệm của pt (1) là: [ ] 1; 81S = 1,0 1.2 (3,0 điểm) 1 1 2 1 1 1 1 (*) a b b c c a a b c a c a b c + = + + + = + + + + 0,50 Ta có: ( ) ( ) ( ) ( ) ( ) 1 1 c b A a b c a a b c a c b a b c a b c = = + + + + = + + + 0,50 Theo giả thiết: 2 2 a c b a c b b a c b + = + = = , nên: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) b a b a b a A a b b c c a a b b c c a + = = + + + + + + 1,0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 b a b c c a A c a b c b c c a b c c a + + = = = + + + + + + Đẳng thức (*) đợc nghiệm đúng. 1,0 6 2. 6,0 2.1 (3,0 điểm) 2 2 3 5 1 x x y x + + = + (xác định với mọi x R ) ( ) 2 1 3 5 0 (**)y x x y + = 0,5 1:y = pt (**) có nghiệm 4 3 x = 1:y để pt (**) có nghiệm thì: 2 9 4( 1)( 5) 4 24 11 0y y y y = = + 1,0 ( ) ( ) 2 25 5 5 5 1 11 3 0 3 3 1 4 2 2 2 2 2 y y y y y 1,0 Vậy tập giá trị của y là 1 11 ; 2 2 , do đó 11 1 ; 2 2 Max y Min y= = 0,5 2.2 (3,0 điểm) ( ) 2 2 2 2 2 3 2 4 3 0 3 2 2 4 3 0x y xy x y x y x y y+ + + = + + + = (***) 0,5 Để pt (***) có nghiệm nguyên theo x, thì: ( ) ( ) 2 2 2 3 2 4 2 4 3 4 8y y y y y = + = + là số chính phơng. ( ) ( ) 2 2 2 2 4 8 2 12y y k k y k + = + =Z ( 2 )( 2 ) 12 ( )y k y k a + + + = 1,0 Ta có: Tổng ( ) 2 ( 2 ) 2( 2)y k y k k+ + + + = + là số chẵn, nên ( ) 2 ; ( 2 )y k y k+ + + cùng chẵn hoặc cùng lẻ. Mà 12 chỉ có thể bằng tích 1.12 hoặc 2.6 hoặc 3.4, nên chỉ có các hệ phơng trình sau: 2 2 2 6 2 6 2 2 ; ; ; ; 2 6 2 2 2 2 2 6 y k y k y k y k y k y k y k y k + = + = + = + = + + = + + = + + = + + = 0,5 Giải các hệ pt trên ta có các nghiệm nguyên của pt (a): ( ) ( ) ( ) ( ) 2; 2 , 2; 2 , 6; 2 , 6; 2y k y k y k y k= = = = = = = = 0,5 Thay các giá trị 2; 6y y= = vào pt (***) và giải pt theo x có các nghiệm nguyên (x; y) là: ( 1; 2), ( 3; 2);( 11; 6),( 9; 6)x y x y x y x y= = = = = = = = 0,5 3. 7,0 (4 đ) 3.1 Ta có: COM CED : vì: à à 0 90O E= = ; à C chung. Suy ra: . (1) OM CO ED CO OM ED CE CE = = Ta có: AMC EAC : vì: à C chung , à à 0 45A E= = . Suy ra: . (2) AM AC EA AC AM EA EC CE = = Từ (1) và (2): . (3) . 2 OM OC ED ED AM AC EA EA = = 1,0 7 ONB EAB : à à à ( ) 0 90 ;O E B chung= = . (4) ON OB OB EA ON EA EB EB = = à à à 0 . ( , 45 ) (5) DN DB DB ED DNB EDB B chung D E DN ED EB EB = = = =: Từ (4) và (5): . (6) . 2 ON OB EA EA DN DB ED ED = = . Từ (3) và (6): 1 2 OM ON AM DN ì = 1,0 Đặt , OM ON x y AM DN = = . Ta có: x, y không âm và: ( ) 2 1 2 0 2 2 2 2 x y x y xy x y xy = + + = = Dấu "=" xẩy ra khi: 1 1 2 2 x y x y xy = = = = 1,0 Vậy: Tổng min 1 2 2 2 OM ON OM ED khi EA ED AM DN AM EA + = = = = ữ E là trung điểm của dây cung ằ AD . 1,0 3.2 (3,0 điểm) GKH có cạnh GH cố định, nên chu vi của nó lớn nhất khi tổng KG KH + lớn nhất. Trên tia đối của tia KG lấy điểm N sao cho KN = KH. Khi đó, HKN cân tại K. Suy ra ã ã 1 2 GNH GKH= và KG KH KG KN GN + = + = mà ã ẳ 1 2 GKH GH= (góc nội tiếp chắn cung nhỏ ẳ GH cố định), do đó ã GNH không đổi. Vậy N chạy trên cung tròn (O') tập hợp các điểm nhìn đoạn GH dới góc ã 1 4 GOH = không đổi. 1,5 GN là dây cung của cung tròn (O') nên GN lớn nhất khi GN là đờng kính của cung tròn, suy ra GHK vuông tại H, do đó ã ã KGH KHG= (vì lần lợt phụ với hai góc bằng nhau). Khi đó, K là trung điểm của cung lớn ẳ GH . Vậy: Chu vi của GKH lớn nhất khi K là trung điểm của cung lớn ẳ GH . 1,5 8 Phòng GD-ĐT TP Trờng THCS lớp 9 thCS năm học 2007 - 2008 Môn : Toán (Vòng 1) Đề chính thức Thời gian làm bài: 120 phút Bài 1: (8 điểm) Cho phơng trình 2 2 2 2 2 0 (1).x mx m + = . 4. Tìm các giá trị của m để phơng trình (1) có hai nghiệm dơng phân biệt. 5. Tìm các giá trị của m để phơng trình (1) có hai nghiệm phân biệt 1 x và 2 x thoả mãn hệ thức 3 3 1 2 5 2 x x+ = . 6. Giả sử phơng trình (1) có hai nghiệm không âm. Tìm giá trị của m để nghiệm d- ơng của phơng trình đạt giá trị lớn nhất. Bài 2: (4điểm) Giải phơng trình: 2 2 4 3 4x x x x + = (2) Bài 3: (8 điểm) Cho tam giác ABC có ã 0 60 ; ;ABC BC a AB c= = = ( ,a c là hai độ dài cho trớc), Hình chữ nhật MNPQ có đỉnh M trên cạnh AB, N trên cạnh AC, P và Q ở trên cạnh BC đợc gọi là hình chữ nhật nội tiếp trong tam giác ABC. 1. Tìm vị trí của M trên cạnh AB để hình chữ nhật MNPQ có diện tích lớn nhất. Tính diện tích lớn nhất đó. 2. Dựng hình vuông EFGH nội tiếp trong tam giác ABC bằng thớc kẻ và com-pa. Tính diện tích của hình vuông đó. Hết 9 Phòng GD-ĐT TP kỳ thi chọn hoc sinh giỏi Trờng THCS lớp 9 thCS năm học 2007 - 2008 Đáp án và thang điểm: Bài 1 ý Nội dung Điểm 1. 8,0 1.1 (2,0 điểm) Để phơng trình (1) có hai nghiệm dơng phân biệt, cần và đủ là: 2 2 ' 4 0 2 0 2 0 m m P S m = > = > = > 0.5 2 2 2 2 0 m m m m < > < < > 1.5 1.2 (3,0 điểm) Phơng trình có 2 nghiệm phân biệt 2 ' 4 0 2 2m m = > < < (*) 0,50 ( ) ( ) 2 3 3 1 2 1 2 1 2 1 2 5 5 3 2 2 x x x x x x x x + = + + = 0,50 2 2 3 3( 2) 5 6 5 0 2 2 m m m m m = + = 0,5 ( ) ( ) 2 1 2,3 1 21 1 5 0 1; 2 m m m m m + = = = m 0,5 Ta có: 2 1 21 3 21 1 21 2 0 2 2 2 2 x + = > = < 3 1 21 0 2 2 x + = > > và 3 3 5 21 2 0 2 2 x x = > < 0,5 Vậy: Có 2 giá trị của m thoả điều kiện bài toán: 1 21 1; 2 m m + = = 0,5 1.3 (3,0 điểm) Phơng trình có hai nghiệm không âm khi và chỉ khi: 2 2 ' 4 0 2 0 2 2 (**) 2 0 m m P m S m = = = > 0,50 10 [...]... (4,0 ®iĨm) Theo gi¶ thi t diƯn tÝch cđa h×nh vu«ng cã d¹ng S = abbb = k 2 ( k > 0, k ∈ Z) 0,5 1000 ≤ k ≤ 99 99 ⇔ 33 ≤ k ≤ 99 , nªn k chØ gåm 2 ch÷ sè: k = xy = 10 x + y k 2 = 100 x 2 + 20 xy + y 2 ( 3 ≤ x ≤ 9; 0 ≤ y ≤ 9 ) 1,0 2 NÕu y lỴ: y = 1;3;5;7 ;9 ⇒ y = 1 ;9; 25; 49; 81 ⇒ b = 1;5 ;9 Khi ®ã 2xy cã ch÷ sè tËn cïng lµ sè ch½n, nªn ch÷ sè hµng chơc cđa k 2 ph¶i lµ sè ch½n kh¸c víi 1; 5; 9, do ®ã S kh«ng... M của BC b) ∆ABC ~ ∆AEF ˆ C ˆ c) BDF = DE d) H cách đều các cạnh của tam giác ∆DEF Bài 5 (1đ) Cho ba số thực x, y và z sao cho x + y + z = 1 Chứng minh rằng Bài 6 (1đ) Giải bất phương trình 2007 < 2008 −x HẾT 28 29 PHỊNG GIÁO DỤC VÀ ĐÀO TẠO KÌ THI CHỌN HỌC SINH NĂM HỌC 2007 – 2008 HƯỚNG DẪN CHẤM MƠN TỐN HỌC 9 Gợi ý đáp án Bài 1a) 4x2- 49- 12xy+9y2=(4x2-12xy+9y2)- 49 =(2x-3y)2-72=(2x-3y+7)(2x-37-7) Bài... tự ta được ∆BDF~∆BAC, ∆EDC~∆BAC, suy ra · · ∆BDF~∆DEC⇒ BDF = CDE · · · · BDF = CDE ⇒ 90 0 − BDF = 90 0 − CDE 4d) Ta có · · ⇒· AHB − BDF = · AHC − CDE ⇒ · ADF = · ADE Suy ra DH là tia phân giác góc EDF Chứng minh tương tự ta có FH là tia phân giác góc EFD Từ đây suy ra H là giao điểm ba đường phân giác tam giác DEF Vậy H các đều ba cạnh của tam giác DEF Bài 5) Ta có x3 + y3 + z3 – 3xyz = (x + y)3 + z3... GK Þ HDE = GME O J B · · · · D Þ DHEF mà GME = GFE Þ HDE = GFE K nội tiếp được H · · b) Từ câu a suy ra DEH = DFH G · · mà DFH = OCH Þ OHEC nội tiếp được · · Þ OEC = OHC = 90 0 Vậy CE là tiếp tuyến của (O) 34 PHNG GIẠO DỦC TP K THI CHN HC SINH GII THCS NÀM HC 2006 - 2007 MÄN TOẠN - LÅÏP 9 Thåìi gian: 120 phụt (khäng kãø thåìi gian giao âãư) Bi 1 (2 âiãøm): Cho biãøu thỉïc a) Phán têch A thnh nhán tỉí... x 3 1 5 x− ÷ + 12 = 0 3 5 x 3 + =0 4 3 9 2 3 3 y=x+ 4 2 x 3 2 3 =0 4 2 x 3 x− + =0 4 3 x− x y−x= ⇔ y=x+ ⇔ 3 y−x= 4 y= hồûc A = 0 ⇔ y = 3x 1 12 5 y= 6 x= 3 l: 4 27 15 1 5 ; y = ) v ( x = ; y = ) 12 6 4 2 Bi 2 (2 âiãøm) Tỉì 2x2 - 2y2 + 5t2 = 30 v x2 + 8y2 + 9z2 = 168 Suy ra: 3x2 + 6y2 + 9z2 + 5t2 = 198 3(x2 + 2y2 + 3z2 + 4t2 ) = 198 + 7t2 3M = 198 + 7t2 M = 66 + 7 2 t ≥ 66 3 Giạ trë nh nháút... ) 2 2 Suy ra: B¸n kÝnh cđa ®êng trßn (O'4) lµ: ' r4' = O4 H = CHtg 22030 ' = R ( ) 4 + 2 2 +1 ( 1+ 2 ) 3 2 2,0 19 phßng GD-§T Trêng THCS ĐỀ THI TUYỂN CHỌN HỌC SINH GIỎI LỚP 9 NĂM HỌC 2007 -2008 MƠN THI : TỐN Thời gian làm bài: 150 phút ( Khơng kể thời gian giao đề) Câu 1: (1,5 điểm) So sánh các số thực sau ( Khơng dùng máy tính gần đúng) 3 2 và 2 3 Câu 2: (3 điểm) Giải phương trình sau: x2 −1 − x2... = t Giải phương trình theo t, ta có: −1 − 13 −1 + 13 t1 = < 0 (lo¹i); t2 = >0 2 2 13 − 9 t2 − 4 = < 0 ⇔ t2 < 4 Suy ra nghiƯm cđa (3) lµ t2 2 9 − 13 x1 = 2 − 2 2 2 Gi¶i ph¬ng tr×nh 4 x − x = t2 ⇔ x − 4 x + t2 = 0 ⇔ x = 2 + 9 − 13 2 2 VËy: ph¬ng tr×nh ®· cho cã hai nghiƯm ph©n biƯt: ( x1,2 = 2 ± 9 − 13 2 ) 0,5 0,5 0,5 1,0 1,0 1,0 0,5 11 3 + §Ỉt AM = x (0 ≤ x ≤ c) 3.1 8,0 Ta cã: MN AM... nam được chia vào tổ là x, 0,5 số bạn nam được chia vào tổ là y, x, y ngun dương Theo đề ra ta có hệ: 32 24 = x y (1) 9 ≤ x + y ≤ 15 (2) 3x – 4y = 0 => x = Từ (1) ta có: 0,75 Đặt y = 3t, t > 0 và t ∈ z, ta có: 4 y 3 0,5 x = 4t 0,25 Từ (2), ta có: 9 ≤ 3t + 4t ≤ 15 hay 9 ≤ 7t ≤ 15 => 0,5 9 2 2 15 1 < t ≤ 2 7 7 7 7 0,5 Vì t ∈ z nên giá trị t cần tìm là t = 2, ta tính ra x = 8; y = 6 0,5 Như vậy,... 2008 2007 + 2008 x 2007 < 2008 ⇔ >0 −x x 0 (1,5đ) (1,5đ) (1đ) 1đ 1đ 31 Gợi ý đáp án Điểm Hoặc biểu diễn trên trục số : Trong từng phần, từng câu, nếu thí sinh làm cách khác nhưng vẫn cho kết quả đúng, hợp logic thì vẫn cho điểm tối đa của phần, câu tương ứng HẾT 32 SỞ GIÁO DỤC ĐÀO TẠO TRƯỜNG THCS ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9 CẤP TRƯỜNG Mơn: Tốn Thời gian: 150 phút Bài 1: a) Giải phương trình: x 4 -... thẳng song 0,5 nói trên D 0,5 C A O B *· ACB = 90 o (góc nội tiếp chắn nửa đường tròn) => AC vng góc với BD CD = CB (gt) Tam giác ABC cân tại A AD = AB = 2R (khơng đổi) AD = AB = 2R (khơng đổi) và A cố định Do đó D chuyển động trên đường tròn (A; 2R) 0,5 0,5 0,5 0,5 0,5 23 PHNG GIẠO DỦC TP K THI CHN HC SINH GII THCS NÀM HC 2007 - 2008 MÄN TOẠN - LÅÏP 9 Thåìi gian: 120 phụt (khäng kãø thåìi gian giao . 2. 6,0 2.1 (4,0 điểm) Theo giả thi t diện tích của hình vuông có dạng ( ) 2 0,S abbb k k k= = > Z 0,5 2 1000 99 99 33 99 k k , nên k chỉ gồm 2 chữ. số: 10k xy x y= = + ( ) 2 2 2 100 20 3 9; 0 9k x xy y x y= + + . 1,0 Nếu y lẻ: 2 1;3;5;7 ;9 1 ;9; 25; 49; 81 1;5;9y y b= = = . Khi đó 2xy có chữ số tận