THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 79 |
Dung lượng | 7,3 MB |
Nội dung
Ngày đăng: 09/03/2021, 11:43
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
[6] A. Y. Kibangou, “Graph Laplacian based matrix design for finite-time distributed average consensus,” in Proc. of American Contr. Conf., pp.1901-1906, 201 [7] J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1999 | Sách, tạp chí |
|
||
[1] B. Houska, J. Frasch, M. Diehl. An Augmented Lagrangian Based Algorithm for Distributed Non-Convex Optimization. SIAM Journal on Optimization, Volume 26(2), pp.1101–1127,2016 | Khác | |||
[2] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems Control Letters,53:65-78,2004 | Khác | |||
[3] L. Xiao, S. Boyd, and S. Kim. Distributed average consensus with leastmean square deviation. Journal on Parallel Distributed Computation, 67(1):33–46, January 07 | Khác | |||
[4] I. Necoara, D. Doan, and J. A. K. Suykens, Application of the proximal center decomposition method to distributed model predictive control, in Proceedings of the 47th IEEE Conference on Decision and Control, 2008, pp. 2900-2905 | Khác | |||
[5] L. Georgopoulos. Definitive consensus for distributed data inference. PhD thesis, EPFL, Lausanne, 2011 | Khác | |||
[8] R. Merris. Laplacian matrices of a graph: a survey. Linear Algebra and its Applications, 197:143–176, 1994 | Khác | |||
[9] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999 | Khác | |||
[10] I. Necoara and J. A. K. Suykens, Application of a smoothing technique to decomposition in convex optimization, IEEE Trans. Automat. Control, 53 (2008), pp.2674-2679 | Khác | |||
[11] M. Diehl, A. Walther, H. G. Bock, and E. Kostina, An adjoint-based SQP algorithm with quasi-Newton Jacobian updates for inequality constrained optimization, Optim | Khác | |||
[12] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res. Financ. Eng. Springer, New York, 2006 | Khác | |||
[13] S. P. Han, A globally convergent method for nonlinear programming, J. Optim | Khác | |||
[14] A. Iusem, Augmented Lagrangian methods and proximal point methods for convex optimization, Investigaci´on Operativa, 8 (1999), pp. 11-49 | Khác | |||
[15] B. Lemaire, The Proximal Algorithm, Internat. Ser. Numer. Math., Birkh¨auser Verlag, Basel, 1989, pp. 73-87 | Khác | |||
[16] N. Parikh and S. Boyd, Proximal algorithms, Found Trends Optim., 1 (2013), pp. 123-231 | Khác | |||
[17] A. H. Dekker and B. D. Colbert. Network robustness and graph topology. In Proceedings of the 27th Australasian Conference on Computer Science (ACSC) - Volume 26, 2004 | Khác | |||
[18] J. Wu, M. Barahona, Y. Tan, and H. Deng. Spectral measure of structural robustness in complex networks. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 41(6):1244–1252, November 2011 | Khác | |||
[19] M. Friedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:298–305, 1973 | Khác | |||
[20] W. Ellens and R. E. Kooij. Graph measures and network robustness. e-version, arXiv, 2013 | Khác | |||
[21] P. Yang, R. A. Freeman, G. Gordon, K. Lynch, S. Srinivasa, and R. Sukthankar. Decentralized estimation and control of graph connectivity in mobile sensor networks.In Proc. of American Control Conference, (ACC), pages 2678 – 2683, June 2008 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN