Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 35 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
35
Dung lượng
1,26 MB
Nội dung
Bộ mơn Tốn Ứng dụng Hàm phức biến đổi Laplace Chương 3: Ứng dụng biến đổi Laplace Nội dung 0.1 – Giải phương trình hệ phương trình vi phân 0.2 – Ứng dụng vào giải tích mạch điện 0.1 Giải phương trình hệ phương trình vi phân - Để giải phương trình hệ phương trình vi phân với hàm cần tìm y(t) với điều kiện ban đầu: Lấy biến đổi Laplace hai vế phương trình cho thu phương trình theo Y(s) Giải phương trình tìm Y(s) Lấy biến đổi Laplace ngược tìm y(t) L {y (t )}= Y (s) L {y '(t )}= sY (s) − y (0) L {y ''(t )}= s2Y (s) − sy (0) − y '(0) 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải phương trình vi phân y '(t ) + 2y (t ) = với điều kiện ban đầu y (0) = L {y '(t ) + 2y (t )}= L {1} sY (s) − y (0) + 2Y (s) = s 4s + Y (s) = s(s + 2) −2t y (t ) = + e 2 Y (s) = + 2s 2(s + 2) 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải phương trình vi phân y ''(t ) + 4y (t ) = 9t với điều kiện ban đầu y (0) = 0; y '(0) = L {y ''(t ) + 4y (t )}= 9L {} t s Y (s) − sy (0) − y (0) + 4Y (s) = s s Y (s) − + 4Y (s) = s 7s2 + 9/ 19/ Y (s) = 2 Y (s) = + s (s + 4) s s +4 19 y (t ) = t + sin2t ' 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải phương trình vi phân y ''(t ) − 3y '(t ) + 2y (t ) = 4t + 12e−t ' với điều kiện ban đầu y (0) = 6; y (0) = −1 12 s Y (s) − sy (0) − y (0) − 3sY (s) + 3y (0) + 2Y (s) = + s s +1 ' 2 Y (s) = + + + − s s s +1 s −1 s − y (t ) = 3+ 2t + 2e−t + 3et − 2e2t 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải hệ phương trình vi phân x '(t ) − 2x (t ) + 3y (t ) = y '(t ) + 2x (t ) − y (t ) = với điều kiện ban đầu x (0) = 8; y (0) = 0.1 Giải phương trình hệ phương trình vi phân - L {x '(t ) − 2x (t ) + 3y (t )}= ' L { y (t ) + 2x (t ) − y (t )}= sX (s) − x (0) − 2X (s) + 3Y (s) = sY (s) − y (0) + 2X (s) −Y (s) = 8s − 17 X (s) = s2 − 3s − Y (s) = 3s − 22 s2 − 3s − x (t ) = 5e−t + 3e4t y (t ) = 5e−t − 2e4t X (s) = s + 1+ s − Y (s) = − s +1 s − 0.1 Giải phương trình hệ phương trình vi phân - Ví dụ Giải hệ phương trình vi phân x '(t ) − 2y (t ) = y '(t ) + 2x (t ) = t với điều kiện ban đầu x (0) = 0; y (0) = 0.1 Giải phương trình hệ phương trình vi phân - L {x '(t ) − 2y (t )}= L {1} ' L { y (t ) + 2x (t )}= L {1} 1/ 1/ X (s) = s2 + s2 + Y (s) = −1/ + 1/ 4s s s2 + sX (s) − 2Y (s) = s sY (s) + 2X (s) = s2 t sin2t x (t ) = + y (t ) = −1+ cos2t 4 10 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ: Tìm tổng trở tương đương Z(s) 1Ω 2H 1F F 4H 1F 1H 1Ω 21 0.2 Ứng dụng vào giải tích mạch điện - Giải: Chuyển từ miền t sang miền s: 1 s 2s s 4s s s 2 × s + 5s s s s = + 2s + + Z (s ) = + s + +s+ 2 s 4s + 4s + + s s 22 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm tổng dẫn tương đương Y(s) 4H 2H F 10 F 1Ω 23 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s 4s 2s 10 s s 1 1 s s Y (s ) = = + + + Z (s ) s s + 10 24 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm i(t), biết i(0) = 2A, Vc(0) = 4V i(t ) 6u (t ) 1H Vc (t ) 4Ω F 13 25 0.2 Ứng dụng vào giải tích mạch điện - i(s ) Giải Chuyển sang miền s s s Vc (s ) 13 s s + 2s V (s ) = + − = s s s V (s ) + 2s i(s ) = = Z (s ) s + s + 13 13 s + s + 13 Z (s ) = s + + = s s ⇒ i(t ) = L {i(s )}= 2e (cos3t - sin3t ) −1 -2t 26 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm V0(s) 3Ω 2u (t ) 1F 1H o+ 2Ω V0 (t ) 6u (t ) o− 27 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s s i1 s i2 s s = i1 + i2 s + i s = i (1 + 2) s s o+ V0 (s ) o− V0 (s ) = 2i2 (s ) 4(s + 3) ⇒ V0 (s ) = (s + 1)2 28 0.2 Ứng dụng vào giải tích mạch điện - V0 (s ) Ví dụ Tìm tỉ số với u (t ) = 1, t > 0; c = F Vi (s ) 1H 1Ω Vi (t ) = u (t ) 1Ω o+ V0 (t ) o− 29 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s 1Ω i1 i2 i3 Vi (s ) i1 = i2 + i3 Vi (s ) = i1 + i3 i2 s + i2 = i3 8s 1s o+ 8s V0 (s ) o− V0 (s ) = i2 8s V0 (s ) ⇒ = Vi (s ) 2(8s + s + 1) 30 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ Tìm dịng I(s), biết i(0) = 10Ω 20e −100t u (t ) 0,2 H 31 0.2 Ứng dụng vào giải tích mạch điện - Giải Chuyển sang miền s 10 20 s + 100 V (s ) I (s ) = Z (s ) s 20 V (s ) = s + 100 s Z (s ) = 10 + 100 I (s ) = (s + 50)(s + 100) I (t ) = L−1{I (s )}= 2(e −50t − e −100t ) 32 Miền t Miền s (Laplace) 33 V3 I3 V1 I1 I2 V2 V4 34 35 ... hàm cần tìm y(t) với điều kiện ban đầu: Lấy biến đổi Laplace hai vế phương trình cho thu phương trình theo Y(s) Giải phương trình tìm Y(s) Lấy biến đổi Laplace ngược tìm y(t) L {y (t )}= Y (s) L... luật Kirchoff) 18 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ: Tìm tổng trở tương đương Z(s) 2H 1H F F 19 0.2 Ứng dụng vào giải tích mạch... + ) s s 20 0.2 Ứng dụng vào giải tích mạch điện - Ví dụ: Tìm tổng trở tương đương Z(s) 1Ω 2H 1F F 4H 1F 1H 1Ω 21 0.2 Ứng dụng vào giải