1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Ứng dụng biến đổi laplace (TOÁN kỹ THUẬT SLIDE)

35 18 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 1,26 MB

Nội dung

Bộ mơn Tốn Ứng dụng Hàm phức biến đổi Laplace Chương 3: Ứng dụng biến đổi Laplace Nội dung 0.1 – Giải phương trình hệ phương trình vi phân 0.2 – Ứng dụng vào giải tích mạch điện 0.1 Giải phương trình hệ phương trình vi phân - Để giải phương trình hệ phương trình vi phân với hàm cần tìm y(t) với điều kiện ban đầu: Lấy biến đổi Laplace hai vế phương trình cho thu phương trình theo Y(s) Giải phương trình tìm Y(s) Lấy biến đổi Laplace ngược tìm y(t) L {y (t )}= Y (s) L {y '(t )}= sY (s) − y (0) L {y ''(t )}= s2Y (s) − sy (0) − y '(0) 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải phương trình vi phân y '(t ) + 2y (t ) = với điều kiện ban đầu y (0) = L {y '(t ) + 2y (t )}= L {1} sY (s) − y (0) + 2Y (s) = s 4s + Y (s) = s(s + 2) −2t y (t ) = + e 2 Y (s) = + 2s 2(s + 2) 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải phương trình vi phân y ''(t ) + 4y (t ) = 9t với điều kiện ban đầu y (0) = 0; y '(0) = L {y ''(t ) + 4y (t )}= 9L {} t s Y (s) − sy (0) − y (0) + 4Y (s) = s s Y (s) − + 4Y (s) = s 7s2 + 9/ 19/ Y (s) = 2 Y (s) = + s (s + 4) s s +4 19 y (t ) = t + sin2t ' 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải phương trình vi phân y ''(t ) − 3y '(t ) + 2y (t ) = 4t + 12e−t ' với điều kiện ban đầu y (0) = 6; y (0) = −1 12 s Y (s) − sy (0) − y (0) − 3sY (s) + 3y (0) + 2Y (s) = + s s +1 ' 2 Y (s) = + + + − s s s +1 s −1 s − y (t ) = 3+ 2t + 2e−t + 3et − 2e2t 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải hệ phương trình vi phân x '(t ) − 2x (t ) + 3y (t ) =   y '(t ) + 2x (t ) − y (t ) = với điều kiện ban đầu x (0) = 8; y (0) = 0.1 Giải phương trình hệ phương trình vi phân - L {x '(t ) − 2x (t ) + 3y (t )}=  ' L { y (t ) + 2x (t ) − y (t )}=  sX (s) − x (0) − 2X (s) + 3Y (s) =   sY (s) − y (0) + 2X (s) −Y (s) = 8s − 17   X (s) = s2 − 3s −  Y (s) = 3s − 22  s2 − 3s −  x (t ) = 5e−t + 3e4t   y (t ) = 5e−t − 2e4t   X (s) = s + 1+ s −  Y (s) = −  s +1 s − 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải hệ phương trình vi phân  x '(t ) − 2y (t ) =   y '(t ) + 2x (t ) = t với điều kiện ban đầu x (0) = 0; y (0) = 0.1 Giải phương trình hệ phương trình vi phân -  L {x '(t ) − 2y (t )}= L {1}  ' L { y (t ) + 2x (t )}= L {1}  1/ 1/   X (s) = s2 + s2 +  Y (s) = −1/ + 1/ 4s  s s2 +   sX (s) − 2Y (s) = s  sY (s) + 2X (s) =  s2 t sin2t   x (t ) = +   y (t ) = −1+ cos2t  4 10 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ: Tìm tổng trở tương đương Z(s) 1Ω 2H 1F F 4H 1F 1H 1Ω 21 0.2 Ứng dụng vào giải tích mạch điện - Giải: Chuyển từ miền t sang miền s: 1 s 2s s 4s s s 2 × s + 5s s s s = + 2s + + Z (s ) = + s + +s+ 2 s 4s + 4s + + s s 22 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm tổng dẫn tương đương Y(s) 4H 2H F 10 F 1Ω 23 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s 4s 2s 10 s s 1 1 s s Y (s ) = = + + + Z (s ) s s + 10 24 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm i(t), biết i(0) = 2A, Vc(0) = 4V i(t ) 6u (t ) 1H Vc (t ) 4Ω F 13 25 0.2 Ứng dụng vào giải tích mạch điện - i(s ) Giải Chuyển sang miền s s s Vc (s ) 13 s s + 2s V (s ) = + − = s s s V (s ) + 2s i(s ) = = Z (s ) s + s + 13 13 s + s + 13 Z (s ) = s + + = s s ⇒ i(t ) = L {i(s )}= 2e (cos3t - sin3t ) −1 -2t 26 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm V0(s) 3Ω 2u (t ) 1F 1H o+ 2Ω V0 (t ) 6u (t ) o− 27 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s s i1 s i2 s s  = i1 + i2  s   + i s = i (1 + 2)  s s o+ V0 (s ) o− V0 (s ) = 2i2 (s ) 4(s + 3) ⇒ V0 (s ) = (s + 1)2 28 0.2 Ứng dụng vào giải tích mạch điện - V0 (s ) Ví dụ Tìm tỉ số với u (t ) = 1, t > 0; c = F Vi (s ) 1H 1Ω Vi (t ) = u (t ) 1Ω o+ V0 (t ) o− 29 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s 1Ω i1 i2 i3 Vi (s )   i1 = i2 + i3   Vi (s ) = i1 + i3  i2 s + i2 = i3  8s 1s o+ 8s V0 (s ) o− V0 (s ) = i2 8s V0 (s ) ⇒ = Vi (s ) 2(8s + s + 1) 30 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm dịng I(s), biết i(0) = 10Ω 20e −100t u (t ) 0,2 H 31 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s 10 20 s + 100 V (s ) I (s ) = Z (s ) s 20 V (s ) = s + 100 s Z (s ) = 10 + 100 I (s ) = (s + 50)(s + 100) I (t ) = L−1{I (s )}= 2(e −50t − e −100t ) 32 Miền t Miền s (Laplace) 33 V3 I3 V1 I1 I2 V2 V4 34 35 ... hàm cần tìm y(t) với điều kiện ban đầu: Lấy biến đổi Laplace hai vế phương trình cho thu phương trình theo Y(s) Giải phương trình tìm Y(s) Lấy biến đổi Laplace ngược tìm y(t) L {y (t )}= Y (s) L... luật Kirchoff) 18 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ: Tìm tổng trở tương đương Z(s) 2H 1H F F 19 0.2 Ứng dụng vào giải tích mạch... + ) s s 20 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ: Tìm tổng trở tương đương Z(s) 1Ω 2H 1F F 4H 1F 1H 1Ω 21 0.2 Ứng dụng vào giải

Ngày đăng: 29/03/2021, 18:43

TỪ KHÓA LIÊN QUAN

w