HỆ PT ĐỐI XỨNG

20 443 0
HỆ PT ĐỐI XỨNG

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CHUYÊN ĐỀ HỆ PHƯƠNG TRÌNH ĐỐI XỨNG Phần I. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I TÓM TẮT GIÁO KHOA VÀ PHƯƠNG PHÁP GIẢI TOÁN I. Hệ đối xứng loại (kiểu) I có dạng tổng quát: f(x, y) = 0 g(x, y) = 0 ì ï ï í ï ï î , trong đó f(x, y) = f(y, x) g(x, y) = g(y, x) ì ï ï í ï ï î Phương pháp giải chung: i) Bước 1: Đặt điều kiện (nếu có). ii) Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và 2 S 4P³ . iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng Vi–et đảo tìm x, y. Chú ý: i) Cần nhớ: x 2 + y 2 = S 2 – 2P, x 3 + y 3 = S 3 – 3SP. ii) Đôi khi ta phải đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. iii) Có những hệ phương trình trở thành đối xứng loại I sau khi đặt ẩn phụ. Ví dụ 1. Giải hệ phương trình 2 2 3 3 x y xy 30 x y 35 ì ï + = ï í ï + = ï î . GIẢI Đặt S x y, P xy= + = , điều kiện 2 S 4P³ . Hệ phương trình trở thành: 2 2 30 P SP 30 S 90 S(S 3P) 35 S S 35 S ì ï ï = ì ï = ï ï ï ï Û í í æ ö ï ï - = ÷ ç ï ï - = î ÷ ç ï ÷ ÷ ç ï è ø ï î S 5 x y 5 x 2 x 3 P 6 xy 6 y 3 y 2 ì ì ì ì = + = = = ï ï ï ï ï ï ï ï Û Û Û Ú í í í í ï ï ï ï = = = = ï ï ï ï î î î î . Ví dụ 2. Giải hệ phương trình 3 3 xy(x y) 2 x y 2 ì - = - ï ï í ï - = ï î . GIẢI Đặt t y, S x t, P xt= - = + = , điều kiện 2 S 4P.³ Hệ phương trình trở thành: 3 3 3 xt(x t) 2 SP 2 x t 2 S 3SP 2 ì ì + = = ï ï ï ï Û í í ï ï + = - = ï ï î î S 2 x 1 x 1 P 1 t 1 y 1 ì ì ì = = = ï ï ï ï ï ï Û Û Û í í í ï ï ï = = = - ï ï ï î î î . Ví dụ 3. Giải hệ phương trình 2 2 2 2 1 1 x y 4 x y 1 1 x y 4 x y ì ï ï + + + = ï ï ï í ï ï + + + = ï ï ï î . Trang 1 GIẢI Điều kiện x 0,y 0¹ ¹ . Hệ phương trình tương đương với: 2 2 1 1 x y 4 x y 1 1 x y 8 x y ì æ ö æ ö ï ÷ ÷ ç ç ï + + + = ÷ ÷ ç ç ï ÷ ÷ ÷ ÷ ç ç ï è ø è ø ï í ï æ ö æ ö ï ÷ ÷ ç ç + + + = ÷ ÷ ï ç ç ÷ ÷ ï ÷ ÷ ç ç è ø è ø ï î Đặt 2 1 1 1 1 S x y ,P x y ,S 4P x y x y æ ö æ ö æ öæ ö ÷ ÷ ÷ ÷ ç ç ç ç = + + + = + + ³ ÷ ÷ ÷ ÷ ç ç ç ç ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ç ç ç ç è ø è ø è øè ø ta có: 2 1 1 x y 4 S 4 S 4 x y P 4 1 1 S 2P 8 x y 4 x y ì æ ö æ ö ï ÷ ÷ ç ç ï + + + = ÷ ÷ ç ç ï ì ì ÷ ÷ = =ï ï ÷ ÷ ç ç ï è ø è ø ï ï ï Û Û í í í æ öæ ö ï ï ï = - = ÷ ÷ ç ç ï ï ï î î + + = ÷ ÷ ç ç ï ÷ ÷ ÷ ÷ ç ç ï è øè ø ï î 1 x 2 x 1 x 1 y 1 y 2 y ì ï ï + = ì ï = ï ï ï ï Û Û í í ï ï = ï ï î + = ï ï ï î . Ví dụ 4. Giải hệ phương trình 2 2 x y 2xy 8 2 (1) x y 4 (2) ì ï + + = ï ï í ï + = ï ï î . GIẢI Điều kiện x,y 0³ . Đặt t xy 0= ³ , ta có: 2 xy t= và (2) x y 16 2tÞ + = - . Thế vào (1), ta được: 2 t 32t 128 8 t t 4- + = - Û = Suy ra: xy 16 x 4 x y 8 y 4 ì ì = = ï ï ï ï Û í í ï ï + = = ï ï î î . II. Điều kiện tham số để hệ đối xứng loại (kiểu) I có nghiệm Phương pháp giải chung: i) Bước 1: Đặt điều kiện (nếu có). ii) Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và 2 S 4P³ (*). iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ điều kiện (*) tìm m. Chú ý: Khi ta đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác điều kiện u, v. Ví dụ 1 (trích đề thi ĐH khối D – 2004). Tìm điều kiện m để hệ phương trình sau có nghiệm thực: x y 1 x x y y 1 3m ì ï + = ï ï í ï + = - ï ï î . GIẢI Trang 2 Điều kiện x,y 0³ ta có: 3 3 x y 1 x y 1 x x y y 1 3m ( x) ( y) 1 3m ì ì ï ï + = + = ï ï ï ï Û í í ï ï + = - + = - ï ï ï ï î î Đặt S x y 0,P xy 0= + ³ = ³ , 2 S 4P.³ Hệ phương trình trở thành: 2 S 1 S 1 P m S 3SP 1 3m ì ì = = ï ï ï ï Û í í ï ï = - = - ï ï î î . Từ điều kiện 2 S 0,P 0,S 4P³ ³ ³ ta có 1 0 m 4 £ £ . Ví dụ 2. Tìm điều kiện m để hệ phương trình 2 2 x y xy m x y xy 3m 9 ì + + = ï ï í ï + = - ï î có nghiệm thực. GIẢI 2 2 x y xy m (x y) xy m xy(x y) 3m 9 x y xy 3m 9 ì ì + + = + + = ï ï ï ï Û í í ï ï + = - + = - ï ï î î . Đặt S = x + y, P = xy, 2 S 4P.³ Hệ phương trình trở thành: S P m SP 3m 9 ì + = ï ï í ï = - ï î . Suy ra S và P là nghiệm của phương trình 2 t mt 3m 9 0- + - = S 3 S m 3 P m 3 P 3 ì ì = = - ï ï ï ï Þ Ú í í ï ï = - = ï ï î î . Từ điều kiện ta suy ra hệ có nghiệm 2 2 3 4(m 3) 21 m m 3 2 3 (m 3) 12 4 é ³ - ê Û Û £ Ú ³ + ê - ³ ê ë . Ví dụ 3. Tìm điều kiện m để hệ phương trình x 4 y 1 4 x y 3m ì ï - + - = ï í ï + = ï î có nghiệm. GIẢI Đặt u x 4 0,v y 1 0= - ³ = - ³ hệ trở thành: 2 2 u v 4 u v 4 21 3m u v 3m 5 uv 2 ì + = ï ì ï + = ï ï ï Û í í - ï ï + = - = ï ï î ï î . Suy ra u, v là nghiệm (không âm) của 2 21 3m t 4t 0 2 - - + = (*). Hệ có nghiệm Û (*) có 2 nghiệm không âm / 3m 13 0 0 13 2 S 0 m 7 21 3m 3 0 P 0 2 ì ì - ï ï D ³ ï ï ³ ï ï ï ï Û ³ Û Û £ £ í í ï ï - ï ï ³ ³ ï ï ï ï î î . Ví dụ 4. Tìm điều kiện m để hệ phương trình 2 2 x y 4x 4y 10 xy(x 4)(y 4) m ì ï + + + = ï í ï + + = ï î có nghiệm thực. Trang 3 GIẢI 2 2 2 2 2 2 (x 4x) (y 4y) 10 x y 4x 4y 10 xy(x 4)(y 4) m (x 4x)(y 4y) m ìì ï + + + = ï + + + = ï ï Û í í ï ï + + = + + = ï ï î î . Đặt 2 2 u (x 2) 0,v (y 2) 0= + ³ = + ³ . Hệ phương trình trở thành: u v 10 S 10 uv 4(u v) m 16 P m 24 ì ì + = = ï ï ï ï Û í í ï ï - + = - = + ï ï î î (S = u + v, P = uv). Điều kiện 2 S 4P S 0 24 m 1 P 0 ì ï ³ ï ï ï ³ Û - £ £ í ï ï ³ ï ï î . BÀI TẬP Giải các hệ phương trình sau 1. 2 2 x y xy 5 x y xy 7 ì + + = ï ï í ï + + = ï î . Đáp số: x 1 x 2 y 2 y 1 ì ì = = ï ï ï ï Ú í í ï ï = = ï ï î î . 2. 2 2 x xy y 3 2x xy 2y 3 ì ï + + = ï í ï + + = - ï î . Đáp số: x 1 x 3 x 3 y 1 y 3 y 3 ì ì ì ï ï = - = = - ï ï ï ï ï ï Ú Ú í í í ï ï ï = - = - = ï ï ï î ï ï î î . 3. 3 3 x y 2xy 2 x y 8 ì + + = ï ï í ï + = ï î . Đáp số: x 2 x 0 y 0 y 2 ì ì = = ï ï ï ï Ú í í ï ï = = ï ï î î . 4. 3 3 x y 7 xy(x y) 2 ì ï - = ï í ï - = ï î . Đáp số: x 1 x 2 y 2 y 1 ì ì = - = ï ï ï ï Ú í í ï ï = - = ï ï î î . 5. 2 2 x y 2xy 5 x y xy 7 ì - + = ï ï í ï + + = ï î . Đáp số: 1 37 1 37 x x x 2 x 1 4 4 y 1 y 2 1 37 1 37 y y 4 4 ì ì ï ï - + ï ï = = ï ï ì ì = = - ï ï ï ï ï ï ï ï Ú Ú Ú í í í í ï ï ï ï = = - - - - + ï ï ï ï î î = = ï ï ï ï ï ï î î . 6. 2 2 2 2 1 (x y)(1 ) 5 xy 1 (x y )(1 ) 49 x y ì ï ï + + = ï ï ï í ï ï + + = ï ï ï î . Đáp số: x 1 x 1 7 3 5 7 3 5 x x 2 2 7 3 5 7 3 5 y y y 1 y 1 2 2 ì ì ì ì = - = - ï ï ï ï - + ï ï ï ï = = ï ï ï ï ï ï ï ï Ú Ú Ú í í í í - + ï ï ï ï = = ï ï ï ï = - = - ï ï ï ï ï ï ï ï î î î î . 7. x y y x 30 x x y y 35 ì ï + = ï ï í ï + = ï ï î . Đáp số: x 4 x 9 y 9 y 4 ì ì = = ï ï ï ï Ú í í ï ï = = ï ï î î . Trang 4 8. x y 7 1 y x xy x xy y xy 78 ỡ ù ù + = + ù ù ớ ù ù + = ù ù ợ (chỳ ý iu kin x, y > 0). ỏp s: x 4 x 9 y 9 y 4 ỡ ỡ = = ù ù ù ù ớ ớ ù ù = = ù ù ợ ợ . 9. ( ) 2 2 3 3 3 3 2(x y) 3 x y xy x y 6 ỡ ù + = + ù ù ớ ù + = ù ù ợ . ỏp s: x 8 x 64 y 64 y 8 ỡ ỡ = = ù ù ù ù ớ ớ ù ù = = ù ù ợ ợ . 10. Cho x, y, z l nghim ca h phng trỡnh 2 2 2 x y z 8 xy yz zx 4 ỡ ù + + = ù ớ ù + + = ù ợ . Chng minh 8 8 x,y,z 3 3 - Ê Ê . HNG DN GII H phng trỡnh 2 2 2 2 2 x y 8 z (x y) 2xy 8 z xy z(x y) 4 xy z(x y) 4 ỡ ỡ ù + = - ù + - = - ù ù ớ ớ ù ù + + = + + = ù ù ợ ợ 2 2 (x y) 2[4 z(x y)] 8 z xy z(x y) 4 ỡ ù + - - + = - ù ớ ù + + = ù ợ 2 2 (x y) 2z(x y) (z 16) 0 xy z(x y) 4 ỡ ù + + + + - = ù ớ ù + + = ù ợ 2 2 x y 4 z x y 4 z xy (z 2) xy (z 2) ỡ ỡ + = - + = - - ù ù ù ù ớ ớ ù ù = - = + ù ù ợ ợ . Do x, y, z l nghim ca h nờn: 2 2 2 2 2 (4 z) 4(z 2) 8 8 (x y) 4xy z ( 4 z) 4(z 2) 3 3 ộ - - ờ + - Ê Ê ờ - - + ờ ở . i vai trũ x, y, z ta c 8 8 x,y,z 3 3 - Ê Ê . 11. x y 1 1 1 16 16 2 x y 1 ỡ ù ổ ử ổ ử ù ữ ữ ỗ ỗ ù + = ữ ữ ỗ ỗ ù ữ ữ ữ ữ ỗ ỗ ớ ố ứ ố ứ ù ù + = ù ù ợ . ỏp s: 1 x 2 1 y 2 ỡ ù ù = ù ù ớ ù ù = ù ù ợ . 12. sin (x y) 2 2 2 1 2(x y ) 1 p + ỡ ù = ù ớ ù + = ù ợ HNG DN GII Cỏch 1: sin (x y) 2 2 2 2 2 2 sin (x y) 0 x y (1) 2 1 2(x y ) 1 2(x y ) 1 (2)2(x y ) 1 p + ỡ ỡ ỡ p + = + ẻ ù = ù ù ù ù ù ớ ớ ớ ù ù ù + = + =+ = ù ù ù ợ ợợ Z 2 2 2 2 1 2 2 x x 1 2 2 2 (2) x y 2 x y 2 1 2 2 2 y y 2 2 2 ỡ ỡ ù ù ù ù Ê - Ê Ê ù ù ù ù ù + = ị ị ị - Ê + Ê ớ ớ ù ù ù ù Ê - Ê Ê ù ù ù ù ợ ù ợ . x y 0 (1) x y 1 ộ + = ờ ị ờ + = ờ ở th vo (2) gii. Cỏch 2: t S = x + y, P = xy. H tr thnh: sinS 2 2 S 2 1 4P 2S 12(S 2P) 1 p ỡ ỡ ẻ ù = ù ù ù ớ ớ ù ù = -- = ù ù ợợ Z . Trang 5 Từ điều kiện 2 S 4P³ ta suy ra kết quả tương tự. Hệ có 4 nghiệm phân biệt 1 1 1 1 x x x x 2 2 2 2 1 1 1 1 y y y y 2 2 2 2 ì ì ì ì ï ï ï ï ï ï ï ï = = - = = - ï ï ï ï ï ï ï ï Ú Ú Ú í í í í ï ï ï ï ï ï ï ï = = - = - = ï ï ï ï ï ï ï ï î î î î . Tìm điều kiện của m để các hệ phương trình thỏa yêu cầu 1. Tìm m để hệ phương trình 2 2 x xy y m 6 2x xy 2y m ì ï + + = + ï í ï + + = ï î có nghiệm thực duy nhất. HƯỚNG DẪN GIẢI Hệ có nghiệm duy nhất suy ra x = y, hệ trở thành: 2 2 2 2 2 3x m 6 3x 6 m m 3 m 21 x 4x m x 4x 3x 6 ì ì é ï = + ï - = = - ï ï ê Û Þ í í ê ï ï = + = + = - ê ï ï ë î î . + m = – 3: 2 2 2 x xy y 3 (x y) xy 3 2(x y) xy 3 2(x y) xy 3 ì ì ï + + = ï + - = ï ï Û í í ï ï + + = - + + = - ï ï î î x y 0 x y 2 x 3 x 3 x 1 xy 3 xy 1 y 1 y 3 y 3 ì ì ì ì ì ï ï + = + = - = = - = - ï ï ï ï ï ï ï ï ï ï Û Ú Û Ú Ú í í í í í ï ï ï ï ï = - = = - = - = ï ï ï ï ï î î î ï ï î î (loại). + m = 21: 2 2 2 x xy y 27 (x y) xy 27 2x xy 2y 21 2(x y) xy 21 ì ì ï + + = ï + - = ï ï Û í í ï ï + + = + + = ï ï î î x y 8 x y 6 x 3 xy 37 xy 9 y 3 ì ì ì + = - + = = ï ï ï ï ï ï Û Ú Û í í í ï ï ï = = = ï ï ï î î î (nhận). Vậy m = 21. 2. Tìm m để hệ phương trình: 2 2 x xy y m 1 x y xy m ì + + = + ï ï í ï + = ï î có nghiệm thực x > 0, y > 0. HƯỚNG DẪN GIẢI 2 2 x xy y m 1 (x y) xy m 1 xy(x y) m x y xy m ì ì + + = + + + = + ï ï ï ï Û í í ï ï + = + = ï ï î î x y 1 x y m xy m xy 1 ì ì + = + = ï ï ï ï Û Ú í í ï ï = = ï ï î î . Hệ có nghiệm thực dương 2 m 0 1 0 m m 2 1 4m m 4 4 ì > ï ï Û Û < £ Ú ³ í ï ³ Ú ³ ï î . Vậy 1 0 m m 2 4 < £ Ú ³ . 3. Tìm m để hệ phương trình x y m x y xy m ì ï + = ï ï í ï + - = ï ï î có nghiệm thực. HƯỚNG DẪN GIẢI ( ) 2 2 x y m x y m x y m m m x y xy m xy x y 3 xy m 3 ì ï ì + = ì ï + = ï ï + = ï ï ï ï ï ï Û Û í í í - ï ï ï + - = = + - = ï ï ï ï î ï ï î ï î . Trang 6 Suy ra x, y l nghim (khụng õm) ca phng trỡnh 2 2 m m t mt 0 3 - - + = (*). H cú nghim (*) cú 2 nghim khụng õm / 2 2 0 m 4m 0 m 0 S 0 m 0 1 m 4 P 0 m m 0 ỡ ỡ ù ù D - Ê ù ù ộ = ù ù ù ù ờ ớ ớ ờ ù ù Ê Ê ờ ù ù ở - ù ù ù ù ợ ợ . Vy m 0 1 m 4= Ê Ê . 4. Tỡm m h phng trỡnh 2 2 2 x y 2(1 m) (x y) 4 ỡ ù + = + ù ớ ù + = ù ợ cú ỳng 2 nghim thc phõn bit. HNG DN GII 2 2 2 2 2 x y 2(1 m) (x y) 2xy 2(1 m) (x y) 4 (x y) 4 ỡ ỡ ù + = + ù + - = + ù ù ớ ớ ù ù + = + = ù ù ợ ợ xy 1 m xy 1 m x y 2 x y 2 ỡ ỡ = - = - ù ù ù ù ớ ớ ù ù + = + = - ù ù ợ ợ . H cú ỳng 2 nghim thc phõn bit khi ( ) 2 2 4(1 m) m 0 = - = . 5. Cho x, y l nghim ca h phng trỡnh 2 2 2 x y 2m 1 x y m 2m 3 ỡ + = - ù ù ớ ù + = + - ù ợ . Tỡm m P = xy nh nht. HNG DN GII t S x y, P xy= + = , iu kin 2 S 4P. 2 2 2 2 2 x y 2m 1 S 2m 1 x y m 2m 3 S 2P m 2m 3 ỡ ỡ + = - = - ù ù ù ù ớ ớ ù ù + = + - - = + - ù ù ợ ợ 2 2 2 S 2m 1 S 2m 1 3 (2m 1) 2P m 2m 3 P m 3m 2 2 ỡ = - ù ỡ ù = - ù ù ù ớ ớ ù ù - - = + - = - + ù ù ợ ù ợ T iu kin suy ra 2 2 4 2 4 2 (2m 1) 6m 12m 8 m . 2 2 - + - - + Ê Ê Xột hm s 2 3 4 2 4 2 f(m) m 3m 2, m 2 2 2 - + = - + Ê Ê . Ta cú 4 2 11 6 2 4 2 4 2 minf(m) f , m ; 2 4 2 2 ổ ử ộ ự - - - + ữ ỗ ờ ỳ ữ = = " ẻ ỗ ữ ỗ ờ ỳ ữ ữ ỗ ố ứ ờ ỳ ở ỷ Vy 11 6 2 4 2 minP m 4 2 - - = = . http://kinhhoa.violet.vn CHUYấN Phn II. H PHNG TRèNH I XNG LOI II Trang 7 1. Dng 1: ỡ ù ù ớ ù ù ợ f(x, y) = 0 f(y, x) = 0 (i v trớ x v y cho nhau thỡ phng trỡnh ny tr thnh phng trỡnh kia) Phng phỏp gii chung Cỏch gii 1 Tr hai phng trỡnh cho nhau, a v phng trỡnh tớch, gii x theo y (hay ngc li) ri th vo mt trong hai phng trỡnh ca h. Vớ d 1. Gii h phng trỡnh 3 3 x 2x y (1) y 2y x (2) ỡ ù + = ù ù ớ ù + = ù ù ợ . Gii Tr (1) v (2) v theo v ta c: 3 3 2 2 x y 3x 3y 0 (x y)(x y xy 3) 0- + - = - + + + = 2 2 y 3y (x y) x 3 0 y x 2 4 ộ ự ổ ử ờ ỳ ữ ỗ - + + + = = ữ ỗ ờ ỳ ữ ữ ỗ ố ứ ờ ỳ ở ỷ Th y = x vo (1) hoc (2) ta c: 3 x x 0 x 0+ = = Vy h phng trỡnh cú nghim duy nht x 0 y 0 ỡ = ù ù ớ ù = ù ợ . Vớ d 2. Gii h phng trỡnh 2x 3 4 y 4 (1) 2y 3 4 x 4 (2) ỡ ù + + - = ù ù ớ ù + + - = ù ù ợ Gii iu kin: 3 x 4 2 3 x 4 2 ỡ ù ù - Ê Ê ù ù ớ ù ù - Ê Ê ù ù ợ . Tr (1) v (2) ta c: ( ) ( ) 2x 3 2y 3 4 y 4 x 0+ - + + - - - = (2x 3) (2y 3) (4 y) (4 x) 0 2x 3 2y 3 4 y 4 x + - + - - - + = + + + - + - 2 1 (x y) 0 x y 2x 3 2y 3 4 y 4 x ổ ử ữ ỗ ữ - + = = ỗ ữ ỗ ữ ỗ ố ứ + + + - + - . Thay x = y vo (1), ta c: 2x 3 4 x 4 x 7 2 (2x 3)(4 x) 16+ + - = + + + - = 2 2 9 x 0 11 2 2x 5x 12 9 x x 3 x 9x 38x 33 0 9 ỡ - ù ù - + + = - = = ớ ù - + = ù ợ (nhn). Trang 8 Vậy hệ phương trình có 2 nghiệm phân biệt 11 x x 3 9 y 3 11 y 9 ì ï ï = ì ï = ï ï ï Ú í í ï ï = ï ï î = ï ï î . Cách giải 2 (nên dùng khi cách 1 không giải được) Cộng và trừ lần lượt hai phương trình đưa về hệ phương trình mới tương đương gồm hai phương trình tích (thông thường tương đương với 4 hệ phương trình mới). Ví dụ 3. Giải hệ phương trình 3 3 x 2x y (1) y 2y x (2) ì ï = + ï ï í ï = + ï ï î Giải Trừ và cộng (1) với (2), ta được: 3 2 2 3 2 2 x 2x y (x y)(x xy y 1) 0 y 2y x (x y)(x xy y 3) 0 ì ì ï ï = + - + + - = ï ï ï ï Û í í ï ï = + + - + - = ï ï ï ï î î 2 2 2 2 2 2 2 2 x y 0 x y 0 x y 0 x xy y 1 x y 0 x xy y 3 x xy y 1 x xy y 3 ì ì ì ì ï - = + = ï ï - = + + = ï ï ï ï ï ï Û Ú Ú Ú í í í í ï ï ï ï + = - + = + + = - + = ï ï ï ï î î î ï î + x y 0 x 0 x y 0 x 0 ì ì - = = ï ï ï ï Û í í ï ï + = = ï ï î î + 2 2 2 x y 0 y x x 3 x 3 x xy y 3 x 3 y 3 y 3 ì ì ì ì ï ï - = = ï ï = = - ï ï ï ï ï ï Û Û Ú í í í í ï ï ï ï - + = = = = - ï ï ï ï î î ï ï î î + 2 2 2 x y 0 y x x 1 x 1 y 1 y 1 x xy y 1 x 1 ì ì ì ì + = = - ï ï = - = ï ï ï ï ï ï Û Û Ú í í í í ï ï ï ï = = - + + = = ï ï ï ï î î î î + 2 2 2 2 2 2 xy 1 x xy y 1 xy 1 x 1 x 1 x y 0 y 1 y 1 x y 2 x xy y 3 ì ì ì ì ì ï = - ï + + = = - = = - ï ï ï ï ï ï ï ï ï Û Û Û Ú í í í í í ï ï ï ï ï + = = - = + = - + = ï ï ï ï ï î î î î ï î Vậy hệ phương trình có 5 nghiệm phân biệt: x 0 x 1 x 1 x 3 x 3 x 0 y 1 y 1 y 3 y 3 ì ì ì ì ì ï ï = = - = = = - ï ï ï ï ï ï ï ï ï ï Ú Ú Ú Ú í í í í í ï ï ï ï ï = = = - = = - ï ï ï ï ï î î î ï ï î î . Cách 3. Sử dụng hàm số đơn điệu để suy ra x = y Ví dụ 4. Giải hệ phương trình 2x 3 4 y 4 (1) 2y 3 4 x 4 (2) ì ï + + - = ï ï í ï + + - = ï ï î Giải Điều kiện: 3 x 4 2 3 x 4 2 ì ï ï - £ £ ï ï í ï ï - £ £ ï ï î . Trừ (1) và (2) ta được: 2x 3 4 x 2y 3 4 y+ - - = + - - (3) Trang 9 Xột hm s 3 f(t) 2t 3 4 t, t ; 4 2 ộ ự ờ ỳ = + - - ẻ - ờ ỳ ở ỷ , ta cú: / 1 1 3 f (x) 0, t ; 4 2 2t 3 2 4 t ổ ử ữ ỗ = + > " ẻ - ữ ỗ ữ ữ ỗ ố ứ + - (3) f(x) f(y) x yị = = . Thay x = y vo (1), ta c: 2x 3 4 x 4 x 7 2 (2x 3)(4 x) 16+ + - = + + + - = 2 11 2 2x 5x 12 9 x x 3 x 9 - + + = - = = (nhn). Vy h phng trỡnh cú 2 nghim phõn bit 11 x x 3 9 y 3 11 y 9 ỡ ù ù = ỡ ù = ù ù ù ớ ớ ù ù = ù ù ợ = ù ù ợ . Vớ d 5. Gii h phng trỡnh 3 3 x 2x y y 2y x ỡ ù + = ù ù ớ ù + = ù ù ợ . Gii Xột hm s 3 / 2 f(t) t 2t f (t) 3t 2 0, t= + ị = + > " ẻ Ă . H phng trỡnh tr thnh f(x) y (1) f(y) x (2) ỡ = ù ù ớ ù = ù ợ . + Nu x y f(x) f(y) y x> ị > ị > (do (1) v (2) dn n mõu thun). + Nu x y f(x) f(y) y x< ị < ị < (mõu thun). Suy ra x = y, th vo h ta c 3 x x 0 x 0.+ = = Vy h cú nghim duy nht x 0 y 0 ỡ = ù ù ớ ù = ù ợ . Chỳ ý: Khi gp h phng trỡnh i xng loi II dng 1, ta nờn gii cỏch 1. Nu gii khụng c mi ngh n cỏch 2 v 3, nu vn khụng gii c thỡ quay tr v bi v tỡm iu kin chớnh xỏc ri gii li cỏch 1! Vớ d 6 (trớch thi H khi B 2003). Gii h phng trỡnh: 2 2 2 2 x 2 3x y y 2 3y x ỡ ù + ù = ù ù ù ớ ù + ù ù = ù ù ợ Gii Nhn xột t h phng trỡnh ta cú x 0 y 0 ỡ > ù ù ớ ù > ù ợ . Bin i: 2 2 2 2 2 2 2 2 x 2 3x 3xy x 2 (1) y 3yx y 2 (2) y 2 3y x ỡ ù + ù = ù ỡ ù = + ù ù ù ù ớ ớ ù ù = + + ù ù ù ợ ù = ù ù ợ Tr (1) v (2) ta c: (x y)(3xy x y) 0 x y (3xy x y 0).- + + = = + + > Trang 10 . CHUYÊN ĐỀ HỆ PHƯƠNG TRÌNH ĐỐI XỨNG Phần I. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I TÓM TẮT GIÁO KHOA VÀ PHƯƠNG PHÁP GIẢI TOÁN I. Hệ đối xứng loại (kiểu). đưa hệ phương trình đối xứng không giải được theo cách giải “quen thuộc” về hệ phương trình đối xứng giải được theo cách giải “quen thuộc” Ví dụ 1. Giải hệ

Ngày đăng: 06/11/2013, 20:11

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan