1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Laplace transform (TOÁN kỹ THUẬT SLIDE)

53 25 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 472 KB

Nội dung

Chap Laplace Transform Outline ■ Basic Concepts ■ Laplace Transform ■ Definition, Theorems, Formula ■ Inverse Laplace Transform ■ Definition, Theorems, Formula ■ Solving Differential Equation ■ Solving Integral Equation Page Basic Concepts 微微微微微 微微微微微 Laplace Transform Differential Equation f(t) L{ f(t)} = F(s) Algebra Equation F(s) Inverse Laplace Transform Solution of Differential Equation f(t) L-1{F(s)} = f(t) Solution of Algebra Equation F(s) Page Basic Concepts Laplace Transform y ′ − y ′ + y = 4t y (0) = 1, y′(0) = −1 L{ f(t)} = F(s) s3 − 4s2 + F ( s) = s − 3s + s Inverse Laplace Transform y = f (t ) = + 2t − e t − e t L-1{F(s)} = f(t) −1 −1 F ( s) = + + + s s s −1 s − Page Laplace Transform ■ Definition The Laplace transform of a function f(t) is defined as ■ ■ Converges: F ( s ) =L{f(t)} L { f exists (t )} = ∫ ∞ e − st f (t )dt Diverges: L{f(t)} does not exist Page Laplace Transform s=0.125 e-st s=0.25 s=0.5 s=1 s=2 s=4 s=8 t Page Laplace Transform ■ Example : Find L{ } Sol: L{1} = = ∫ ∞ ∫ ∞ 0 − st e 1dt e − ( s )t dt − ( s )t ∞ e = −s = s Page Laplace Transform ■ Example : Find L{ eat } Sol: ∞ L {e } = ∫ e e dt at − st at ∞ =∫ e −( s − a ) t −( s − a ) t dt ∞ e = − (s − a) = s−a Page Laplace Transform ■ Example 4-2 : Find L{ tt } Sol: ∞ L {t } = ∫ e t dt t − st t =∞ ∴L{ tt } does not exist Page Laplace Transform ■ Exercise 4-1 : ■ Find L{2t + 6} ■ Find L {sin πt} ■ Find L {(at + b)2 } ■ Find L {eat +b } Page 10 ■ Example Find the inverse transform of the function w ln(1 + ) s Page 39 Convolution Integration Equation ■ Convolution t ■ Properties f (t ) ∗ g (t ) = ∫ f (τ )g (t − τ )dτ ■ ■ f ∗g = g∗ f ■ f ∗ ( g1 + g ) = f ∗ g1 + f ∗ g ■ ( f ∗ g ) ∗ h = f ∗ ( g ∗ h) f ∗0 = 0∗ f = Page 40 ■ Example1 Using the convolution, find the inverse h(t) of H ( s) ■ Example = (s2 H ( s) + 1) = s3 ■ Example H ( s) = , find h ( t ) s (s − a) Page 41 Laplace Transform L { f (t ) ∗ g (t )} = F ( s )G ( s ) ■ Example 4-7 : Prove Proof: ∞ L { f (t ) ∗ g (t )} = ∫ e =∫ ∞ =∫ ∞ 0 ∫ t ∫ ∞ 0 − st ∫ t f (τ )g (t − τ )dτdt e − st f (τ )g (t − τ )dτdt e − s ( v +τ ) f (τ )g ( v )dτdv, Let v = t − τ ∞ ∞ − sτ − sv    = ∫ e f (τ )dτ ∫ e g ( v )dv      = F ( s )G ( s ) Page 42 Differential Equation y′′ + ay′ + by = r (t ) y (0) = 0, y ' (0) = ( s + as + b) L( y ) = L(r ) let Q ( s ) = /( s + as + b), R( s ) = L( r ) L( y ) = Q ( s ) R( s ) y (t ) = t ∫ q(t − τ )r(τ )dτ Page 43 Integration Equations y (t ) = t + ■ Example ∫ t y (τ ) sin(t − τ )dτ t y (t ) = t + ∫ y (τ ) sin(t − τ )dτ = t + y ∗ sin t Y = L { y (t )} = L {t + y ∗ sin t} 1 = +Y s s +1 s2 + 1 Y = = 2+ 4 s s s 1 t ∴ y (t ) = L-1{Y } = L-1{ } + L-1{ } = t + s s Page 44 Homeworks ■ Section 5-4 ■ #1,#13 ■ Section 5-5 ■ #7, #14, #27 Page 45 Laplace Transform ■ Formula f(t) t n , n = 1,2,3, t , p > −1 p e at cos ωt sin ωt F(s) = L {f(t)} s n! s n +1 Γ( p + 1) s p +1 s−a s s2 + ω ω s2 + ω Page 46 Laplace Transform ■ Formula f(t) cosh ωt sinh ωt e cos ωt at e sin ωt at t n e at , n = 1,2, t p e at , p > −1 F(s) = L {f(t)} s s2 − ω ω s2 − ω s−a ( s − a )2 + ω ω ( s − a )2 + ω n! ( s − a )n +1 Γ( p + 1) ( s − a ) p +1 Page 47 Inverse Laplace Transform ■ Definition The Inverse Laplace Transform of a function F(s) is defined as a +i∞ st f (t ) = L {F ( s )} = e F ( s )ds ∫ 2πi a −i∞ -1 Page 48 Inverse Laplace Transform ■ Theorems Theorem Inverse Laplace Transform Linear Property Derivatives Integrals First Shifting Property Second Shifting Property Description a +i∞ st -1 f (t ) = L {F ( s )} = e F ( s )ds ∫ a − i ∞ 2πi L-1{aF ( s ) + bG ( s )} = af (t ) + bg (t ) L-1{s n F ( s) − s n−1 f (0) −  − f ( n−1) (0)} = f ( n ) (t ) t -1 L { F ( s )} = ∫ f (τ )dτ s L-1{F ( s − a )} = e at f (t ) L-1{e − as F ( s )} = f (t − a )u(t − a ) Page 49 Inverse Laplace Transform ■ Theorems Theorem Change of Scale Property Multiplication by tn Division by t Unit Impulse Function Unit Step Function Convolution Theorem Description s L-1{F ( )} = af ( at ) a L-1{F ( n ) ( s )} = ( −1) n t n f (t ) ∞ L {∫ F (u )du} = -1 s f (t ) t L-1{e − as } = δ (t − a ) e − as L { } = U (t − a ) s -1 L-1{F ( s )G ( s )} = f (t ) ∗ g (t ) Page 50 Inverse Laplace Transform ■ Formula F(s) s s2 s n +1 , n = 0,1,2, s−a s s2 + ω ω s2 + ω f(t) = L -1{F(s)} t tn n! at e cos ωt sin ωt Page 51 Inverse Laplace Transform ■ Formula F(s) s s2 − ω ω s2 − ω s−a ( s − a )2 + ω ω ( s − a )2 + ω n! ( s − a )n +1 Γ( p + 1) ( s − a ) p +1 f(t) = L -1{F(s)} cosh ωt sinh ωt e cos ωt at e sin ωt at t n e at , n = 1,2, t p e at , p > −1 Page 52 Solving Differential Equation y ′′ + ay ′ + by = r (t ) Let Y = L { y (t )} [ s Y − sy (0) − y′(0)] + a[ sY − y (0)] + bY = R( s) ⇒ ( s + as + b)Y = ( s + a ) y (0) + y ′(0) + R ( s ) ( s + a ) y (0) + y ′(0) R( s) ⇒Y = + 2 ( s + as + b) ( s + as + b) Assume Q ( s ) = ( s + as + b) ⇒ Y = [ ( s + a ) y (0) + y ′(0]Q ( s ) + R ( s )Q ( s ) Page 53 ... exist Page Laplace Transform ■ Exercise 4-1 : ■ Find L{2t + 6} ■ Find L {sin πt} ■ Find L {(at + b)2 } ■ Find L {eat +b } Page 10 Laplace Transform ■ Theorems Theorem Definition of Laplace Transform. .. Inverse Laplace Transform ■ Definition The Inverse Laplace Transform of a function F(s) is defined as a +i∞ st f (t ) = L {F ( s )} = e F ( s )ds ∫ 2πi a −i∞ -1 Page 48 Inverse Laplace Transform. .. L(f) from L(1) ■ Example 2: Derive the Laplace transform of cos wt Page 20 Differential Equations, Initial Value Problem ■ How to use Laplace transform and Laplace inverse to solve the differential

Ngày đăng: 29/03/2021, 18:43

TỪ KHÓA LIÊN QUAN