Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 33 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
33
Dung lượng
0,98 MB
Nội dung
Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS PHẦN MỞ ĐẦU Lý chọn đề tài “Toán học - khoa học nghiên cứu quan hệ số lượng hình dạng giới khách quan” (Từ điển Tiếng Việt 1997- NXB Đà Nẵng) “Tốn học” chìa khố hầu hết ngành khoa học, môn học đầy hấp dẫn song lại khó học sinh nói chung học sinh THCS nói riêng Bất đẳng thức có nhiều ứng dụng giải tốn nhƣ: giải phƣơng trình, giải bất phƣơng trình, tìm giá trị lớn nhỏ nhất, ứng dụng hình học… Trong trình giải tập bất đẳng thức, lực tƣ học sinh đƣợc phát triển đa dạng, mạnh mẽ cách giải tập khơng hồn tồn có mẫu quy tắc định nhƣ mảng kiến thức khác Nội dung bất đẳng thức đƣợc thức đƣa vào từ lớp nhƣng phương pháp chứng minh bất đẳng thức không đƣợc tập trung vào chƣơng, mục mà nằm rải rác nhiều nội dung kiến thức khác Tuy nhiên, thực tế, q trình học tốn, giải tốn, đặc biệt kỳ thi vào THPT, thi học sinh giỏi, thi vào trƣờng chuyên, lớp chọn, em học sinh lại gặp nhiều toán chứng minh bất đẳng thức Mà để giải tập loại toán học sinh phải vận dụng nhiều kiến thức tổng hợp nên em gặp nhiều khó khăn việc tìm lời giải khơng biết nên sử dụng phƣơng pháp Qua số năm giảng dạy, bồi dƣỡng học sinh giỏi lớp ôn thi cho học sinh lớp Đồng thời tham khảo ý kiến đồng nghiệp trình nghiên cứu đề tài năm gần đây, rút đƣợc số kinh nghiệm việc dạy dạng tốn Những năm học trƣớc, tơi nghiên cứu đề tài nhận thấy vấn đề khó nhƣng có nhiều ứng dụng kết đạt đƣợc khả quan Chính thế, năm học tiếp tục nghiên cứu trao đổi đồng nghiệp Đề tài tiếp tục bổ sung thêm số ví dụ tập đƣợc lấy kì thi tuyển sinh vào THPT, thi thử vào lớp 10 số trƣờng năm học 2018 - 2019 Ngồi ra, tơi xin đƣa thêm số ví dụ ứng dụng bất đẳng thức dạng tốn tìm nghiệm ngun hay gặp kì thi học sinh giỏi, thi vào 10 mà năm học trƣớc chƣa đề cập tới đƣợc Trang 133 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Với lý trên, tơi xin trình bày đề tài “Một số phương pháp chứng minh bất đẳng thức đại số chương trình tốn học THCS ” Song kinh nghiệm cá nhân giới hạn kiến thức chƣơng trình tốn THCS, khơng tránh khỏi sơ suất mong đồng nghiệp bạn đọc chân thành góp ý! Tôi hy vọng đề tài đƣợc sử dụng làm tài liệu hƣớng dẫn em học sinh chứng minh bất đẳng thức đại số Qua rèn khả tƣ nhằm tạo tiền đề tốt cho việc học toán lớp Mục đích nhiệm vụ nghiên cứu a Mục đích - Tìm hiểu sâu dạng tốn chứng minh bất đẳng thức trƣờng THCS - Bồi dƣỡng phát triển tƣ cho học sinh b Nhiệm vụ Hệ thống hoá số phương pháp chứng minh bất đẳng thức đƣa hệ thống tập để luyện cho học sinh số sai lầm học sinh thƣờng mắc phải Đối tƣợng nghiên cứu Có nhiều dạng toán liên quan đến mảng kiến thức bất đẳng thức, nhƣng hạn chế chƣơng trình THCS nên đề tài tơi nghiên cứu số phương pháp chứng minh bất đẳng thức đại số chương trình tốn lớp 8; Phƣơng pháp nghiên cứu - Dùng phƣơng pháp nghiên cứu lý thuyết chủ yếu, nghiên cứu thông qua việc đọc, tìm hiểu sách giáo khoa, sách tham khảo tài liệu có liên quan - Dùng phƣơng pháp quan sát qua học, thông qua khảo sát thực tế để tìm hiểu dạy học dạng tốn chứng minh bất đẳng thức Trang 233 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS PHẦN NHỮNG BIỆN PHÁP ĐỔI MỚI ĐỂ GIẢI QUYẾT VẤN ĐỀ Cơ sở lý luận Các em học sinh thƣờng gặp toán chứng minh bất đẳng thức từ lớp dƣới Mặc dù chƣa đƣợc thức làm quen với khái niệm bất đẳng thức nhƣng từ bậc Tiểu học, học sinh đƣợc làm quen với dạng tập bất đẳng thức nhƣ tìm x biết a < x < b (với a, b số đó) Lên lớp 6, tốn bất đẳng thức chủ yếu đƣợc cho dƣới dạng so sánh phân số Đến lớp em đƣợc học nhiều dạng chứng minh bất đẳng thức nhƣng toán mức độ đơn giản Lên lớp 9, em tiếp tục đƣợc gặp dạng toán nhƣng mở rộng khó Đặc biệt em tham gia vào kì thi chọn học sinh giỏi, thi vào lớp 10, thi vào lớp chọn, dạng tốn chứng minh bất đẳng thức lại hay gặp Đây loại toán phức tạp, việc giúp em nắm đƣợc số phương pháp chứng minh bất đẳng thức quan trọng Cơ sở thực tiễn Khi chƣa dạy cho em phương pháp chứng minh bất đẳng thức đại số, em lúng túng giải dạng tốn Thơng thƣờng, em phải mị mẫm cách giải, cách giải thiếu suy luận logic Chính mà việc hướng dẫn em số phương pháp chứng minh bất đẳng thức đại số cần thiết Do vậy, cố gắng hệ thống lại số phương pháp chứng minh bất đẳng thức đại số mà học sinh thƣờng hay gặp Ngồi ra, tơi rút đƣợc số sai lầm mà em hay mắc phải để khắc sâu đƣợc phƣơng pháp chứng minh cho em Nội dung đề tài gồm chương: Chƣơng I: Một số phƣơng pháp chứng minh bất đẳng thức đại số I Phƣơng pháp dùng định nghĩa tính chất bất đẳng thức II Phƣơng pháp biến đổi tƣơng đƣơng III Phƣơng pháp làm trội, làm giảm IV Phƣơng pháp sử dụng bất đẳng thức biết V Phƣơng pháp phản chứng VI Phƣơng pháp quy nạp toán học Trang 333 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS VII Phƣơng pháp hình học VIII Phƣơng pháp đổi biến số Chƣơng II: Những sai lầm học sinh thƣờng mắc phải chứng minh bất đẳng thức đại số Chƣơng III : Ứng dụng bất đẳng thức Chƣơng IV: Một số đề thi tập tổng hợp Trang 433 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS CHƢƠNG I: MỘT SỐ PHƢƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC ĐẠI SỐ I Phƣơng pháp dùng định nghĩa tính chất bất đẳng thức Nội dung - Để chứng minh a - Để chứng minh a b ta xét hiệu a - b chứng tỏ a - b b ta xét hiệu a - b chứng tỏ a - b 0 Ví dụ Ví dụ 1: Chứng minh Giải: Do a 0, b , với a nên , 0, b (BĐT Côsi) , Xét hay (đpcm) Đẳng thức (dấu “=”) xảy a = b Ví dụ 2: Chứng minh a3 + b3 + c3 3abc, với a 0, b 0, c (BĐT Cô si) Giải: Xét a3 + b3 + c3 - 3abc = a3 + 3a2b + 3ab2 + b3 + c3 - 3a2b - 3ab2 - 3abc = (a + b)3 + c3 - 3ab(a + b + c) = (a + b + c)[(a + b)2 - (a + b)c + c2 - 3ab] (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] (vì a 0, b 0, c 0) 3abc = Chứng tỏ a3 + b3 + c3 II Phƣơng pháp biến đổi tƣơng đƣơng Nội dung Dùng phép biến đổi tƣơng đƣơng, biến đổi bất đẳng thức cho thành bất đẳng thức tƣơng đƣơng với bất đẳng thức ban đầu bất đẳng thức chứng minh đƣợc dễ dàng Trang 533 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Ví dụ Ví dụ 1: Chứng minh bất đẳng thức: Giải: (2) Nếu ac + bd < (2) đƣợc chứng minh Nếu ac + bd ≥ (2) tƣơng đƣơng với: (a2 + b2)(c2 + d2) ≥ a2c2 + b2d2 + 2abcd ⇔a2c2 + a2d2 + b2c2 + b2d2 ≥ a2c2 + b2d2 + 2abcd ⇔(ad - bc)2 ≥ (3) Bất đẳng thức (3) Vậy bất đẳng thức (1) đƣợc chứng minh Ví dụ 2: Chứng minh rằng, x ≥ y > Giải: Bất đẳng thức cần chứng minh tƣơng đƣơng với: (1) (2) Theo giả thiết x ≥ y>1 ⇒ Do (2) ln Vậy bất đẳng thức (1) (đpcm) III Phƣơng pháp làm trội, làm giảm Nội dung Dùng phép biến đổi đƣa vế bất đẳng thức cần chứng minh dạng để tính tổng hữu hạn tích hữu hạn + Phƣơng pháp chung để tính tổng hữu hạn Sn = u1 + u2 + … + un biểu diễn số hạng tổng quát uk hiệu hai số hạng liên tiếp nhau: uk = ak - ak-1 Khi đó: Trang 633 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Sn = (a1 - a2) + (a2 - a3) + … + (an - an-1) = a1 - an-1 + Phƣơng pháp chung để tính tích hữu hạn Pn = u1.u2 un biểu diễn số hạng tổng quát uk thƣơng hai số hạng liên tiếp mhau: Khi đó: Ví dụ Ví dụ 1: Chứng minh bất đẳng thức: > Giải: Với k > ta có: với số tự nhiên n Lần lƣợt thay k = 2, 3, …, n cộng lại ta đƣợc: đpcm Ví dụ 2: Chứng minh bất đẳng thức: nhiên n > Giải: Với số tự nhiên k > 0, ta có: Trang 733 với số tự Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS (đpcm) IV Phƣơng pháp sử dụng bất đẳng thức biết Nội dung Sử dụng số bất đẳng thức nhƣ bất đẳng Côsi, Bunhiacôpxki, … + Tổng hai số nghịch đảo với xy > Đẳng thức xảy x = y với x y < Đẳng thức xảy x = y + Bất dẳng thhức Côsi với a, b ≥ Đẳng thức xảy a = b với a, b, c ≥ Đẳng thức xảy a=b=c + Bất đẳng thức Bunhiacôpxki (ax + by)2 ≤ (a2 + b2)(x2 + y2) (ax + by + cz)2 ≤ (a2 + b2 + c2)(x2 + y2 + z2) Tổng quát: (a1b1 + a2b2 + … + anbn) ≤ (a12 + a22 + … +an2)(b12 +b22 +… + bn2) Đẳng thức xảy ai=kbi với k , i =1, 2, …, n Ví dụ Ví dụ 1: Chứng minh rằng: (a + b)(a + c)(b + c) ≥ 8abc, với a, b, c số không âm Giải: Áp dụng bất đẳng thức Côsi lần lƣợt cho cặp số không âm a b; a c; b c ta đƣợc: Vậy ta có: (a + b)(a + c)(b + c) ≥ 8abc (đpcm) Dấu đẳng thức xảy khi: a = b = c Trang 833 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Ví dụ 2: Cho m2 + n2 = a2 + b2 = Chứng minh rằng: │am + bn│≤ (1) Giải: Theo đầu bài, m2 + n2 = a2 + b2 = ta áp dụng bất đẳng thức Bunhiacôpxki cho cặp số (a, m) (b, n) ta có: (am + bn)2 ≤ (a2 + b2)(m2 + n2) = ⇔│am + bn│≤ (đpcm) Dấu đẳng thức xảy khi: Ví dụ 3: Cho a, b, c số dƣơng Chứng minh: Giải: Áp dụng bất đẳng thức Côsi cho số dƣơng Ta có: ; Tƣơng tự: Cộng vế bất đẳng thức: V Phƣơng pháp phản chứng Nội dung Giả sử chứng minh bất đẳng thức đó, ta giả sử bất đẳng thức khơng kết hợp với giả thiết ta suy điều vô lý Khi ta khẳng định Trang 933 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS bất đẳng thức cần chứng minh Ví dụ Ví dụ 1: Cho a3 + b3 = Chứng minh rằng: a + b ≤ Giải: Giả sử a + b > ⇒ (a + b)3 > ⇒ + 3ab(a + b) > (vì a3 + b3 = 2) ⇒ ab( a + b) > ⇒ ab(a + b) > a3 + b3 (vì a3 + b3 = 2) Chia vế cho số dƣơng a + b ta có: ab > a2 - ab + b2 ⇒ > (a - b)2 (Vô lý) Vậy a + b ≤ Ví dụ 2: Cho x, y, z > thoả mãn điều kiện xyz = Chứng minh nếu: ba số lớn Giải: Để so sánh số x, y, z với ta xét tích: (x - 1)(y - 1)(z -1) = xyz - xy - yz - zx + x + y+ z - (suy từ giả thiết) Trong số: x - 1; y - 1; z - có số dƣơng Thật vậy: Nếu số dƣơng x, y, z > xyz >1 (trái giả thiết) Cịn số dƣơng tích (x - 1)(y - 1)(z - 1) < (vơ lý) Vậy có số x, y, z lớn Ví dụ 3: Cho < a, b, c < Chứng minh có bất đẳng thức sau sai: a(2 - b) > 1; b(2 - c) > 1; c(2 - a) > (1) Giải: Giả sử bất đẳng thức đúng, nhân vế với vế chúng lại với ta đƣợc: Trang 1033 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS ⇔4(a + b)(a2 - ab + b2) ≥ (a + b)(a + b)2 ⇔4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2 (vì a + b > 0) ⇔3a2 - 6ab + 3b2 ≥ ⇔3(a - b)2 ≥ (2) Bất đẳng thức (2) phép biến đổi tƣơng đƣơng nên bất đẳng thức (1) Sẽ mắc sai lầm lời giải ta thay dấu “⇔” dấu “⇒” Vì (1) ⇒ (2) mà bất đẳng thức (2) chƣa thể kết luận đƣợc bất đẳng thức (1) hay không? Chú ý: Bất đẳng thức (1) đƣợc gọi tƣơng đƣơng với bất đẳng thức (2) (1) ⇒ (2) (2) ⇒ (1) Trang 1933 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS CHƢƠNG III : ỨNG DỤNG CỦA BẤT ĐẲNG THỨC Dùng bất đẳng thức để tìm cực trị - Kiến thức : Nếu f(x) m f(x) có giá trị nhỏ m Nếu f(x) M f(x) có giá trị lớn M Ta thƣờng hay áp dụng bất đẳng thức thông dụng nhƣ : Côsi , Bunhiacôpxki , bất đẳng thức chứa dấu giá trị tuyệt đối Kiểm tra trƣờng hợp xảy dấu đẳng thức để tìm cực trị Tìm cực trị biểu thức có dạng đa thức , ta hay sử dụng phƣơng pháp biến đổi tƣơng đƣơng, đổi biến số , số bất đẳng thức Tìm cực trị biểu thức có chứa dấu giá trị tuyệt đối , ta vận dụng bất đẳng thức chứa dấu giá trị tuyệt đối Chú ý : Xảy dấu '' = '' AB Dấu ''= '' xảy A = Bài : Tìm giá trị nhỏ biểu thức : B = a3 + b3 + ab ; Cho biết a b thoả mãn : a + b = Giải: B = (a + b)(a2 - ab + b2) + ab = a2 - ab + b2 + ab = a2 + b2 Ta có : 2(a2 + b2) (a + b)2 = ⇒ a2 + b2 Vậy B = a = b = Bài 2: a, Tìm giá trị nhỏ biểu thức : A = (x2 + x)(x2 + x - 4) b, Tìm giá trị nhỏ biểu thức : B = - x2 - y2 + xy + 2x +2y Giải: a, A = (x2 + x)(x2 + x - 4) Đặt : t = x2 + x - ⇒ A = (t - 2)(t + 2) = t2 - - Dấu xảy : t = ⇔ x2 + x - = ⇔ (x - 2)(x + 2) = ⇔ x = -2 ; x = ⇒ A = - x = -2 ; x = ; Trang 2033 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS b, Tƣơng tự Bài : Tìm giá trị nhỏ biểu thức a, C = b, D = c, E = Giải : a, Áp dụng BĐT : Dấu '' = ''xảy AB ⇒C = Dấu '' = '' xảy (2x - 3)(1 - 2x) ⇔ Vậy minC = b, Tƣơng tự : minD = : -3 x c, minE = : x Dùng bất đẳng thức để giải phƣơng trình a Kiến thức : Nhờ vào tính chất bất đẳng thức , phƣơng pháp chứng minh bất đẳng thức , ta biến đổi hai vế ( VT , VP ) phƣơng trình sau suy luận để nghiệm phƣơng trình Nếu VT = VP giá trị ẩn (thoả mãn TXĐ) ⇒ phƣơng trình có nghiệm Nếu VT > VP VT < VP giá trị ẩn ⇒ phƣơng trình vơ nghiệm b Các ví dụ : Bài 1: a, Tìm giá trị lớn L = b Giải phƣơng trình : Giải : a Tóm tắt : ( + + + )2 ⇔ + ⇒ MaxL = x = b TXĐ : Trang 2133 - x2 + 4x - = (*) 2(2x - + - 2x) = Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS (*)⇔ + = x2 - 4x + VP = (x - 2)2 + 2 , dấu '' = '' xảy x = ⇒ với x = ( thoả mãn TXĐ ) VT = VP = ⇒ phƣơng trình (*) có nghiệm x = Bài : Giải phƣơng trình : + = x2 - 6x + 13 Giải : TXĐ : -2 x VP = (x - 3)2 + 4 Dấu '' = '' xảy x = VT2 = ( + 1)2 (6 - x + x + 2)(1 + 1) = 16 ⇒VT , dấu '' = '' xảy = ⬄x = ⇒ khơng có giá trị x để VT = VP ⇒ Phƣơng trình vơ nghiệm Bài : Giải phƣơng trình : HD : + =5 ⇒VT 2; Dấu '' = '' xảy : ⇔ ⇒ phƣơng trình có nghiệm : x = ; y = Dùng bất đẳng thức để giải hệ phƣơng trình: a Kiến thức : Dùng bất đẳng thức để biến đổi phƣơng trình hệ , suy luận kết luận nghiệm Lƣu ý : Một số tính chất : a a2 + b2 2ab b a + c < ; c > ⇒ a < b c a > b > b Các ví dụ : Bài : Giải hệ phƣơng trình : (1) ⇔ x3 = - - 2(y - 1)2 ⬄ x3 - ⇔x - (*) (2) ⇔ x2 ( + y2 2y) ⇔-1 x (**) Từ (*) (**) => x = -1 Thay x = -1 vào (2) ta có : y = Trang 2233 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS ⇒ Hệ phƣơng trình có nghiệm : x = -1 ; y = - Kiến thức : Biến đổi phƣơng trình hệ , sau so sánh với phƣơng trình cịn lại , lƣu ý dùng bất đẳng thức quen thuộc Bài 2: Giải hệ phƣơng trình (với x, y, z > 0) Giải : Áp dụng: Nếu a, b > : (2) ⇔ ⇔6 Mặt khác : x, y, z > nên 6 Dấu '' = '' xảy x = y = z , thay vào (1) ta đƣợc : x + x2 + x3 = 14 ⇔ (x - 2)(x2 + 3x + 7) = ⇔x - = ⇔ x = Vậy hệ phƣơng trình có nghiệm : x = y = z = Dùng bất đẳng thức để giải phƣơng trình nghiệm ngun Ngồi cịn có số ứng dụng khác bất đẳng thức, đòi hỏi học sinh phải linh hoạt sáng tạo giải, học sinh phải nắm đƣợc kiến thức bất đẳng thức vận dụng đƣợc Ví dụ : Dùng bất đẳng thức để giải phƣơng trình nghiệm nguyên Bài : Tìm nghiệm nguyên dƣơng phƣơng trình : =2 Trang 2333 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Giải : Khơng tính tổng quát , ta giả sử x 2= ⇒ 2z y z , ta có : , mà z nguyên dƣơng Vậy z = Thay z = vào phƣơng trình ta đƣợc : Theo giả sử , x y , nên = y nguyên dƣơng nên y = y = Với y = khơng thích hợp Với y = ta có: x = Vậy (2 ; ; 1) nghiệm phƣơng trình Hoán vị số , ta đƣợc nghiệm phƣơng trình : (2 ; ; 1) ; (2 ; ; 2) ; (1 ; ; 2) Trang 2433 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS CHƢƠNG IV: MỘT SỐ BÀI TẬP TỔNG HỢP VÀ ĐỀ THI Bài Chứng minh rằng: 2a4 + ≥ 2a3 + a2 với a (Đề thi học sinh giỏi 1979 - 1980) Bài Chứng minh bất đẳng thức: x12 + x22 + x32 + x42 + x52 ≥ x1(x2 + x3 + x4+ x5) (Đề thi học sinh giỏi 1985 - 1986) Bài Cho x ≥ 0, y ≥ x2 + y2 = Chứng minh rằng: (Đề thi vào lớp 10 chuyên ĐHTH 1995 - 1996) Bài Chứng minh bất đẳng thức: |a + b| < |1 + ab| (với | a| < , | b| < 1) (Toán bồi dưỡng học sinh lớp 8) 2 Bài Cho A = a1 + a2 + … + an2, B = b12 + b22 + … + bn2, C = a1b1 + a2b2 + … + anbn Chứng minh rằng, với x ta có: Ax2 - 2Cx + B ≥ (Toán bồi dưỡng học sinh lớp 8) Bài Cho số a ≥ 0, b ≥ 0, c ≥ Chứng minh rằng: (Bài toán bất đẳng thức chọn lọc) Bài Cho a, b, c, d, a + b + c3 số không âm Chứng minh rằng: 3 (Bất đẳng thức chọn lọc) Bài Cho a, b, c, d số dƣơng Chứng minh rằng: Bài Cho a 0, b (Đề thi học sinh giỏi cấp thành phố) n > Chứng minh bất đẳng thức: (Bất đẳng thức chọn lọc) Bài 10 Cho x ≥ y ≥ Chứng minh rằng: Trang 2533 Một số phương pháp chứng minh bất đẳng thức đại số trương trình toán học THCS (Đề thi học sinh giỏi năm 1991) Bài 11 Chứng minh rằng, với n ≥ ta có: > 2n + (Tốn bồi dưỡng học sinh lớp 8) Bài 12 Chứng minh bất đẳng thức: n+3 với ab > (Toán bồi dưỡng học sinh lớp 8) Bài 13 Chứng minh với n ∈ N ta có: (Đề thi chọn học sinh giỏi năm 1980 - 1981) Bài 14 Chứng minh bất đẳng thức: (với n ∈ N, n ≥ 2) (Tốn ơn thi vào lớp 10) Bài 15 Giả sử a b số nguyên dƣơng cho số nguyên Gọi d ƣớc số a b Chứng minh: (Đề thi vào lớp chuyên ĐHTH 1995 - 1996) Bài 16 Cho số a > 0, b > 0, c > Chứng minh bất đẳng thức: (Thi học sinh giỏi toàn quốc 1979) Bài 17 Cho a ≥ , b ≥ , c ≥ Chứng minh rằng: a4 + b4 + c4 ≥ abc(a + b + c) (Đề thi chọn học sinh giỏi toán lớp năm 1994) Bài 18 Cho x > 0, y > x + y = Chứng minh: (Đề thi tuyển vào lớp 10 chuyên Lý - Hoá ĐHTH 1992) Bài 19 Chứng minh a, b, c số dƣơng thoả mãn: abc = ab + bc + ca thì: (Đề thi tuyển sinh vào lớp 10 khối THPT chuyên Toán - Tin ĐH Vinh năm Trang 2633 Một số phương pháp chứng minh bất đẳng thức đại số trương trình toán học THCS 2002) Bài 20 Cho số dƣơng a, b, c ab > c thoả mãn: a3 + b3 = c3 + Chứng minh: a + b > c + (Đề thi tuyển sinh lớp 10 chuyên Nguyễn Trãi tỉnh Hải Dương 2004 - 2005) Bài 21 Cho a > c, b > c, c > Chứng minh rằng: Bài 22 Cho a + b = Chứng minh Bài 23 Cho Chứng minh rằng: Bài 24 Cho Chứng minh rằng: Bài 25 Cho a, b, c số dƣơng Chứng minh rằng: (BĐT Nesbit) Bài 26 Gọi a, b, c, p lần lƣợt cạnh, nửa chu vi tam giác Chứng minh rằng: (Chuyên Lê Q Đơn - Bình Định 2005 -2006) Bài 27 Cho x, y, z số dƣơng thoả mãn 4 Chứng minh rằng: (x + z) + (z + y) (x + y) (Chuyên Phan Bội Châu - Nghệ An 2006 - 2007) Bài 28: Cho hai số dƣơng x, y thoả mãn điều kiện x + y = Chứng minh x2y2(x2 + y2) ≤ (Đề thi tuyển sinh vào lớp 10 THPT năm học 2006 - 2007) Bài 29: Cho a, b, c dƣơng Chứng minh rằng: (Đề thi thử tuyển sinh vào lớp 10 chuyên Nguyễn Huệ năm học 2006 - 2007) Bài 30: Chứng minh với số thực x ta ln có: (x – )4 + (x – 3)3 + 6(x – )2(x – 3)2 ≥ Trang 2733 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS (Đề thi vào THPT năm học 2008 - 2009) Bài 31: a Cho hai số x, y ≥ Chứng minh bất đẳng thức: b Áp dụng bất dẳng thức (1), chứng minh: (1) Với số a, b, c dƣơng cho : a ≥ c; b ≥ c, ta có: (Đề thi vào 10 THPT, tỉnh Hà Tây năm học 2008 – 2009) Bài 32: a) Cho a + b + c = 2011 Tính giá trị biểu thức A = b) Chứng minh rằng: 2(x4 + y4) xy3 + x3y + 2x2y2 với x, y (Đề thi học sinh giỏi mơn Tốn lớp huyện Thanh Trì năm học 2010 – 2011) Bài 33 : Với x > 0, tìm giá trị nhỏ biểu thức : (Đề thi vào lớp 10 THPT, thành phố Hà Nội năm học 2011 – 2012) Bài 34 : Với x, y số dƣơng thỏa mãn điều kiện x ≥ 2y, tìm giá trị nhỏ biểu thức : (Đề thi vào lớp 10 THPT, thành phố Hà Nội năm học 2012 – 2013) Bài 35 : Chứng minh : Với số a, b, c, d tùy ý ta có : a2 + b2 + c2 + d2 ≥ ab + ac + ad (Đề thi học sinh khiếu lớp 8, huyện Thanh Trì, năm học 2013 – 2014) Bài 36 : Với a, b, c số dƣơng thỏa mãn điều kiện a + b + c + ab + bc + ca = 6abc Chứng minh: (Đề thi vào lớp 10 THPT, thành phố Hà Nội năm học 2013 – 2014) Bài 37 : Với a, b, c số dƣơng thỏa mãn điều kiện a + b + c = Tìm giá trị lớn biểu thức: (Đề thi vào lớp 10 THPT, thành phố Hà Nội năm học 2014 – 2015) Bài 38 : Với hai số thực không âm a, b thỏa mãn a2 + b2 = Tìm giá trị lớn Trang 2833 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS biểu thức: (Đề thi vào lớp 10 THPT, thành phố Hà Nội năm học 2015 – 2016) Bài 39 : Với số thực x, y thỏa mãn giá trị nhỏ biểu thức: P = x + y Tìm giá trị lớn (Đề thi vào lớp 10 THPT, thành phố Hà Nội năm học 2016 – 2017) Bài 40 : Cho số thực a, b, c thay đổi thỏa mãn a ≥ 1, b ≥ 1, c ≥ ab + bc + ca = Tìm giá trị lớn giá trị nhỏ biểu thức: P = a2 + b2 +c2 (Đề thi vào lớp 10 THPT, thành phố Hà Nội năm học 2017 – 2018) Trang 2933 Một số phương pháp chứng minh bất đẳng thức đại số trương trình toán học THCS PHẦN 3: KẾT LUẬN VÀ KHUYẾN NGHỊ Trên số phương pháp chứng minh bất đẳng thức đại số chương trình Tốn học THCS mà tổng hợp, phân loại Qua tập minh họa phương pháp chứng minh bất đẳng thức, cho dù chƣa đầy đủ xong phần tốt lên phƣơng pháp mà tơi áp dụng cho năm qua lớp 8; Sau sử dụng đề tài để bồi dƣỡng cho số học sinh khá, giỏi lớp, nhận thấy em tự tin giải toán chứng minh bất đẳng thức áp dụng để giải tốn có liên quan Do thời gian có hạn, trình độ học sinh lớp khơng đồng nên tiến hành dạy khảo sát với 10 học sinh giỏi lớp Kết thu đƣợc 10 em đạt trung bình (100%) có em đạt điểm trở lên (Năm học 2011 – 2012 có em đạt điểm trở lên, năm học 2012 – 2013 có em đạt điểm trở lên, năm học 2013 - 2014 có em đạt điểm trở lên, năm học 2014- 2015 có em đạt điểm trở lên, năm 2015 – 2016 có em đạt điểm trở lên, năm 2016 – 2017 có em đạt điểm trở lên, có em đạt điểm 10) Trong năm học trƣớc nghiên cứu đề tài thấy sau áp dụng vào thực tế, kết thu đƣợc khả quan Đồng thời đề tài đƣợc đồng nghiệp đánh giá cao (đã nhiều năm đạt giải B C cấp thành phố) Vì năm học (2017 – 2018) tiếp tục nghiên cứu đề tài để nghiên cứu đƣợc sâu hơn, kĩ từ trao đổi với bạn bè đồng nghiệp nhằm tháo gỡ phần khó khăn cho bạn bè đồng nghiệp dạy cho học sinh mảng kiến thức Và nghĩ, tiếp tục nghiên cứu đề tài năm để đề tài ngày đƣợc hoàn thiện cho thu đƣợc kết cao năm học tới Cuối cùng, mong nhận đƣợc đóng góp ý kiến đồng nghiệp! Tơi xin chân thành cảm ơn! Hà Nội, ngày 20 tháng 04 năm 2018 Tôi xin cam đoan SKKN viết, khơng chép nội dung ngƣời khác Người viết Trang 3033 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Nguyễn Thị Phương Trang 3133 Một số phương pháp chứng minh bất đẳng thức đại số trương trình toán học THCS TÀI LIỆU THAM KHẢO Sách giáo khoa sách toán phát triển lớp 6, 7, 8, - NXB Giáo Dục Các dạng tốn ơn thi vào lớp 10 - NXB Giáo dục - Vũ Hữu Bình Một số vấn đề phát triển đai số - NXB Giáo dục - Vũ Hữu Bình Tốn bồi dƣỡng học sinh lớp - NXB Giáo dục - Vũ Hữu Bình Tốn bồi dƣỡng học sinh lớp - NXB Giáo dục - Vũ Hữu Bình Sai lầm phổ biến giải toán - NXB Giáo dục - Nguyễn Vĩnh Cận, Lê Thống Nhất, Phan Thanh Quang Các đề thi tuyển sinh mơn tốn vào lớp 10 chủ đề thƣờng gặp NXB ĐHSP - Nguyễn Quý Dy, Nguyễn Văn Nho Các toán chọn lọc bất đẳng thức - NXB Giáo dục - Nguyễn Đề, Vũ Hồng Lâm 500 tốn chọn lọc bất đẳng thức tập 1, - NXB Hà Nội - Phan Huy Khải 10 Tuyển tập 180 toán bất đẳng thức - NXB Giáo dục - Võ Đại Mau 11 263 toán bất đẳng thức chọn lọc - NXB Giáo dục - Nguyễn Vũ Thanh 12 Phƣơng pháp giải 100 toán chọn lọcvề chuyên đề chứng minh bất đẳng thức, tìm giá trị lớn nhất, nhỏ - NXB Giáo dục - Phan Văn Phùng 13 23 chuyên đề giải 100 toán sơ cấp - NXB Giáo dục - Nguyễn Văn Vĩnh 14.Ôn tập thi vào lớp 10 mơn Tốn 15 Tạp chí Tốn học tuổi trẻ vài tài liệu khác Trang 3233 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS MỤC LỤC PHẦN MỞ ĐẦU 1 Lý chọn đề tài Mục đích nhiệm vụ nghiên cứu Đối tƣợng nghiên cứu Phƣơng pháp nghiên cứu PHẦN NHỮNG BIỆN PHÁP ĐỔI MỚI ĐỂ GIẢI QUYẾT VẤN ĐỀ Cơ sở lý luận Cơ sở thực tiễn CHƢƠNG I: MỘT SỐ PHƢƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC ĐẠI SỐ I Phƣơng pháp dùng định nghĩa tính chất bất đẳng thức II Phƣơng pháp biến đổi tƣơng đƣơng III Phƣơng pháp làm trội, làm giảm IV Phƣơng pháp sử dụng bất đẳng thức biết V Phƣơng pháp phản chứng 10 VI Phƣơng pháp quy nạp tốn học 12 VII Phƣơng pháp hình học 13 VIII Phƣơng pháp đổi biến số 15 CHƢƠNG II NHỮNG SAI LẦM HỌC SINH THƢỜNG MẮC PHẢI KHI CHỨNG MINH CÁC BẤT ĐẲNG THỨC ĐẠI SỐ 18 CHƢƠNG III: ỨNG DỤNG CỦA BẤT ĐẲNG THỨC 21 Dùng bất đẳng thức để tìm cực trị 21 Dùng bất đẳng thức để giải phƣơng trình 22 Dùng bất đẳng thức để giải hệ phƣơng trình: 23 Dùng bất đẳng thức để giải phƣơng trình nghiệm nguyên 24 CHƢƠNG IV: MỘT SỐ BÀI TẬP TỔNG HỢP VÀ ĐỀ THI 25 PHẦN 3: KẾT LUẬN VÀ KHUYẾN NGHỊ 29 TÀI LIỆU THAM KHẢO 30 Trang 3333 ... Trang 3033 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Nguyễn Thị Phương Trang 3133 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS TÀI.. .Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS Với lý trên, tơi xin trình bày đề tài ? ?Một số phương pháp chứng minh bất đẳng thức đại số chương trình tốn học THCS. .. IV: Một số đề thi tập tổng hợp Trang 433 Một số phương pháp chứng minh bất đẳng thức đại số trương trình tốn học THCS CHƢƠNG I: MỘT SỐ PHƢƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC ĐẠI SỐ I Phƣơng pháp